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Abstract
In the present paper, the quantum entanglement dynamics of two qubits Heisenberg-
XYZ spin chain under a time dependent magnetic field effects, and considering the
Dzyaloshinskii-Moriya (DM) interactions is studied. Assuming the system as being influ-
enced by a non-Markovian environment, the dynamics of entanglement through the
concurrence is studied. It follows from the simulations that the time dependency charac-
ter of the DM coupling, the external magnetic field, and the Heisenberg spin-spin coupling
preserves longer entanglement in the system compared to the case with these parameters
constant. Moreover, it also follows that the effects of the environment on the system induces
the loss of entanglement and then, the time interval of entanglement sudden death highly
depends on the initial state considered. It is also observed that by tuning the strength of
the DM coupling associated with a time varying magnetic field and a time varying spin-
spin anisotropic coupling, the system can be better protected from unwanted effects of the
environment and thus, entanglement can be preserved for a longer period of time.

Keywords Qubits · Entanglement · Concurrence · Entanglement sudden death ·
Entanglement sudden birth

1 Introduction

Quantum entanglement is one of the most striking features of quantum mechanics, and
entangled states of matter find nowadays many applications in quantum information pro-
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cessing [1–9]. For example, quantum teleportation is physically implementable with the
help of entanglement. Further applications of entanglement are found in the process of,
super-dense coding [10], quantum key distribution [11], quantum telecloning [12] which are
technologically implementable with the help of entanglement between quantum systems.
G.Vidal in [13] showed that, entanglement also plays important role in quantum transitional
phase occurring in interacting lattice systems.

Even though entanglement is known to be very useful, it has been shown that it is very
fragile and is easily destroyed when the quantum system interacts with its environment,
since a quantum system is almost impossible to be completely isolated from its environ-
ment so, it needs to be protected [14, 15], from unwanted effects such as decoherence [16,
17], and dissipation [17, 18]. This is a fundamental problem when trying to characterize
the dynamical properties of entanglement. Thus, maximally entangled states are known as
an important resources of several quantum error correction algorithm and communication
processes [9, 19–21].

Within the past few decades, one of the major tasks in engineering of quantum compu-
tation has been the search of a suitable many-qubit system whose entanglement is robust
enough for it to be used in quantum computing tasks; some of the suitable proposed so
far have included superconducting Josephson junctions, semi-conductor nanostructure [22],
optical gates lattice and quantum dots [23], spin systems. The latest has been proven to be
among the favorite spin chains to implement quantum computers especially the Heisenberg
spin− 1

2 chain due to their properties, their coherence and their relaxation time [24]. There-
fore, several models using Heisenberg spin− 1

2 chain have been deeply investigated recently.
For examples, the isotropic XX model which means that the coupling strength is the same in
the direction of x and y and does not exist in the z direction. We also denote the XY model
where the coupling strength is different along the x and y axis and nonexistent along the
z direction [25]. This model presents an advantage from the first one that it can be exactly
solved by mapping to a spinless fermionic models. Apart from the two models above one
can also have the XXX, XXZ, and XYZ models [26–28]. These models show that the cou-
pling strength exists in all the directions but the XXX is isotropic and the XXZ is isotropic
only in x and y directions. We particularly pay great attention to the latest model in this
work, since couplings are different for all the directions and it denotes the most general
case. This last model has greatly attracted the attention of physicists these past few decades
since it provides the best description of the reality of spin-spin coupling systems [29, 30].
In general, the XYZ model was assimilated to the massive Thirring model [31]. Apart from
the Heisenberg interactions, another important kind of interaction which arises in spin sys-
tems comes from the coupling of the electron to the angular momentum of the positive ion
cores. This interaction was first introduced by Dzyaloshinskii and analyzed later by Moriya
to better explain the spin systems magnetic properties [32, 33]. Recently, this type of inter-
action has been deeply investigated for the effects it may have on a spin based qubit system
entanglement dynamics. In this idea, Gou F. Zhang studied thermal entanglement of two
qubits XYZ spin chain, considering the DM effects and he found that entanglement can
be considerably affected by this interaction [34]. Decoherence effects in two-qubits XYZ
anisotropic model have also been studied by C.Tao et al. [35] considering the model under
anisotropic magnetic field effects. The concurrence time history was considered, they found
that sudden death of entanglement (ESD) collapses and sudden birth of entanglement (ESB)
appears as well as revivals of entanglement due to decoherence effects, consequently, con-
currence of entanglement changes in an important way under anisotropic magnetic field
action on the system. Entanglement sudden death here introduces the process of finite-time
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disentanglement in an initially entangled quantum system. Particular attention was paid to
entanglement dynamics of systems interacting with non-Markovian reservoirs [36–39]. In
addition, squeezed reservoir also leads to steady-state [36] and revival of entanglement [40,
41]. ESD and ESB have recently been deeply discussed in the case of two atoms interacting
with a non-Markovian bath, based on Dicke model [42]. Furthermore, Yang et al. [43] stud-
ied the dynamics of quantum correlations in two-qubits XYZ model. They came out with
remarkable conclusion that, the ESD time interval strongly depends on the initial state and
it is highly affected by an inhomogeneous magnetic field. Further investigations have been
made by Meng Qin et al. [44] who found that, with the z-component of DM interaction
(Dz), the dynamics of the system presents a kind of symmetry function about the Heisen-
berg coupling J and entanglement highly depends on the initial state. Moreover, in [45] it
is pointed out that the DM interaction can create or strengthen entanglement. Zhang also
showed [46] that, it can force ferromagnetic spin chain to be a better quantum channel for
quantum communication processes.

