
https://doi.org/10.1007/s10773-020-04511-3

The Discrete Center-of-Mass Tomogram

Avanesov A. S.1,2,3 ·Man’ko V. I.2,3,4

Received: 29 December 2019 / Accepted: 4 June 2020 /
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A new tomographic function is introduced for the description of qudit states. We utilize
the discrete space phase formalism and an analogy with continuous variables systems. It is
proved that the new function is nonnegative, normalized and that it unambiguously deter-
mines the state. The new function is called the discrete center-of-mass tomogram as it has a
counterpart used to determine the states of continuous variables systems.

Keywords Wigner function · Discrete phase space · Tomographic probability
representation of quantum mechanics · Center-of-mass tomogram

1 Introduction

There are various quantum state representations that are used in many applications of
quantum information theory, quantum optics, etc.

In the traditional formalism, a Hilbert space H is associated with a considered quantum
system. A pure state is described by the wave function |ψ〉, which is an element of this
Hilbert space. In the case of statistical ensembles of quantum systems, a state is described by
the density operator ρ̂ [1, 2], that is a Hermitian self-adjoint, positive-semidefinite operator
defined on the Hilbert space H.

Also, the states of a quantum system can be described by functions defined on the phase
space, just as in the case of the description of classical systems. As an example we can
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mention the quasi-probability distribution functions [3–7] or tomographic functions [8, 9].
The latter functions are true probability distributions.

There are many fields where the Wigner function is applied [15, 16]. It was introduced
in [3] and was the first object of the kind of quasiprobabilities. The Wigner function is
defined on the phase space and normalized as the classical probability density. However,
unlike its classical counterpart, the Wigner function can take negative values. This fact can
be considered as an effect of the uncertainty relations [10–12] and can be used in attempts
to understand the quantum-classical correspondence [13, 14]. Also, it was proved that the
Wigner function took negative values for every pure state that was not the gaussian one
[17]. This fact is known as Hudson’s theorem. It was generalized for multiparticle quantum
systems in [18].

In [8] the tomographic probability representation of quantum states was proposed. In the
framework, the state of a continuous variables quantum system is described by the symplec-
tic tomogram, which is the product of the Radon transformation [19] of the Wigner function
[3]. Also, the symplectic tomogram is a generalization of the optical tomogram, that is
measured employing the homodyne detector [20–22] for the determination of a photonic
state.

In the cases of the multimode electromagnetic field or multiparticle systems, there are
different possibilities to introduce tomographic probability representations. The state of
these systems can be described by conditional probability distributions of 1, 2,..., or N ran-
dom variables, where the parameter N denotes the number of modes of the electromagnetic
field. These possibilities of the quantum state representation were discussed in [23–25]. The
quantum state can be described by the conditional probability distribution of one variable
having the physical meaning of the center of mass of all the particles. The corresponding
tomographic function is called the center-of-mass tomogram. The Hilbert space of the N -
mode system is a tensor product of the Hilbert spaces of every mode. We can combine some
of these subspaces in one. Therefore some modes (or particles) are described by a single
Hilbert space, these modes or particles constitute a cluster. In [25], it was shown that for
every partition of the Hilbert space of multimode (multiparticle) quantum system it was
possible to describe its state by the conditional probability distributions of n random vari-
ables, where n was the number of elements in the partition of the initial Hilbert space or
the number of clusters. Each variable was the center of mass of particles in the cluster. This
tomographic function was called the cluster tomogram.

In the case of discrete variables systems (qudits), we can use the phase space formalism
and describe the qudit states by an analog of Wigner function that is called the discrete
Wigner function. There has been a great development in the area, see [26–29]. The general
approach in building Wigner functions from Lie groups was considered in [30].

Like its counterpart for continuous variables systems, the discrete Wigner function can
take negative values. There is also known an analog of Hudson theorem [31]. It states that
the Wigner function of the stabilizer state is a nonnegative one. Also, it is known that quan-
tum computational circuits consisting only of the Clifford gates produce the stabilizer states
and can be effectively simulated by classical computers [32, 33]. Hence, there is the con-
nection between the quantum computational speed-up and negativity of the discrete Wigner
function, which was discussed in [34–36].

Since it is possible to construct the phase space for a discrete-variable quantum system,
we can develop this formalism further by introducing discrete tomographic functions. In
the present paper, we build the tomographic function for describing the state of a composite
qudit system by being based on the notion of the center-of-mass tomogram. On the one
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hand, such a system can be considered as one d-level qudit, with d is a composite number (in
our notation pure states of a d-level qudit are elements of a Hilbert space Hd of dimension
d). On the other hand, it is possible to consider any qudit as a composite one if d is not a
prime. Moreover, by introducing additional degrees of freedom we can present the quantum
d-level system as a composite one for arbitrary d , see [37–40]. However, the involvement
of the last technic goes beyond the scope of the present research. Here, we treat the d-
level quantum system as a composite one only for the cases of composite d . Finally, our
interest is in the development of the tomographic representations for this kind of quantum
systems. We mentioned that the state of continuous variables composite system could have
been described by the center-of-mass tomogram or by the cluster tomogram. An analogical
representation we introduce for qudit states.

The tomographic functions are true probability distributions that in general can be
obtained in POVM measurements. In other words, for some measurement schemes called
IC-POVM (informational complete POVM) the state of a quantum system is determined
by the probabilities of the possible outcomes. In the case of a continuous variables sys-
tem, the state is determined by the probability density. Also, the tomographic functions can
be considered as a set of conditional probability distributions. For instance the symplectic
tomogram is a conditional probability density distribution W(X | μ, ν) of the quadrature
values X(μ, ν) = μq + νp (here q is the generalized coordinate and p is the generalized
momentum). Parameters μ and ν determines the measuring observable. By introducing a
distribution P(μ, ν) we can construct POVM with the probability density of its outcomes
of the form P(X) = W(X | μ, ν)P (μ, ν). The general discussion about representations
of the quantum states by the conditional probabilities can be found in [41–43].

