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Abstract
Quantum key agreement(QKA) is an important part of quantum cryptography. In QKA, the
final shared key must be negotiated equally by all participants, and any nontrivial subset of
participants cannot fully determine the shared key. In this scheme, a novel three-party QKA
with quantum fourier transform(QFT) is proposed. In addition, we utilize random numbers,
decoy states and a hash function to make this protocol be resistant external attacks and par-
ticipant attacks. Furthermore, the scheme can meet fairness i.e. each participant contributes
fairly and equally to the final key.

Keywords Quantum key agreement · QFT · Three-party · Hash

1 Introduction

Cryptography is the basic theory of information security. As an important research content
in cryptography key agreement(KA) is one form to distribute keys. As we all know KA has
achieved many important achievements in the study of classical cryptography. In 1976, KA
was firstly proposed by Diffe and Hellman [1]. In this article, a method for generating a
key share for two-parties was proposed. Based on their idea, many KA protocols have been
proposed [2–11]. However, the security of these KA protocols was based on the assumption
of computational complexity. With the development of quantum algorithms and quantum
computers [12, 13], the classical cryptography protocols are no longer safe. In this sense,
quantum cryptography was proposed [14–19], including quantum key agreement(QKA).

Quantum cryptography combines quantum mechanics with classical cryptography and
safety is independent of the computational complexity of mathematics. In quantum cryp-
tography, QKA is an important way to distribute keys. The first QKA based on quantum
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teleportation with two participants was presented by Zhou et al. in 2004 [20]. In the
same year, Hsueh and Chen put forward another QKA protocol with maximally entangled
states [21]. However in 2009, Hwang et al. pointed out that one particular user can deter-
mine the final shared key when the QKA can not meet fairness [22, 23]. In 2010, Chong and
Hwang proposed a QKA protocol based on BB84 with delayed measurement and unitary
operations [24, 25].

There were only two participants in these QKA. With further research of QKA, the first
multi-party quantum key agreement (MQKA) protocol with Bell States and Bell measure-
ment was shown by Shi et al. in 2013 [26]. In the same year, Liu et al. pointed out that the
protocol of Shi et al. was not safe, they proved that a dishonest participant can determine
the final key [27]. At the same time, they showed that the protocol can resist internal attacks
by participants with single photon. In the same year, Sun et al. improved the protocol of Liu
et al. by adding two positive operations and improved its bit efficiency [28]. Many MQKA
protocols [29–33] and their security analysis [34] were given. Most of the above protocols
were based on single-particle or Bell states, the efficiency of bits is low. In 2016, Zhu et al.
put forward a three-party QKA protocol based on two-photon entanglement states [35]. In
the same year, Sun et al. proposed an MQKA protocol based on an entangled six-qubit
state [36]. In 2018, Min et al. gave an MQKA protocol using G-like state and Bell state [37].
In the same year, Wang et al. presented a MQKA protocol based on the four-qubit symmet-
ric W-state using block transmission techniques and dense coding methods [38]. Cai et al.
proposed a highly efficient MQKA protocol with the five-qubit brown state. Each party
performed a single-qubit unitary operations on his local part of brown state [39].

In this paper, we propose a three-party QKA with the quantum Fourier transform.
We do not only utilize decoy state and auxiliary particle, but also use quantum Fourier
transform(QFT), inverse quantum Fourier transform(QFT −1) and Controlled-NOT CNOT
operator to share the final key. According to our analysis, our protocol is secure against both
outside eavesdropping attacks and inside participant attacks.

The rest of this paper is organized as follows. In Section 2, we give preliminaries of this
protocol. The three-party QKA protocol is presented in Section 3. In Section 4, we give the
security analysis. At last, a short discussion and conclusion are given in Sections 5 and 6,
espectively.

2 Preliminaries

Some essential preliminaries are provided in this section.

2.1 The Requirements of QKA

A secure QKA protocol should meet the following three requirements:

(1) Correctness: Each participant in the protocol can get the identical shared key.
(2) Security: Both an external eavesdropper and participants cannot get any useful

information about the final shared key without being detected.
(3) Fairness: All involved participants are entirely peer entities and can equally influence

the final shared key.
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2.2 Operations used in the Protocol

Firstly, we introduce the QFT. The QFT as the quantum version of the standard discrete
Fourier operator is a linear operator on qubits. For x, j ∈ {0, 1, · · · , N − 1}, the QFT and
the inverse QFT are defined as follows [40]:

QFT : |x〉 → 1√
N

N−1∑

j=0

e2πi x
N

j |j〉 (1)

and the corresponding QFT −1 is

QFT −1 : |j〉 → 1√
N

N−1∑

x=0

e−2πi
j
N

x |x〉. (2)

Obviously, it can be seen that

QFT −1(QFT |x〉) = QFT −1(
1√
N

N−1∑

j=0

e2πi x
N

j |j〉) = |x〉 (3)

The two sets V1 = {|x〉}N−1
x=0 and V2 = {F |x〉}N−1

x=0 , are two common conjugate bases [41].
Then, the CNOT operator is introduced. The CNOT operator is that the first qubit is the

control qubit, and the second qubit is the target qubit, with the form of
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ (4)

The CNOT operator: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉. If the control
qubit sets to |0〉, the target qubit will be left alone. If the control qubit sets to |1〉, the target
qubit will be flipped.