It turns out that, a good deal of research work has been investigated in this field. However,
the dynamics of entanglement of a two qubits XYZ spin chain model under both the time
dependent DM interaction and the time dependent inhomogeneous magnetic field effects
through a noisy environment has not yet been studied.

So, our main interest in this work is to study the evolution in time of entanglement in
two qubits XYZ spin chain considering the above conditions. We are interested in this study
because through it we expect to gain a better understanding of the phenomenon of entan-
glement by changing simultaneously the strength of the external magnetic field and that of
the DM coupling to observe the corresponding system response. It is also expected that in
the above conditions, adding to the time varying spin-spin anisotropic coupling, the system
can be better protected from its environment and thus, entanglement can be preserved from
unwanted effects. The time dependency character of the DM coupling, and that of the spin-
spin interaction are due to the fact that, the system constantly interacts with its environment
and also from the nature of the crystals. Furthermore, the DM interaction can be turned by
an external electric field hence, if a time dependent electric field is used then, it becomes
also time dependent. It has been shown that the magnetic field has several effects on qubits
[47]. These effects have been studied, both for uniform and for anisotropic magnetic field
and has been shown that some of them tend to enhance the strength of the coupling between
qubits, thus preserving entanglement, while some other like transversal magnetic fields tend
to destroy effective coupling between qubits thus, creating decoherence [48]. Moreover,
using an on/off magnetic field with correct frequency, the effects of decoherence can be
countered [49]. However, the DM interactions are recognized very useful both for weak
ferromagnetism and antiferromagnetism spin arrangements in low symmetry, these inter-
actions also play crucial role for entanglement as well. This proves their effectiveness in a
system but these interactions are naturally present in the system and might be influenced
by many parameters like the temperature of the medium, the nature of the material. So,
it is considerably important to consider them as been varying in time when studying the
dynamics of these types of systems.

The main objective we would like to achieve in this work is the following: we would
like to show that the time dependency character of the spin-spin coupling J(t), the spin-
spin anisotropic coupling Δ(t), the DM interaction D(t) and the inhomogeneous magnetic
field including its anisotropy B(t) and b(t) can strongly improve entanglement in a quantum
system by turning the field frequency ω. To achieve this, we structured the paper as follows:
after providing the historical background in Section 1, we develop in Section 2 the dynamics
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of entanglement of two qubits XYZ Heisenberg spin chain assuming the system in a noisy
environment and approaching the study by the Lindblad master equation method. Section 3
is devoted to numerical results and discussion and finally, we end this work with concluding
remarks in Section 4.

2 Entanglement Evolution of Two-qubits XYZ Spin Chain

Beyond the interest given to quantum entanglement static behavior of many body systems,
its dynamical behavior has attracted significant attention too. Under the effects of differ-
ent system’s parameters both internal and external, one may have entanglement transfer,
decay, creation or entanglement vanishing in the quantum system. In most of the cases, it
was found that systems suddenly changed from their initial state to another inducing sudden
change of entanglement as well. Moreover, the system might be in some kind of interac-
tion with its environment creating the loss of entanglement in the system. However, it was
shown that entanglement might be a key ingredient for physical implementation of quantum
computers [50] and it can be measured through several methods including the concurrence,
the Von-Neumann entropy, quantum discord, negativity [51–56]. This is the reason why in
this section, the dynamics of entanglement is studied considering the system’s parameters
as time varying within a noisy environment and considering the weak system-bath interac-
tion known as the Born-Markov approximation [57]. The dynamics is approached by the
Lindblad master equation assuming the concurrence as the main measurement feature of
entanglement.