As it was mentioned, there were different ways to define the discrete Wigner function.
We find it useful to follow the approach proposed in [26] and developed in [44, 45]. In the
representation, d-level quantum system, where d is not a prime, is considered as a composite
one. At the same time, for a prime d the phase space of a d-level quantum system can be
constructed straightforwardly as a finite plane Zd × Zd . The sum of values of the discrete
Wigner function along the line (this object is additionally defined for a finite space) is
nonnegative and represents the probability of the outcome when measuring an observable
whose eigenvectors form one of the d + 1 bases of the full set of MUB (mutual unbiased
bases) [46, 47]. The phase space of a composite qudit (i.e. when d is not a prime) is a
Cartesian product of phase spaces of the qudit subsystems. A corresponding discrete Wigner
function is constructed in consideration of these subsystems as individual particles.

The existence of the full set of MUB is proven only for prime or power of prime d

[48]. Presumably, for other d the set of MUB of maximal size contains lesser than d + 1
bases. Note, that the minimum number of orthogonal measurements that are needed for state
determination of a d-level quantum system is d + 1. In the case, the state can be described
by d + 1 d-dimensional probability distributions. Thus, the full set of MUB, if it exists,
produces a probability representation of qudit states. Consideration within the framework
of a generic star-product scheme can be found in [49]. Moreover, the usage of the discrete
phase space formalism allows us to speak about an analogy between the MUB probability
representation and the symplectic tomography of continuous-variable systems states. We
use this idea to extend the center-of-mass tomography formalism for the representation of
the states of composite discrete variables quantum systems.

The presented MUB scheme possesses some redundant information. In the case, the qudit
state is determined by d2 + d real parameters, while we need only d2 − 1 for the determi-
nation of the density operator. Also, there are POVM schemes that produce non-redundant
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representations of quantum states, see for instance the SIC POVM approach that was stud-
ied and widely used in quantum Bayesianism reformulation of quantum mechanics (QBism)
[50, 51]. An interesting connection between SIC POVM and MUB in the framework of
finite geometry was discussed in [52].

We can use different partitions of the Hilbert space of composite discrete variables
quantum system to define the analogies of the aforementioned cluster and center-of-mass
tomograms. In this work, we are aimed to build the qudit representation where its state is
described by the analog of the center-of-mass-tomogram. This object can be constructed
straightforwardly from the formula of the continuous center-of-mass tomogram by replac-
ing the integral by the sum and delta function by Kronecker symbol, and by using modular
arithmetic. However, it should be proven that the map to the discrete center-of-mass tomo-
gram (as we call this analog of continuous center-of-mass tomogram) is invertible. In order
to build the complete representation, it is also important to find the inverse transform of this
map. The discrete center-of-mass tomogram can be defined if the Hilbert space dimension
d is not a prime. In our framework d must be a power of some p ∈ N \ {1}. It was soluted
to analyze the cases of prime p due to the relative simplicity in calculations.

The paper is organized as follows. In Sections 2 and 3 the information about the main
aspects of the phase space formalism and the tomographic probabilities is given. In partic-
ular, in Section 2 we consider the representations of the states of the continuous variables
quantum systems. In the next section, the review of the discrete Wigner function approach
is presented. Then, in Section 4 we introduce the new tomographic function to describe the
states of qudit systems. The construction is made utilizing the analogy between the con-
tinuous and discrete variables quantum systems. We also prove that the new function is
nonnegative, normalized and it is possible to restore the density operator from its values. In
Section 5, for demonstration of the new approach to describe qudit systems we consider the
ququart case. The concluding remarks are presented in Section. 6.

2 Tomographic probability representation of quantum states

The state of a classical system is described by the probability density function defined on
a phase space, i.e. by the function f (q, p) of the canonical variables q and p, where q is
the generalized coordinate and p is the generalized momentum. The function f (q, p) is
normalized and positively semi-definite.

The state of a quantum system is described by the density operator ρ̂ defined on a Hilbert
space H of pure states. The density operator is a Hermitian self-adjoint, positively semi-
definite, normalized (i.e. Tr ρ̂ = 1).

Due to the uncertainty relations [10, 11, 53], it is impossible to construct the joint proba-
bility distributions of the canonical variables q and p. Nevertheless, the state of the quantum
system can be described by the function defined on the phase space (here and below we put
� = 1)

W(q, p) = 1

2π

∫
du ρ

(
q + u

2
, q − u

2

)
e−ipu, (1)

where
ρ
(
q + u

2
, q − u

2

)
=
〈
q + u

2

∣∣∣ ρ̂
∣∣∣q − u

2

〉
(2)

is the matrix element of the density operator written in the q-representation.
The function W(q, p) is called the Wigner function. It possesses the property of normal-

ization, i.e.
∫

dq dp W(q, p) = 1. However, it is not the true probability distribution as it
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can take negative values. Actually, a pure state is given by the nonnegative Wigner function,
only if the corresponding wave function is of the form of the Gaussian function [17].