Finally, we define a phase operation as

U =
N−1∑

k=0

e2πi k
N |k〉〈k| (5)

and

U |x〉 = 1√
N

N−1∑

k=0

e2πi k
N |k〉〈k|(

N−1∑

j=0

e2πi x
N

j |j〉)

= 1√
N

N−1∑

j=0

e2πi
j
N

(1+x)|j〉 (6)

According to the theoretical tools above, the three-party protocol based on QFT and random
numbers is presented in the following section.

3 The Proposed Three-party QKA Protocol

Without loss of generality, three participants assume that Alice, Bob and Charlie in this
QKA protocol. They want to share a key KA ⊕ KB ⊕ KC without revealing their respective
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secret by agreement, here ⊕ denotes the bitwise Exclusive OR. Furthermore, each partic-
ipant cannot know the keys of any other participants without being discovered before the
final key is determined. Three participants in this protocol contribute to the final shared
key fairly and equally. The three-party QKA protocol will be proposed in this section. The
proposed three-party QKA protocol can be described as follows:

Step 1 Alice, Bob and Charlie respectively generate a n-bit string KA, KB, KC as their
private key,

KA = {a1, a2, · · · , an} (7)

KB = {b1, b2, · · · , bn} (8)

KC = {c1, c2, · · · , cn} (9)

meanwhile, they generate a sequence of random numbers

RA = {ra1, ra2, · · · , ran} (10)

RB = {rb1, rb2, · · · , rbn} (11)

RC = {rc1, rc2, · · · , rcn} (12)

respectively, here jA = (KA + RA)modN , jB = (KB + RB)modN and
jC = (KC + RC)modN , ai, bi, ci ∈ {0, 1}, rai , rbi , rci ∈ {0, 1, · · · N − 1},
i = 1, 2, · · · , n.

Step 2 Alice(Bob and Charlie) prepares a n-qubits state |jA〉(|jB〉 and |jC〉). Further-
more, |Ak〉, |Bk〉, |Ck〉 is kth qubit of |jA〉, |jB〉 and |jC〉, respectively, where
k ∈ 1, 2, · · · , n. That is, the j th particle of the sequence |jA〉(|jB〉 and |jC〉)is |x〉
if the j th bit in jA(jB and jC) is x.

|jA〉 = |A1〉|A2〉 · · · |An〉 (13)

|jB〉 = |B1〉|B2〉 · · · |Bn〉 (14)

|jC〉 = |C1〉|C2〉 · · · |Cn〉 (15)

Alice(Bob and Charlie) applies QFT to the |Ak〉(|Bk〉 and |Ck〉) and gets the result
|jA1〉(|jB1〉 and |jC1〉). That is,

|jA1〉 = |A1
1〉|A1

2〉 · · · |A1
n〉 (16)

|jB1〉 = |B1
1 〉|B1

2 〉 · · · |B1
n〉 (17)

|jC1〉 = |C1
1 〉|C1

2 〉 · · · |C1
n〉 (18)

Here,

|A1
k〉 = F |Ak〉 = 1√

N

N−1∑

j=0

e2πi
Ak
N

j |j〉 (19)

|B1
k 〉 = F |Bk〉 = 1√

N

N−1∑

j=0

e2πi
Bk
N

j |j〉 (20)

|C1
k 〉 = F |Ck〉 = 1√

N

N−1∑

j=0

e2πi
Ck
N

j |j〉 (21)

Step 3 Alice(Bob and Charlie) prepares n-qubits |0〉 and performs CNOT operator on
|A1

k〉|0〉(|B1
k 〉|0〉 and |C1

k 〉|0〉), where |A1
k〉(|B1

k 〉 and |C1
k 〉) is the control qubit and

each |0〉 is the target qubit. Here we can get the result state |jA2〉(|jB2〉 and |jC2〉),
where

|jA2〉 = |A2
1〉|A2

2〉 · · · |A2
n〉 (22)
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|jB2〉 = |B2
1 〉|B2