2.1 Model Description and Derivation of the System’s Dynamics

Let us define a two-qubit spin system under the effects of both the DM interaction and the
inhomogeneous magnetic field by the following Hamiltonian [27, 58, 59]:

H = JxS
1
xS2

x + JyS
1
yS2

y + JzS
1
z S2

z + (B − b)S1
z + (B + b)S2

z + −→
D · (

−→
S 1 ∧ −→

S 2), (1)

where in this Hamiltonian the indexes 1 and 2 stand for qubit 1 and 2 respectively, Ji (for
i = x, y, z) stand for the spin-spin interactions in the system. As defined in the previous
section, if Jx = Jy �= 0 and Jz = 0, one has an XX Heisenberg model. While the case
Jx = Jy �= Jz �= 0 denotes that of XXZ Heisenberg model. But our main interest in this
work is the case where we have Jx �= Jy �= Jz �= 0 representing the XYZ Heisenberg spin

chain.
−→
D stands for the DM coupling vector between qubits. This kind of interaction arises

in spin systems from the coupling of the electron to the angular momentum of the positive
ion cores. It also introduces in the system the effects of anisotropic antisymmetric spin-orbit
interactions which is most often neglected in several works but, which may have a particular
effect on dynamical properties of quantum systems. By definition of the spin vector, one
has:

−→
S = �

2
−→σ , (2)

where −→σ defines the Pauli matrix. Assuming the Planck constant as � = 1 and considering
(2) the Hamiltonian (1) becomes:

H = 1

4
(Jxσ

1
x σ 2

x +Jyσ
1
y σ 2

y )+ Jz

4
σ 1

z σ 2
z + 1

2
((B−b)σ 1

z +(B+b)σ 2
z )+ 1

4
−→
D ·(−→σ 1∧−→σ 2). (3)
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For reasons of simplicity, let us assume that the DM interaction is unidirectional and is

oriented only along the (oz) axis, this implies we have
−→
D = Dz

−→
k , which allows us to write:

−→
D · (

−→
S 1 ∧ −→

S 2) = Dz

4

(
σ 1

x σ 2
y − σ 1

y σ 2
x

)
.

For further simplification let us introduce the raising and lowering operators defined by:

σ± = σx ± iσy,

from where the Pauli matrices are derived as follows, σx = 1
2 (σ+ + σ−) and σy = 1

2i
(σ+ −

σ−). Considering these transformations, it follows that:
⎧⎨
⎩

1
4 (Jxσ

1
x σ 2

x + Jyσ
1
y σ 2

y ) =
(

Jx+Jy

4

)
(σ 1−σ 2+ + σ 1+σ 2−) +

(
Jx−Jy

4

) (
σ 1+σ 2+ + σ 1−σ 2−

)
,

Dz

(
σ 1

x σ 2
y − σ 1

y σ 2
x

)
= iDz

2

(
σ 1+σ 2− − σ 1−σ 2+

)
.

(4)

Finally, the simplified Hamiltonian is thus given by:

H(t) = Δ(t)
(
σ 1−σ 2− + σ 1+σ 2+

) + J (t)
(
σ 1+σ 2− + σ 1−σ 2+

) + iD(t)
2

(
σ 1+σ 2− − σ 1−σ 2+

)

+ Jz(t)
4 σ 1

z σ 2
z + B(t)

2 (σ 1
z + σ 2

z ) + b(t)
2 (σ 2

z − σ 1
z ), (5)

with J (t) = Jx+Jy

4 defining the spin-spin coupling, Δ(t) = Jx−Jy

4 introducing the

anisotropy of the spin-spin coupling in the xy-plane, and D(t) = Dz

4 . This form of
Hamiltonian has already been introduced by C. Tao et al. [60], but they did not take into
consideration the effect of the DM coupling, while M. Qin and Zhong-Zhou [44] studied a
similar model considering only the z-component of the DM interactions and in the absence
of the anisotropic magnetic field. In addition, our model looks very similar in the form with
that of A. Mohammed and T. El-Shahat [58], however, our system’s parameters are time
dependent, making significant difference, and which is the most important contribution in
this work. Here, we mean, the anisotropic coupling constant, the DM coupling, the Heisen-
berg spin-spin coupling and finally the inhomogeneous magnetic field are considered to be
time varying and are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δ(t) = Δ0 + Δ1 cos(ωt),

D(t) = D0 + D1 cos(ωt),

J (t) = J0 + J1 cos(ωt),

B(t) = B0 + B1 cos(ωt),

b(t) = b0 + b1 cos(ωt).