Let us discuss the properties of the quasiprobability distribution (1) by using the star-
product formalism [54–56]. The Wigner function is obtained by the linear transformation
of the density operator. For every point (q, p) in the phase space we determine an operator
Û(q, p) called dequantizer. Then, the Wigner transform of the density operator can be
presented in the form

W(q, p) = Tr
(
ρ̂ · Û(q, p)

)
. (3)

In the case, for dequantizers we have the following expressions

Û(q, p) = 2D̂
(√

2(q + ip)
)

P̂ , (4)

where D̂( α√
2
) = exp

(
iImα · q̂ − iReα · p̂

)
is the displacement operator and P̂ is operator

of reflection (parity operator), i.e. P̂ |q〉 = | − q〉.
The map (3) is an invertible one. The corresponding transform is known as the Weyl

transform or the Weyl quantization [57] and can be presented in the form

ρ̂ =
∫

dq dp W(q, p)D̂(q, p). (5)

Here, for every point in the phase space we determine operators D̂ called quantizers. In
the case of the Wigner-Weyl transforms the quantizers and dequantizers coincide up to
coefficient

D̂(q, p) = 2π Û(q, p). (6)

The star-product formalism can be applied not only for the density operator. By intro-
ducing quantizers and dequantizers we can map an arbitrary operator defined on the Hilbert
space into c-valued function and vise versa

Â → fA(x) = Tr
(
ρ̂ · Û(x)

)
, fA(x) → Â =

∑
x

fA(x)D̂(x). (7)

Here, the parameter x denotes all variables of function fA and
∑

x means the summation in
the case of discrete values of x and the integration in the case of continuous values of x. The
function fA is called the symbol of operator Â. In the case of the Wigner-Weyl transforms,
it is also common to call the Wigner function as the Weyl symbol of the density operator.

The schemes, where quantizers and dequantizers of one value x coincides up to a coef-
ficient, are called self-dual and were studied in [56]. The Wigner-Weyl transforms are a
special case of such schemes.

Although the Wigner function is not a true probability distribution, we can restore all
statistical characteristics of an arbitrary observable, for instance

〈A〉 = Tr
(
ρ̂Â

)
=
∫

dq dp A(q, p)W(q, p), (8)

where Â is the operator of the observable and A(q, p) is proportional to its Weyl symbol

A(q, p) =
∫

dq dp
〈
q + u

2

∣∣∣ Â
∣∣∣q − u

2

〉
e−ipu. (9)

In particular, by integrating over the variable p, we obtain a density function of the
probability distribution of outcomes of the measurement of the observable q̂. Similarly,

International Journal of Theoretical Physics (2020) 59: –242424042408



it is obtained a probability distribution function for an arbitrary observable of the form
X̂ = μq̂ + νp̂. Due to the properties of dequantizers of the Wigner-Weyl transformation,
we always obtain nonnegative values. Indeed, the integration of the dequantizers along the
line μq + νp = X gives us the projector on the eigenstate of the corresponding operator X̂.
Hence, for obtaining the probability distribution of the observable X̂, we need to integrate
the Wigner function along the line μq + νp = X

W(X | μ, ν) =
∫

dq dp W(q, p)δ(X − μq − νp). (10)

We can notice that
∫

dX W(X | μ, ν) = 1. Thus, the function W(X | μ, ν) is the condi-
tional probability distribution density of the random variable X given the values of the real
parameters μ and ν. The map (10) is known as the Radon transform and it is an invertible
one. Hence, the state of the quantum system can be described by the conditional probability
distribution density W(X | μ, ν), which is called the symplectic tomogram. The connection
of function W(X | μ, ν) with the density operator can be presented in the following way

W(X | μ, ν) = Tr
(
ρ̂δ(X − μq̂ − νp̂)

) = 〈X; μ, ν|ρ̂|X; μ, ν〉, (11)

where |X; μ, ν〉 is eigenstate of the operator X̂ = μq̂ + νp̂.
The function W(X | μ, ν) can be considered as the tomographic symbol of the density

operator, where the corresponding dequantizers have the form

Û(X, μ, ν) = δ
(
X − μq̂ − νp̂

)
. (12)

The density operator can be restored by using the inverse map ρ̂ =∫
dX dμ dνW(X, | μ, ν)D̂(X, μ, ν), where for quantizers we have

D̂(X, μ, ν) = 1

2π
ei(X−μq̂−νp̂). (13)

Let us proceed to the consideration of multimode or multiparticle states. For clarity,
assume that there are N particles and everyone can be described by two parameters qi and
pi . The Hilbert space for N -mode system can be presented as a tensor product of single-
particle Hilbert spaces, i.e. H = ⊗N

k=1 Hk . In this case, the dimension of the corresponding
phase space is 2N and the Wigner function has the following form

W(q, p) = 1

(2π)N

∫
dNu ρ

(
q + u

2
, q − u

2

)
e−ip·u, (14)

where q = [
q1 ... qN

]T
and p = [

p1 ... pN

]T
.

The joint probability distribution of the observables q̂i and p̂j exists if i �= j . The
function W(q, p) is not the true probability density, but we can obtain by means of corre-
sponding integral transformations the probability distributions of all observables q̂i and p̂i

∀i = 1, ..., N and some of their compositions. In general, we can obtain the joint probability
distributions of any set of commuting observables.

The tomographic symbol of the density operator of the state of a single-particle sub-

system can be obtain by linear transform ρ̂k → Tr
(
ρ̂k · Û(Xk, μk, νk)

)
, where index k

denotes the k-th particle. For the state ρ̂ of the whole system, we can construct quantizers
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and dequantizers that are tensor products of quantizers and dequantizers for single-particle
subsystems, i.e.

Û(X, μ, ν) =
N∏

k=1

δ
(
Xk − μkq̂k − νkp̂k

)
, (15)

D̂(X, μ, ν) = 1

(2π)N

N∏
k=1

ei(Xk−μkq̂k−νkp̂k), (16)

where X, μ, ν consist of parameters Xk , μk and νk relatively. By using (15, 16), we
can introduce the multidimensional symplectic tomogram that can be expressed as a
transformation of the multidimensional Wigner function

W(X | μ, ν) =
∫

dNq dNp W(q, p)

N∏
k=1

δ(Xk − μkqk − νkpk) (17)

where qk and pk are coordinate and momentum of k-th particle. In other words, 2N -
dimensional phase space is split in the Cartesian product of phase spaces, then, in every
phase space we integrate the Wigner function along the line μkqk + νkpk = Xk .