(6)

The reasons for taking these parameters time dependent are the following: the spin-spin
coupling J(t), the anisotropy Δ(t), are time dependent since these quantities depend not only
on the nature of the material but also can strongly be affected by other parameters such as the
temperature of the medium which may vary in time. So, their time dependency character is
very important and describes the best the reality of these types of interactions. However, the
magnetic field including its anisotropy are considered to be varying in time and are taken in
the above forms, since the periodic structure of external or internal fields can cause the spin
alignment along one direction [61]. It might also happen that this filed structure makes the
concurrence oscillates and then, reaches some maximum which could not be possible with
constant fields see Fig. 2. For the reasons of simplicity, let Δ(t) = Δ, J (t) = J , D(t) = D,
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B(t) = B, b(t) = b. In order to write the Hamiltonian in the matrix form let us consider the
definition of Pauli matrices defined previously. Considering (5), one obtain:

H =

⎡
⎢⎢⎢⎣

B + Jz

4 0 0 Δ

0 −b − Jz

4 J − iD
2 0

0 J + iD
2 b + Jz

4 0
Δ 0 0 −B + Jz

4

⎤
⎥⎥⎥⎦ . (7)

Equation (7) depicts the Hamiltonian of our system as function of the system’s parame-
ters in the matrix form. It is seen that this Hamiltonian satisfies the hermicity property
since H † = H and presents an X-form matrix, the DM interaction introduces a com-
plex part in the off-diagonal element of this matrix. Based on this observation, we expect
decohenrence to be seriously impacted by this interaction. The eigenvalues of this matrix
are all real and are determined in the Bell states [62] |00〉, |01〉, |10〉, |11〉 as fol-
lows: [− Jz

4 + 1
2

√
4b2 + 4J 2 + D2], [− Jz

4 − 1
2

√
4b2 + 4J 2 + D2], [ Jz

4 + √
(Δ2 + B2)],

[ Jz

4 − √
(Δ2 + B2)], which are all real.

Let us consider the density matrix of the system as defined in Section 2, and define the
initial state to be maximally entangled in the general form as follows:

ρ(0) = 1

4

(
I4 −

3∑
i=1

Kiσ
i
y⊗σ i

y

)
=

⎡
⎢⎢⎣

1 + K3 0 0 K1 − K2
0 1 − K3 K1 + K2 0
0 K1 + K2 1 − K3 0

K1 − K2 0 0 1 + K3

⎤
⎥⎥⎦ , (8)

where Ki are the coefficients defined such that 0 < |Ki | < 1 ∀ i = {1, 2, 3}.
This is an X-matrix form, so called from its physical representation as the alphabetical

letter X. Such a matrix is very useful because of its invariant symmetry that helps explain-
ing some analytical results. It is important to mention that, this symmetry also allows the
computations involving such state easily tractable since it preserves its structure during the
evolution [58, 63–65], these include and no limited to unitary operations on their evolution,
evaluation of entanglement. Therefore, considering ρ(t) as the density state at time t of a
system with an X-initial density state, it remains an X-matrix form at any time. With this
assumption, the dynamics of our system at zero temperature is provided using the weak
system-environment interaction and the Born-Markov approximation [60] as follows:

dρ(t)

dt
= −i[H, ρ] +

N∑
k=1

Γk[σk−ρσk+ − 1

2
{σk−σk+, ρ}], (9)

where in this equation, we have set the Planck’s constant � = 1, the term under summation
describes all possible transitions that the system may undergo due to environmental effects,
and σk− are the Lindblad jump operators defined so that σk− = [0] in the absence of the envi-
ronment. Γk gives the decay rate of the system due to its interaction with the environment
which might differ from one to another qubit since N denotes the number of qubits and k a
particular qubit. In this case, k takes two values which are 1 and 2 representing the qubits.
Equation (9) gives the dynamics of our system in the compact form. However, a complete
understanding and the study of the system’s properties requires to rewrite (9) describing
the dynamics of the system in the simplest form as possible. This might be possible if the
dynamics is traduced in the matrix form. Considering therefore, the form of the initial den-
sity state as described by (8), after a given period of time, the density matrix ρ(t) remain
an X matrix form, since X-form density matrices have a particularity that, their evolution
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in time does not affect their form. With this assumption, we expect the density state of our
system at any time to be written as:

ρ(t) =

⎡
⎢⎢⎣

ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ32(t) 0
0 ρ23(t) ρ33(t) 0

ρ41(t) 0 0 ρ44(t)

⎤
⎥⎥⎦ . (10)

Considering (10) and our Hamiltonian in the matrix form given by (7), we can derive the
dynamics of our system in an explicit form as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

ρ11 = −2Γρ11 − iΔ(ρ41 − ρ14),
d
dt

ρ22 = Γ (ρ11 − ρ22) − iJ (ρ32 − ρ23) + D(ρ32 + ρ23),
d
dt

ρ33 = Γ (ρ11 − ρ33) + iJ (ρ32 − ρ23) − D(ρ32 + ρ23),
d
dt

ρ44 = Γ (ρ22 + ρ33) − iΔ(ρ14 − ρ41),
d
dt

ρ23 = −(Γ + 2ib)ρ23 − (D − iJ )(ρ22 − ρ33),
d
dt

ρ32 = −(Γ − 2ib)ρ32 + (D + iJ )(ρ33 − ρ22),
d
dt

ρ14 = −(Γ + 2iB)ρ14 − iΔ(ρ44 − ρ11),
d
dt

ρ41 = −(Γ − 2iB)ρ41 − iΔ(ρ11 − ρ44).

(11)

Thus, the time evolution of our system can be obtained from (11) which is a system of 8
coupled first order differential equations defined in the complex-plane, with all parameters
in the equation well known. Having this equation, we will therefore, study the phenomenon
of entanglement of our system through concurrence in the next section.

2.2 Analytical Study of Two-qubit Entanglement for Time-dependent System
Parameters

Entanglement is a property of strongly correlated quantum systems, which plays a crucial
role in the process of quantum information. It can be defined for pure and mixed state. A
mixed quantum state means that the system state cannot be represented as a mixture of
disentangled pure states. Let us consider two particles A and B, the total quantum system
may take the form |a〉 ⊗ |b〉, where |a〉 and |b〉 are respectively the local Hilbert spaces Ha

and Hb elements. The state given in this form is not entangled, but they are separable. Thus,
given a quantum state in the form :

|Ψ 〉 = 1

N
(|a1〉 ⊗ |b1〉 + |a2〉 ⊗ |b2〉), (12)

where N assures the normalization, since |Ψ 〉 �= |a〉 ⊗ |b〉 then, the state |Ψ 〉 is known
to be entangled. We have as example of entangled state |Ψ 〉 = 1√

2
(|00〉 + |11〉) or |Ψ 〉 =

1√
2
(|01〉 + |10〉). For both pure and mixed state, there are good measures of entanglement.

For pure states, one may have a single widely accepted measure of entanglement,
whereas for mixed state we have as measures of concurrence to multipartite sys-
tems entanglement of formation, the concurrence of entanglement to bipartite systems
[17, 56, 66].

For bipartite systems, the notion of concurrence is the most relevant measure of entangle-
ment, it was first introduced by Wooters [56, 67] and quantifies the degree of entanglement
between two central qubits systems. The concurrence varies between 0 and 1. When it is 0,
systems are said to be disentangled or separated. However, when it is 1, both systems are
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said to be maximally or completely entangled, meaning that, they are in some strange and
extremely strong correlation [68]. The concurrence of entanglement can be evaluated using
the following relation [17, 56, 69]:

C(t) = max(0,
√

λ1(t) − √
λ2(t) − √

λ3(t) − √
λ4(t)), (13)

where λi(t) i = 1, · · · , 4 denote the eigenvalues of the following matrix:

T = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), (14)

with ρ∗ the complex conjugate of the density state matrix ρ obtained from (11), σy the y-
component of the Pauli operator which is the well known true reversal operator for spin− 1

2
in quantum mechanics. But, despite a huge investigation made to carry out the entangle-
ment measure in bipartite systems, it remains a big challenge since the measurement may
destroys the actual state of the system. Thus, its manipulation requires an extraordinary tech-
niques, however this phenomenon remains very interesting from its potential applications.
In order to evaluate the concurrence, let’s reconsider (11), which is physically defined in the
complex-plane, but can be easily transformed into a system of first order differential equa-
tion in R8 where the numerical solution is easily implementable. For this purpose, let us
recall first some properties of the density matrix. It is recognized that the density matrix of
quantum open systems should is always Hermitian [70]. Considering this property it follows
that:

{
ρ23 = (ρ32)∗,
ρ14 = (ρ41)∗,

(15)

implying that, these components are complex conjugate each other. For the Hermicity prop-
erty of the density matrix to be satisfied, we need additional conditions which are the
following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ11)∗ = ρ11,

(ρ22)∗ = ρ22,

(ρ33)∗ = ρ33,

(ρ44)∗ = ρ44,

(16)

implying that ρ11, ρ22, ρ33, ρ44 must be real. In order to fully simplify (11), let:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ11 = X1,

ρ22 = X2,

ρ33 = X3,

ρ44 = X4,

ρ23 = X5 + iX6,

ρ32 = X5 − iX6,

ρ14 = X7 + iX8,

ρ41 = X7 − iX8,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ11 = X1,

ρ22 = X2,

ρ33 = X3,

ρ44 = X4,

(ρ23 + ρ32) = 2X5,

(ρ23 − ρ32) = 2iX6,

ρ14 + ρ41) = 2X7,

(ρ14 − ρ41) = 2iX8.