If instead of performing the elementwise multiplication in the expression (17) we decide
to calculate the scalar product of vectors μ and q (ν and p), we obtain the function that has
the fewer number of variables and has the form

Wcm(X | μ, ν) =
∫

dKq dKp δ(X − μ · q − ν · p)W(q, p). (18)

The function (18) is known as the center-of-mass tomogram [23]. Its values are nonnega-
tive and it is normalized, i.e.

∫
dX Wcm(X | μ, ν) = 1. So, the center-of-mass tomogram

is true probability distribution density. Let us note that the transformation (18) is an invert-
ible one. In the star-product formalism the dequatizers and quantizers of the center-of-mass
tomogram have the form

Û(X, μ, ν) = δ

(
X −

N∑
k=1

μkq̂k −
N∑

k=1

νkp̂k

)
, (19)

D̂(X, μ, ν) = 1

(2π)N
exp

(
X −

N∑
k=1

μkq̂k −
N∑

k=1

νkp̂k

)
. (20)

Thus, we describe the state of the quantum multimode system by the conditioned proba-
bility distribution of one random variable X. In other words, the center-of-mass tomogram
is the function of 2N + 1 parameters. The variable X can be presented as the sum of vari-
ables Xk = μkqk + νkpk , where every variable Xk relates to k-th particle. Let us suppose
that νk = 0 ∀k = 1, ..., N . In the case variable X is the weighted sum of coordinates of
particles, X = ∑N

k=1 μkqk . If we assume that μk = mk∑N
l=1 ml

, then we see that variable X

has the meaning of center of mass of the multiparticle system.

3 The discreteWigner function

Let us consider the qudit systems. In this case, the density matrix ρ̂ of the state acts on a
Hilbert space Hd of finite dimension d and can be represented as a square matrix of size
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d × d . As the density matrix is a Hermitian positively semidefinite normalized operator, the
state of the qudit is given by d2 − 1 real parameters.

As it was discussed in Section 2, the state of continuous-variable quantum system can
be described by a function defined on the phase space ((q, p) - space), e.g. by the Wigner
function W(q, p).

By analoguous way, the phase space is constructed in the case of qudit systems. In
[26–29] the formalism of quasi-distributions for finite-level systems was introduced and
developed. Various approaches to the construction of the function, which is analogous to
the Wigner function for qudits [58–60, 70] as well as approaches of introduction of other
discrete quasiprobabilities [61–63], have been proposed. Also, this approach was consid-
ered in the context of the star product formalism [64–66]. The problem of the quantum state
reconstruction in terms of the Wigner function and the discrete phase space was discussed
in [29]. There are various papers where the formalism of the phase space was applied, i.e.
[67–69, 71].

Following the approach [26], we consider the two cases

1. d is a prime number. The correspondig qudit systems can not be composite. Also,
the formalism of the phase space in the case is closely related to the notion of mutu-
ally unbiased bases (MUB) [72–74]. Two bases {|ei〉}|di=1 and {|fi〉}|di=1 are mutually
unbiased if

|〈fi |ej 〉| = 1√
d

, ∀i, j = 1, ..., d. (21)

Let us consider the d-level system such that it is possible to find d + 1 different MUBs.
Measurements of the ensemble of qudits in these bases give us d2 − 1 independent
probabilistic parameters. That allows us to reconstruct the density matrix of the state.
However, the existence of d +1 mutually unbiased bases is proved for the cases when d

is a prime or power of a prime number [48]. Also, for arbitrarily d the number of MUB
cannot exceed d + 1 [47]. It is assumed that it is not possible to construct a complete
MUB set for all d that are not powers of a prime number. General information on the
MUB can be found in the review [75].

2. d is not a prime number. The corresponding quantum systems are considered as com-
posite ones. In the continuous case, the Wigner function of the state of a multimode
quantum system has the form (14), and its dequantizers and quantizers are the products
of the dequantizers and quantizers for single-particle subsystems, see (4). The same
approach can be used to define the discrete Wigner function of the state of the com-
posite discrete-variable system. We remind that in the paper we consider any d-level
quantum system, where d is not a prime, as a composite one.

3.1 d is a prime number

Let us choose the basis {|n〉}|d−1
n=0. In the considered case it is possible to construct the

complete set of MUB, i.e. for the given basis {|n〉}|d−1
n=0 there are d bases {|b, n〉}|d−1

n=0,
b = 1, ..., d, such that

|〈b, n|b′, n′〉| = 1 − δb,b′√
d

+ δb,b′δn,n′ . (22)

Here, we use designation |n〉 = |0, n〉.

International Journal of Theoretical Physics (2020) 59: –24242404 2411



Obviously, the Fourier images of the states |n〉 form an element of MUB set. We put that
this basis corresponds to the number b = 1

|1, n〉 = 1√
d

d−1∑
k=0

e
2πi
d

·nk|k〉. (23)

The phase space of the described physical systems is the space Zd ×Zd , where Zd is the
field of residues modulo the prime number d . The corresponding coordinates a1 and a2 are
associated with the states of the bases {|n〉}|d−1

n=0 and {|1, n〉}|d−1
n=0 relatively. In other words,

we encode the basis states by the elements of the finite field Zd .
Let us introduce operators Ẑ and X̂ of the form

Ẑ =
∑

a1∈Zd

ωa1 |a1〉〈a1|, X̂ =
∑

a1∈Zd

ωa2 |1, a2〉〈1, a2|. (24)

Here we use encoding via the finite field elements and notation ω = e
2πi
d . The operator Ẑ

is diagonal in the basis {|n〉}|d−1
n=0 and X̂ is diagonal in the {|1, n〉}|d−1

n=0.
The discrete Wigner function is the map W : Zd × Zd → R, where

W(a1, a2) = Tr
(
Û(a1, a2) · ρ̂

)
, a1, a2 ∈ Zd , (25)

and the operators Û(a1, a2) are called dequantizers and for the case d �= 2 according to
[26, 73] they have the form