(17)
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Considering these transformations, (11) becomes:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

X1 = −2Γ X1 − 2Δ(t)X8,
d
dt

X2 = Γ (X1 − X2) − 2J (t)X6 + 2D(t)X5,
d
dt

X3 = Γ (X1 − X3) + 2J (t)X6 − 2D(t)X5,
d
dt

X4 = Γ (X2 + X3) + 2Δ(t)X8,
d
dt

X5 = −Γ X5 + 2b(t)X6 − D(t)(X2 − X3),
d
dt

X6 = −Γ X6 − 2b(t)X5 − J (t)(X3 − X2),
d
dt

X7 = −Γ X7 + 2B(t)X8,
d
dt

X8 = −Γ X8 − 2B(t)X7 − Δ(t)(X4 − X1).

(18)

Equation (18) is a system of 8 first order differential equations. We recall that our main
goal is to measure the degree of entanglement via concurrence, which is given for a bipartite
system using (13) as follows:

C(t) = 2max
{

0,
√

ρ14ρ14 − √
ρ22ρ33,

√
ρ23ρ32 − √

ρ11ρ44
}

= 2max

{
0,

√
X2

5 + X2
6 − √

X1X4,

√
X2

7 + X2
8 − √

X2X3

}
. (19)

The time dependency character of Δ(t), B(t), b(t) and J (t) in (18) makes the computation
of its analytical solution so difficult, however numerical solutions are easily implementable.
Having said that, our main task in the following subsections is to study the evolution in time
of the concurrence characterizing the degree of entanglement in our system numerically.

3 Numerical Simulations and Discussion

In the present section, numerical simulation of entanglement dynamics considering two dif-
ferent maximally entangled initial states is presented. For this reason, we reconsider (18)
describing the full simplified dynamics of our system. As defined in the previous section,
concurrence is assumed to be the most suitable method to quantify entanglement of pure
and mixed bipartite quantum systems [71]. It is highly influenced by the system and envi-
ronmental parameters. However, in this work our purpose is to study its variation with
respect to the DM interaction rate D, the anisotropic magnetic field, the Heisenberg spin-
spin anisotropic coupling Δ, which are all assumed time dependent and the decoherence
rate Γ due to permanent interaction of the system with the bath. In all our simulations the
time is scaled by the decoherence rate Γ , which by definition has the inverse dimension of
time.

3.1 Dynamical Behavior of the Concurrence for Two-qubits XYZ-Heisenberg Spin
Chain: Effects of the Field Frequency

Regarding (6) defining the parameters of the system, let’s recall that, ω = kπ (k =
0, 1, 2 · · · ) displays the time independent system’s parameters and ω �= kπ (k =
0, 1, 2 · · · ), the time dependent ones. It is therefore observed from simulations that, for
ω = 2π

Γ
= 2π

0.5 with Γ defining the decoherence rate, the response time of the system is
equal to the decoherence rate (the curve in green color Fig. 1), when the response time of the
system and the decoherence rate coincide, the system behaves like all the system’s param-
eters were constant, however, when ω = 2π

Γ
≤ 2 as shown on the graph by the curve in
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(a) (b)

Fig. 1 Dynamical behavior of the concurrence as main measure of entanglement of two qubits XYZ-
Heisenberg model, for different frequencies of the field and for two different maximally entangled initial
states (K1 = K2 = 1, K3 = −1 Fig. 1a) and (K1 = K2 = −1, K3 = 1 Fig. 1b), with Γ = 0.5, B0 =
0.2, b0 = 0.4,Δ0 = 0.2, J0 = 1,D0 = 0.5, B1 = 0.02, b1 = 0.04,Δ1 = 0.08, J1 = 0.1,D1 = 0.05

red, especially between 0 and π , the concurrence is quietly preserved mining that, for the
physical implementation a time dependent field with a frequency quietly selected might be
used to protect the system from unwanted effects due to the environment (environment with
high decoherence rate). For further interpretation of the time varying fields, Fig. 2 depicts
the evolution in time of the concurrence for constant and time varying values of the sys-
tem’s parameters both on the same graph and for two maximally entangled initial states.
One observes that, both dynamics present a similar behavior for short time. However, as the
time grows, we realize that, for the first state we have an interval of time where the sys-
tem is disentangled (loss of entanglement in the system), but it happens that, when the time
keep increasing, both dynamics tend to the same threshold value and the time dependence
character becomes more and more significant so that at some point it takes the control of
the system inducing the oscillating behavior of entanglement. So, the constant part might

(a) (b)

Fig. 2 Dynamical behavior of the concurrence as main measurement quantity of entanglement of two qubits
XYZ Heisenberg spins chain, for different maximally entangled initial states (K1 = K2 = 1, K3 = −1
Fig. 2a) and (K1 = K2 = −1, K3 = 1 Fig. 2b). The dash line corresponds to constant parameters (i.e.
B1 = b1 = Δ1 = J1 = D1 = 0, and Γ = 0.5, B0 = 0.2, b0 = 0.4,Δ0 = 0.2, J0 = 1,D0 = 0.5), while
the solid line corresponds to time dependent parameters (i.e. Γ = 0.5, B0 = 0.2, b0 = 0.4,Δ0 = 0.2, J0 =
1,D0 = 0.5 and B1 = 0.02, b1 = 0.04,Δ1 = 0.08, J1 = 0.1,D1 = 0.05)