Û(a1, a2) = 1

d2

∑
k∈Zd

∑
l∈Zd

ωa2l−a1kω−2−1klẐkX̂l . (26)

From the expressions for operators Ẑ and X̂ (24) we obtain

Û(a1, a2) = 1

d

∑
k∈Zd

∑
l∈Zd

|k〉〈l|δ2a1,k+lω
a2·(k−l), (27)

Hence, we obtain an expression for a discrete Wigner function, which has a similar form to
the Wigner function of a system with continuous variables

W(a1, a2) = 1

d

∑
n∈Zd

〈a1 − n|ρ̂|a1 + n〉e
(

4πi
d

)
na2 . (28)

The function W(a1, a2) has the following properties

1. It is normalized, i.e.
d−1∑
a1=0

d−1∑
a2=0

W(a1, a2) = 1 (29)

2. Summation by the variable a2 gives us the probability distribution P0(n) of outcomes
of measurement in the basis {|n〉}|d−1

n=0

d−1∑
a2=0

W(a1, a2) = 〈a1|ρ̂|a1〉 = P0(a1). (30)
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Here, we use the following identity 1
N

∑N−1
k=0 exp

(
2πi
N

· nk
)

= δn,0. Analogu-

ously, when summing by the variable a1, we obtain the distribution of outcomes of
measurement in the basis {|1, n〉}|d−1

n=0

d−1∑
a1=0

W(a1, a2) = 1

d

d−1∑
m=0

d−1∑
n=0

〈m|ρ̂|n〉e 2πi
d

·(n−m)a2 = 〈1, a2|ρ̂|1, a2〉 = P1(a2). (31)

3. For two functions W1(a1, a2) and W2(a1, a2)

d

d−1∑
a1=0

d−1∑
a2=0

W1(a1, a2)W2(a1, a2) = Tr
(
ρ̂1 · ρ̂2

)
, (32)

where ρ̂1 and ρ̂2 are corresponding to W1 and W2 density operators.

The density operator can be reconstructed from the values of the discrete Wigner function
by the transformation

ρ̂ =
d−1∑
a1=0

d−1∑
a2=0

W(a1, a2)D̂(a1, a2), (33)

where the operators D̂(a1, a2) are known as quantizers, and they coincide with the
corresponding dequantizers up to a coefficient

D̂(a1, a2) = d · Û(a1, a2). (34)

Let us discuss some properties of the discrete Wigner function related to geometrical
objects in the discrete phase space. The line in Zd ×Zd is the set of points (a1, a2) satisfying
the equation

μa1 + νa2 = κ, μ, ν, κ ∈ Zd . (35)

In a phase space of size d × d there are only d2 + d of such objects. Two lines are
parallel, that is, they have no intersections if the free terms κ differ while the coefficients
μ and ν are the same for the equations of the lines. Let us denote the lines in a finite phase
space by specifying the triple (μ, ν, κ). Note that dividing by a nonzero coefficient leads
to an equation describing the same line. In particular, this means that it is sufficient for us
to consider the following variants of values of coefficients

– (μ, 1, κ), where μ, κ ∈ Zd ,
– (1, 0, κ), where κ ∈ Zd .

Each one of d + 1 given pairs (μ, ν) specifies a set of parallel lines (every set contains
d lines) that called striations. The case of qutrit striations is presented in Fig. 1. The cor-
responding phase space consists of 3 × 3 = 9 points. In the figure, the column number is
counted from the left to the right and denotes the variable a1. The row number is counted
from the bottom to the top and corresponds to the variable a2.

Using the concept of lines we can generalize the property 2 of the discrete Wigner func-
tions: the sum of the values of the Wigner function at all points (a1, a2) of the line (μ, 1, κ)

is a probability to find the system in the MUB state |μ + 1, κ〉
∑

a1, a2: μa1+a2=κ

W(a1, a2) = 〈μ + 1, κ|ρ̂|μ + 1, κ〉. (36)
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Fig. 1 The striations of the phase space of qutrit. The lines of one striation are placed in one rectangular box

Indeed, for the sum of dequantizers we have

d−1∑
a1=0

Û(a1, κ − μa1) = |μ + 1, κ〉〈μ + 1, κ|, (37)

where

|μ + 1, κ〉 = 1√
d

d−1∑
k=0

ωκk−2−1μk2 |k〉. (38)

The sum of the values along the line (1, 0, κ), as already shown, gives the probability to
detect the system in the state of the basis |κ〉 = |0, κ〉.

Note that the expressions of dequantizers (27) and the definition of the Wigner function
(28) are not suitable for descriptions of states of qubit systems d = 2. At least we can see

that 2a1 = 0. In the case of d = 2, we have ω = (−1), Ẑ = σ̂z, X̂ = σ̂x , where σ̂x =
[

0 1
1 0

]

and σ̂z =
[

1 0
0 −1

]
are Pauli matrices. The corresponding dequantizers have the form

Û(a1, a2) = 1

d2

d−1∑
k=0

d−1∑
l=0

(−1)a2l−a1ki−kl σ̂ k
z σ̂ l

x . (39)
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Finally, we obtain the expression

Û(a1, a2) = 1

4

(
Î + u(a1, a2) · σ̂

)
, (40)

where

u(a1, a2) = [
(−1)a2 (−1)a1+a2 (−1)a1

]T
, (41)

and for all a1 and a2 D̂(a1, a2) = 2 Û(a1, a2).
The qubit density operator can be presented in the form

ρ̂ = 1

2

(
Î + r · σ̂

)
, (42)

where r = [
x y z

]T
is the vector of real parameters and σ̂ = [

σ̂x σ̂y σ̂z

]
are Pauli matrices.

Therefore, for the Wigner function of qubit state we obtain

W(a1, a2) = 1

4

(
1 + (−1)a2x + (−1)a1+a2y + (−1)a1z

)
. (43)

3.2 d is not a prime number

The Hilbert space can be presented in the form

Hd = Hp1 ⊗ .... ⊗ HpK
, (44)

where d = p1...pK is the decomposition of the number d into prime factors. The corre-
ponding phase space can be presented as a Cartesian product Z2

p1
× ... ×Z

2
pK

. A continuous
analog of this construction is the phase space of a multimode system of continuous vari-
ables. By using (26) for each subspace Hpk

, we obtain the operators Ûk(a
(k)
1 , a

(k)
2 ), where

a
(k)
1 , a

(k)
2 ∈ Zpk

. Then, the Wigner function of the whole system Hd is constructed through
dequantizers of the form

Û(a1, a2) =
K⊗

k=1

Ûk(a
(k)
1 , a

(k)
2 ). (45)

Here a1 =
[
a

(1)
1 ... a

(K)
1

]T

, a2 =
[
a

(1)
2 ... a

(K)
2

]T

.

4 The discrete center-of-mass tomogram

In Section 2 the product of the Radon transformation of the Wigner function was associated
with symplectic and optical tomographic functions. In the case of existence of the full set
of MUB (and it is true when d is a prime number), we can describe the state by means of a
tomographic function of the form

wMUB(n, b) = Tr
(|b, n〉〈b, n| · ρ̂

)
, b = 0, ..., d, n ∈ Zd , (46)

and in this case dequantizers Û = |b, n〉〈b, n| are projectors on the MUB states |μ, κ〉.
Similarly, in the continuous case, the symplectic tomogram dequantizer Û(X, μ, ν) =
δ
(
X − μq̂ − νp̂

)
is the projector on the corresponding to the eigenvalue X eigenstate of
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the operator X̂ = μq̂ + νp̂. In the paper [49], the quantizers of the scheme for the transition
from the wMUB function to the density matrix were obtained

D̂(κ, μ) = |μ, κ〉〈μ, κ| − 1

d + 1
Î . (47)

Let us suppose that d is not a prime number. By analogy with the continuous case, it is
possible to introduce a tomographic function of the form

w(κ | μ, ν) =
∑

a1∈⊗N
k=1 Zpk

∑
a2∈⊗N

k=1 Zpk

W(a1, a2)

K∏
k=1

δ
μka

(k)
1 +νka

(k)
2 , κk

, (48)

where d = p1...pN is a prime factors decomposition of the composite d and

μ =
⎡
⎢⎣

μ1
...

μK

⎤
⎥⎦ , ν =

⎡
⎢⎣

ν1
...

μK

⎤
⎥⎦ , κ =

⎡
⎢⎣

κ1
...

κK

⎤
⎥⎦ , (49)

where μk, νk, κk ∈ Zpk
. Thus, we see that the case of composite d is analog of the case

of the multiparticle system of continuous variables. Reconstruction of the discrete Wigner
function from the values of the tomographic function w(κ,μ, ν) is possible by means of
the iterative procedure described in [76].

In this section we propose to continue the construction of analogies between discrete and
continuous cases by introducing the discrete counterpart of the center-of-mass tomogram

wcm(κ | μ, ν) =
∑

a1∈ZN
p

∑
a2∈ZN

p

W(a1, a2)δκ, μ·a1+ν·a2 . (50)

Note, that the proposed definition is appropriate for cases where d is a power of a prime
number. Otherwise, it is not clear by what rules elements of different fields would be added.
If d is a power of a composite number b, then the parameters μk , νk , κk are elements of Zb,
and Zb is a ring, not a field. This circumstance complicates the analysis.

So, we consider a quantum system of dimension d = pN , where p is a prime number.
The components of the vectors a1, a2, μ, ν and the variable κ belong to the field of residues
modulo p, i.e. Zp . The phase space is the space Z

2N
p . We will also use the notation

x =
[
a1
a2

]
, γ =

[
μ

ν

]
. (51)

In the space Z
2N
p the equation γ · x = κ specifies a finite set that we call a hyperplane of

2N − 1 dimension. The sum of the values of the discrete Wigner function over the points
belonging to the hyperplane defined by the parameters γ and κ is the value of the discrete
center-of-mass tomogram. Note, that the values of the function wcm(κ | γ ) are nonnegative.
Indeed, it is not difficult to obtain a connection of the discrete center-of-mass tomogram
with a tomographic function w(κ | γ ) defined in (48)

wcm(κ | γ ) =
∑

υ∈ZN
p

w(υ | γ )δ
κ,

∑N
n=1 υn

. (52)
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The function w(υ | γ ) is nonnegative, therefore, each term in the last expression is non-
negative, hence the values of the function wcm(κ | γ ) are also nonnegative. Furthermore, it
follows from (52) that

p−1∑
κ=0

wcm(κ | γ ) = 1. (53)

It is also necessary to prove that the function wcm(κ | γ ) uniquely determines the state
of the quantum system. To do this, it is sufficient to show that the discrete Wigner function
is uniquely restored by the values of the discrete center-of-mass tomogram.

First, we denote the pair of vectors μ and ν as one vector γ = (μ, ν), and pair of vectors
a1 and a2 as α = (a1, a2). Then, for (50) we have

wcm(κ | γ ) =
∑
α

A(κ, γ ; α)W(α), (54)

where A(κ, γ ; α) = δκ, γ ·α . As we consider the case of d = pN , where p is a prime
number, so α, γ ∈ Z

2N
p . The functions wcm(κ | γ ) and W(α) can be considered as p2N+1-

dimensional and p2N -dimensional vectors. Therefore, the function values A(κ, γ ; α) form
a matrix Â of size p2N+1 × p2N , where (κ, γ ) decodes the row index of Â and α decodes
the column index.