IInternational Journal of Theoretical Physics (2020) 59: –22482232 2241



(a) (b)

Fig. 3 Time evolution of the Concurrence for different time dependent magnetic field. Considering different
maximally entangled initial states (K1 = K2 = 1, K3 = −1 Fig. 3a) and (K1 = K2 = −1, K3 = 1 Fig. 3b),
Γ = 0.5

be interpreted as, the average of the real concurrence. This better characterizes the behavior
of the concurrence in the physical sense. This result confirms the fact that, the time varying
system’s parameters is of great importance and might be very useful to protect entanglement
in the physical implementation of two qubits XYZ-Heisenberg spin system.

3.2 Effects of the Anisotropic Time-varyingMagnetic Field and the Anisotropic
Heisenberg Spin-spin Coupling on Entanglement

Here, we study the effects of the magnetic field including its anisotropic behavior on the
dynamical behavior of entanglement. That is, its behavior with respect to time is simu-
lated for different values of B and b respectively,which are shown on Figs. 3 and 4. Taking
Γ = 0.5, J0 = 1, Δ0 = 0.2, D0 = 0.5, J1 = 0.1, Δ1 = 0.05 and D1 = 0.05 it happens
that the anisotropic behavior of the magnetic field considerably affects the dynamics of the
concurrence in the sense that, the concurrence is improved as b(t) increase. That means,
when realizing the experiment, one should make sure that, the anisotropic effects of the
magnetic field acting on both qubits is raised to allow the enhancement of entanglement.

(a) (b)

Fig. 4 Dynamical behavior of the concurrence for different anisotropic magnetic fields assuming to be vary-
ing as the time increases for different maximally entangled initial states (K1 = K2 = 1, K3 = −1 Fig. 4a)
and (K1 = K2 = −1, K3 = 1 Fig. 4b), Γ = 0.5
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Moreover, observing carefully these curves, we realize that, for relatively short period of
time the phenomenon of ESD appears and the time interval of this disentanglement in the
system reduces considerably with the increasing in the anisotropic magnetic field. Further-
more, the concurrence presents an oscillating behavior due to the fact that, the magnetic
field is time-dependent inducing the nearest concurrence to reach its maximum value. This
is in agreement with the results found by Chen Tao et al. [60] and confirms the fact that, the
time varying b-field can enhance the coupling strength between two qubits.

Figure 5 shows the concurrence dynamics for different values of the spin-spin coupling
Δ. Observing carefully this picture, it is clear that, increasing the anisotropic spin-spin cou-
pling (Δ) in a system of two qubits Heisenberg spin chain increase the degree of correlation
in the system then, inducing an increase of the degree of entanglement, this is shown by the
dash curve. However, it is observed that the phenomenon of ESD appears in the system tra-
ducing a loss of correlation in the system with an interval of time depending on the initial
state chosen. However, the revival of entanglement and the phenomenon of ESB appears
in the system with the increasing of this anisotropy. These results confirm our prediction
in Chapter 1 for which the XYZ Heisenberg model was the most suitable candidate in the
realization of quantum computing since it is observed that, more Jx differs from Jy , more
the concurrence of entanglement becomes important.

3.3 Decoherence and Time-varying Dzyaloshinskii-Morya Coupling Effects
on the Dynamical Properties of Entanglement

Figure 6 presents the variation in time of the concurrence as function of the Dzyaloshinskii-
Moriya (DM) interaction. We first recall that, we assumed this interaction to be oriented
along the z-direction. It is observed that, entanglement reaches its maximum as the DM
coupling increases and this for both initial states. In addition, the DM coupling enhances
the quantum fluctuations frequency, thus increasing entanglement in a two qubits XYZ spin
model. The concurrence also oscillatory behavior when the DM interaction effects become
more and more important. This may be associated to the competing effects existing between
the anti-symmetric DM interaction behavior and the symmetric behavior of the Heisenberg
interactions simultaneously present in the system. It is also due to the fact that, in contrast to
the Heisenberg interactions tending to render neighbor spins parallel, the DM interactions

(a) (b)

Fig. 5 Dynamical behavior of the concurrence for different spin-spin anisotropic coupling Δ assumed to be
varying as the time increases for different maximally entangled initial states (K1 = K2 = 1, K3 = −1
Fig. 5a) and (K1 = K2 = −1, K3 = 1 Fig. 5b), Γ = 0.5
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(a) (b)

Fig. 6 Dynamical behavior of the concurrence for different DM interaction D assumed to be varying as
the time increases for different maximally entangled initial states (K1 = K2 = 1, K3 = −1 Fig. 6a) and
(K1 = K2 = −1, K3 = 1 Fig. 6b), Γ = 0.5

will turn them perpendicular one to another. Furthermore, the ESD that appears in the sys-
tem can be avoided by increasing the DM interactions strengh. Finally, it is observed from
the graph that, increasing the DM interactions effects in the system, the time interval of the
phenomenon of ESD considerably reduces. Similar results were found by Zad [72].