The linear transform is invertible if and only if a square matrix B̂ = ÂT Â of size p2N ×
p2N is invertible. In the case, the transform of discrete center-of-mass tomogram to discrete
Wigner function is determined by the matrix B̂−1 · ÂT . We can see that

B(α, β) =
∑

γ∈Z2N
p

δγ ·α, γ ·β . (55)

Let us consider the equation γ · (α − β) = 0. If α = β arbitrary γ ∈ Z
2N
p is a solution.

Therefore, all the diagonal elements of the matrix B̂ are equal to p2N . In the case of α �= β

the equation γ · (α − β) = 0 has p2N−1 solutions. Thus, the elements of the matrix B̂ can
be presented in the form

B(α, β) = p2N−1 · C(α, β), (56)

where

C(α, β) =
{

p, α = β

1, α �= β
. (57)

The value of function C(α, β) form the invertable Ĉ, and for elements Ĉ−1 we have

C−1(α, β) = 1

p2N+1 − p2N + p2 − 2p + 1

{
p2N + p − 2, α = β

−1, α �= β
. (58)

Thus, from (56) we have B̂−1 = p1−2N · Ĉ−1. Finally, the inverse map for (54) has the
following form

W(α) = 1

p2N−1

∑
β∈Z2N

p

∑
(κ, γ )∈Z2N+1

p

C−1(α, β) δκ, γ ·β wcm(κ | γ ) (59)
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5 The ququart case

To demonstrate the representations of qudit states given in the paper, we construct the dis-
crete center-of-mass tomogram for the simplest case in which it is possible, i.e. for the case
of ququart.

The density operator ρ̂ of the ququart state is the operator defined on the Hilbert space
H4. The construction of the corresponding Wigner function is carried out according to the
scheme proposed in Section 3. We present the original Hilbert space as the tensor product
of the Hilbert spaces of pure qubit states H4 = H(A)

2 ⊗ H(B)
2 . Thus, the original ququart is

considered as a composite system of two qubits denoted as A and B.
The phase space of each qubit is a finite plane Z

2
2 = Z2 × Z2. The corresponding coor-

dinates are denoted as aA
1 , aA

2 , aB
1 , aB

2 . A point in the ququart phase space is defined by
the values of these four parameters. In other words, the ququart phase space is a Cartesian
product of the qubit phase spaces A and B. The points of the resulting phase space Z2

2 ×Z
2
2

can be arranged on a plane, see Fig. 2.
The Wigner function of the state of ququart is determined for the constructed phase space

Z
2
2 × Z

2
2, the corresponding dequantizers have the form

Û(aA
1 , aB

1 , aA
2 , aB

2 ) = Û(aA
1 , aA

2 ) ⊗ Û(aB
2 , aB

2 ). (60)

In this case the qubit operators Û(a1, a2) are defined by the expression (39).
For the values of the discrete Wigner function of ququart state we have

∑
aA

1 , aA
2 ∈ �A

∑
aB

1 , aB
2 ∈ �B

W(aA
1 , aB

1 , aA
2 , aB

2 ) ≥ 0, (61)

where �A and �B are lines in the phase spaces of qubits A and B correspondingly.

�A =
{
aA

1 , aA
2 : μAaA

1 + νAaA
1 = κA, μA, νA, κA ∈ Z2

}
, (62)

�B =
{
aB

1 , aB
2 : μBaB

1 + νBaB
1 = κB, μB, νB, κB ∈ Z2

}
. (63)

Fig. 2 Representation of the ququart phase space as a Cartesian product of the phase spaces of two qubits. A
point in the qubit phase space A(B) is given by the pair (a

A(B)
1 , a

A(B)
2 ), with a

A(B)
1 , a

A(B)
2 ∈ Z2
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The center-of-mass tomogram of the ququart state can be presented in the form

wcm(κ | μA, μB, νA, νB) =
∑

aA
1 , aB

1 , aA
2 , aB

2 ∈ 

W(aA
1 , aB

1 , aA
2 , aB

2 ), (64)

where the set  is a finite hyperplane of dimension 3 and consists of 8 points

Ω = {aA
1 , aA

1 , aA
2 , aB

2 : μAaA
1 + μBaB

2 + νAaA
2 + νBaB

2 = κ,

μA, μB, νA, νB, κ ∈ Z2}. (65)

Thus, the center-of-mass tomogram of the ququart state is the sum of the values of the
Wigner function over points belonging to the finite hyperplane . In other words, the center-
of-mass tomogram is defined on the set of all finite three-dimensional spaces  ∈ Z

2
2 ×Z

2
2.

For each value κ , there are 15 different , and since κ ∈ Z2, there are only 30 three-
dimensional finite subspaces in the space Z2

2×Z
2
2. Note that subspaces  given by equations

with the same coefficients μA(B), νA/B and differing free terms κ have no common points.
Thus, it is possible to divide the initial phase space into a pair of disjoint subspaces of
dimension 3. In Fig. 3 we present all the possible divisions.

Based on the property of normalization of the Wigner function, we can conclude

wcm(0 | μA, μB, νA, νB) + wcm(1 | μA, μB, νA, νB) = 1. (66)

This means that for determination of the center-of-mass tomogram, it is sufficient for us to
determine 15 of its values. Let us find a linear map of the elements of the density matrix to
the elements of the probability vector composed of the values wcm(0 | μA, μB, νA, νB).
To do this, let us vectorize the density matrix, i.e., let us walk through its elements row by
row and write them in one column, which is denoted as ρ and which consists of 16 elements.
Also, let’s make a column vector P from the values wcm(0 | μA, μB, νA, νB) ordered
lexicographically by the values of the four (μA, μB, νA, νB). The final size of the vector
is equal to 15. For convenience of calculations we will add the element wcm(1 | 1, 1, 1, 1).
Then, the mapping from ρ to P is given by the square matrix Û of the size 16 × 16

P = Û · ρ, (67)

Fig. 3 Divisions of the ququart phase space into pairs of disjoint finite subspaces of dimension 3. Blue color
indicates the points related to the case κ = 0, red color relates to the case κ = 1
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Using the definition of the ququart center-of-mass tomogram (64) and making the corre-
sponding calculations, we obtain

Û = 1

2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
1 0 i 0 0 1 0 i −i 0 1 0 0 −i 0 1
1 1 0 0 1 1 0 0 0 0 1 −1 0 0 −1 1
1 0 0 i 0 1 i 0 0 −i 1 0 −i 0 0 1
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
1 0 1 0 0 1 0 −1 1 0 1 0 0 −1 0 1
1 i 0 0 −i 1 0 0 0 0 1 i 0 0 −i 1
1 0 0 i 0 1 −i 0 0 i 1 0 −i 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 i 0 0 1 0 −i −i 0 1 0 0 i 0 1
1 i 0 0 −i 1 0 0 0 0 1 −i 0 0 i 1
1 0 0 −1 0 1 1 0 0 1 1 0 −1 0 0 1
1 0 0 1 0 1 −1 0 0 −1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

In the previous section, we proved the possibility of reconstructing the values of the
discrete Wigner function from the values of the discrete center-of-mass tomogram. This
also means that we can reconstruct the density matrix. In particular, it is easy to see that the
mapping (67) is reversible, i.e. there exists D̂ = Û−1 and

ρ = D̂ · P . (69)

Finally, the calculations give us the expression of the inverse matrix

D̂ = 1

2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 1 0 0 0 1 0 0 −1 −1
0 1 0 0 0 1 0 0 0 −i 0 0 0 −i −1 + i −1 + i

1 0 0 0 −i 0 0 0 1 0 0 0 −i 0 −1 + i −1 + i

0 0 1 0 0 0 −i 0 0 0 −i 0 0 0 −1 + i i

0 1 0 0 0 1 0 0 0 i 0 0 0 i −1 − i −1 − i

0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 1 1
0 0 1 0 0 0 −i 0 0 0 i 0 0 0 0 −1
1 0 0 0 −i 0 0 0 −1 0 0 0 i 0 0 0
1 0 0 0 i 0 0 0 1 0 0 0 i 0 −1 − i −1 − i

0 0 1 0 0 0 i 0 0 0 −i 0 0 0 0 −1
0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 1 1
0 1 0 0 0 −1 0 0 0 −i 0 0 0 i 0 0
0 0 1 0 0 0 i 0 0 0 i 0 0 0 −1 − i −i

1 0 0 0 i 0 0 0 −1 0 0 0 −i 0 0 0
0 1 0 0 0 −1 0 0 0 i 0 0 0 −i 0 0
0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(70)

6 Summary

In conclusion, we summarize the main results of our work. It was well known that it was
possible to construct the phase space for qudit systems and to describe their states by the
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discrete Wigner function. Also, there is an analogy in the construction of the tomographic
functions of qudits and the continuous variables system. For example, the qudit tomographic
function associated with MUB measurements corresponds to the symplectic tomogram.

In the paper, we exploited this idea to construct a new tomographic function that
described the qudit states. This function wcm(κ | μ, ν) is an analog of the center-of-mass
tomogram used to describe the multiparticle continuous variables system. The definition of
our function is presented as expression (50) that connects it with the discrete Wigner func-
tion. The new function was called the discrete center-of-mass tomogram. We showed that it
was nonnegative one and the map from the discrete Wigner function to the discrete center-
of-mass tomogram was invertible. The latter property means that we can restore the discrete
Wigner function as well as the density operator from the values of the discrete center-of-
mass tomogram. We also paid attention to the simplest case where it was possible to describe
the quantum states by the new tomographic function, i.e. we studied the case of ququart
system. Here, we found the expressions for linear operators of the direct and inverse maps
from density operator to the discrete center-of-mass tomogram.

Thus, we propose a new approach to describe the qudit states. The considered represen-
tation can be used in the case of a d-level quantum system with d is the power of a prime
number.

Finally, we should note that the value of the discrete center-of-mass tomogram is the sum
of the discrete Wigner function values over a finite hyperplane of dimension 2N − 1, where
d = pN and p is a prime number. However, we can develop the analogy between continuous
and discrete quantum systems even further by using the finite space geometric objects, and
we can construct the function that can be called the discrete cluster tomogram. This function
can be obtained by summing the discrete Wigner function values over finite hyperplanes of
dimension lower than 2N − 1. This function should be studied in future research.
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faltigkeiten. Akad. Wiss. 69, 262–277 (1917)
20. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distri-

butions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989). https://doi.org/10.1103/
PhysRevA.40.2847

21. Bertrand, J., Bertrand, P.: A tomographic approach to Wigner’s function. Found Phys 17, 397–405
(1987). https://doi.org/10.1007/BF00733376

22. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the
density matrix of a light mode using optical homodyne tomography: Application to squeezed states and
the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993). https://doi.org/10.1103/PhysRevLett.70.1244

23. Arkhipov, A.S., Lozovik, Yu.E., Man’ko, V.I.: Tomography for Several Particles with One Ran-
dom Variable. Journal of Russian Laser Research 24, 237–255 (2003). https://doi.org/10.1023/A:
1024051809262

24. Arkhipov, A.S., Man’ko, V.I.: Quantum transitions in the center-of-mass tomographic probability
representation. Phys. Rev. A 71, 012101 (2005). https://doi.org/10.1103/PhysRevA.71.012101

25. Dudinets, I., Manko, V.: Center of mass tomography and Wigner function for multimode photon states.
Int J Theor Phys 57, 1631–1644 (2018). https://doi.org/10.1007/s10773-018-3690-x

26. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. of Phys. 176,
1–21 (1987). https://doi.org/10.1016/0003-4916(87)90176-X
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