As regards to decoherence effects, Fig. 7 depicts the evolution in time of the concur-
rence as main measurement quantity of entanglement for two maximally entangled initial
states. It is seen from this picture that, the environmental decays rate (decoherence) affects
seriously entanglement of the system. From the graph, it is clear that, in the absence of this
effect, the concurrence is maximum (almost constant and equal to 1) as Γ increases, the
phenomenon of ESD appears and this independently from the maximally entangled initial
state considered. The main problem is that, the interaction of the system with is surround-
ing may randomize the relative phases of the possible states of the system, thus the system
loses all quantum interference effects and may end up behaving classically, this is the so

(a) (b)

Fig. 7 Decoherence effects on the dynamics of entanglement for two different maximally entangled initial
states (K1 = K2 = 1, K3 = −1 Fig. 7a) and (K1 = K2 = −1, K3 = 1 Fig. 7b). The dash line corresponds
to constant parameters (i.e. B1 = b1 = Δ1 = J1 = D1 = 0, and B0 = 0.2, b0 = 0.4,Δ0 = 0.2, J0 =
1,D0 = 0.5), while the solid line corresponds to time dependent parameters (i.e. B0 = 0.2, b0 = 0.4,Δ0 =
0.2, J0 = 1,D0 = 0.5 and B1 = 0.02, b1 = 0.04,Δ1 = 0.08, J1 = 0.1,D1 = 0.05)
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called quantum decoherence. This is in agreement with the literature and with our predic-
tion in the introductory paragraph for which decoherence is the major problem in quantum
information processing tasks.

4 Concluding Remarks

In the present paper, we study the dynamics of entanglement of two qubits XYZ
Heisenberg model under simultaneously an anisotropic magnetic field and a DM interaction
effects both varying with time. For this purpose, we have considered not only the mag-
netic field and the DM interactions to be time dependent but also the Heisenberg spin-spin
coupling and defined respectively by B0 + B1 cos(ωt), b0 + b1 cos(ωt), J0 + J1 cos(ωt),
Δ0 + Δ1 cos(ωt), D0 + D1 cos(ωt). This, because our system is considered as being per-
manently in interaction with its environment, which includes the nature of the material
(inhomogeneous material) and the temperature of the medium. We have also considered
our system to be surrounded by a noisy environment (non-Markovian environment or dis-
sipative environment) [37, 38, 73]. Due to this non-Markovian nature, we have therefore,
studied the dynamics of the system considering the weak coupling system-bath and using
the Born-Markov approximation so that the equation of motion is approached by the Lind-
blad master equation. We discovered, based on simulations of the concurrence that, the
correlation that exists between quantum systems (entanglement) is quietly improved due to
the time dependency nature of the system’s parameters (B, b, J , Δ and D). It followed that,
as the time grows, the concurrence admits an oscillating behavior traducing the fact that, its
nearest neighbors may reach some maximum values, which are impossible with constant
parameters.

In addition, we have found that, decoherence seriously affects the dynamics of entangle-
ment in the system in the sense that, it induces the appearance of disentanglement (ESD).
However, the anisotropic magnetic nature of the field was observed to improve the concur-
rence and then, induces in a non negligible way the appearance of the phenomenon of ESB
in the system as well as revivals of entanglement, The time interval of the phenomenon
of ESD is considerably reduced with an increasing in that anisotropic nature of the mag-
netic field. Moreover, the spin-spin anisotropic interaction was found in this work to be
very important in quantum entanglement since we observed that, increasing this anisotropy
enhances the degree of entanglement which is the proof that an XYZ Heisenberg model is
among other the most suitable candidate for quantum information processing tasks, which
is a similar conclusion with refs. [53, 58, 74]. Furthermore, we have discovered after sim-
ulations that, the dynamics of the concurrence present different behavior when considering
two different maximally entangled initial states. This allows us to conclude that, entangle-
ment in a bipartite system strongly depend on the initial state chosen. Although the DM
coupling is neglected in many works, it was found in this paper to have a serious impact
on the entanglement, since we discovered that it can strengthen the strength of correlations
between quantum systems so that good turning of this coupling may provide good protection
of entanglement from unwanted effects (decoherence, dissipassion) of the environment.
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