2 〉 · · · |B2
n〉 (23)

|jC2〉 = |C2
1 〉|C2

2 〉 · · · |C2
n〉 (24)

here

|A2
k〉 = 1√

N

N−1∑

j=0

e2πi
Ak
N

j |j〉|j〉t (25)

|B2
k 〉 = 1√

N

N−1∑

j=0

e2πi
Bk
N

j |j〉|j〉t (26)

|C2
k 〉 = 1√

N

N−1∑

j=0

e2πi
Ck
N

j |j〉|j〉t (27)

here, the subscript t denotes that the qubits used for transmission.
Step 4 Alice(Bob and Charlie) randomly selects n decoy particles in the four states

|0〉, |1〉, |+〉, |−〉 inserts them into |j〉t to obtain the sequence |j∗〉t , where
|+〉 = 1√

2
(|0〉+ i|1〉), |−〉 = 1√

2
(|0〉− i|1〉). Meanwhile, Alice(Bob and Charlie)

records the initial states and corresponding positions of every checking particles,
and then sends the sequence |j∗〉t to Bob(Charlie and Alice). After confirming
that Bob(Charlie and Alice) has received the sequence |j∗〉t , the three users can
calculate the error probability by comparing the measurement results with the ini-
tial states of decoy particles. If the error ratio exceeds the predetermined threshold
value, she/he declares that the communication is invalid; otherwise, the process
continues to the next step.

Step 5 By deleting the decoy states from |j∗〉t , Bob(Charlie and Alice) can get the
sequence |j〉t . Bob(Charlie and Alice) applies the operator UBk (UCk and UAk )
on the |A2

k〉(|B2
k 〉 and |C2

k 〉), the result state is |jA3〉(|jB3〉 and |jC3〉), where,
|A3

k〉(|B3
k 〉 and |C3

k 〉) is k-th state of |jA3〉(|jB3〉 and |jC3〉),

|A3
k〉 = 1√

N

N−1∑

j=0

e2πi
Ak+Bk

N
j |j〉|j〉t (28)

|B3
k 〉 = 1√

N

N−1∑

j=0

e2πi
Bk+Ck

N
j |j〉|j〉t (29)

|C3
k 〉 = 1√

N

N−1∑

j=0

e2πi
Ak+Ck

N
j |j〉|j〉t (30)

Step 6 Bob(Charlie and Alice) first randomly inserts n decoy particles into the ancillary
|j〉t , then sends them to Charlie(Alice and Bob). Each participant performs eaves-
dropping check as Step 4. They perform the similar process as Step 5 and the
following result can be got:

|A4
k〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|j〉t (31)
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|B4
k 〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|j〉t (32)

|C4
k 〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|j〉t . (33)

Step 7 Charlie(Alice and Bob) randomly inserts n decoy particles into the ancillary |j〉t ,
each participant performs eavesdropping check as step 5. Charlie(Alice and Bob)
sends ancillary |j〉t back to Alice(Bob and Charlie), each of them again applies
CNOT on her/his n qubits |j〉t to get the following result,

|A5
k〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|0〉t (34)

|B5
k 〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|0〉t (35)

|C5
k 〉 = 1√

N

N−1∑

j=0

e2πi(
Ak+Bk+Ck

N
)j |j〉|0〉t (36)

where the first n qubits are the control qubit and the corresponding n qubits of the
second are the target qubit.

Step 8 After that, Alice(Bob and Charlie) measures the second n qubits of |0〉t in the
computational basis. If the measured result is |0〉, she/he will perform the next
step; otherwise she/he thinks that there are one or two dishonest participants, then
this protocol will be terminated.

Step 9 At last, they applies QFT −1 on n qubits and measures them, they rightly get the
(jA + jB + jC)modN .

Step 10 Alice, Bob and Charlie compute the hash value H((jA + jB + jC)modN) using
a pre-shared hash function H . If the hash function values are equal, Alice, Bob
and Charlie will simultaneously publish random numbers RA,RB,RC through
the authenticated classical channel, respectively; otherwise, there is at least one
dishonest participant and ends the reconstruction phase. Finally, Alice, Bob and
Charlie can share the keyKA⊕KB⊕KC . The illustration of the presented protocol
can be shown in Figs. 1 and 2.

4 Security Analysis

In this section, we will give the correctness and security analysis of the proposed three-party
QKA protocol. First, we show that if all parties execute the protocol honestly, they will get
the final shared key correctly. Then, we show that it is immune to attacks from internal
eavesdropping. Finally, the proposed protocol is secure against external eavesdropping.
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Fig. 1 The illustration of the protocol

4.1 Correctness

The correctness of the proposed protocol means that three participants can correctly share
the identical key. We will give proof and analysis of the correctness of the protocol.

The correctness proof of protocol

1. UBk |A2
k〉 =

N−1∑
x=0

e2πi x
N

Bk |x〉〈x|( 1√
N

N−1∑
j=0

e2πi
Ak
N

j |j〉|j〉t )

= 1√
N

N−1∑
x,j=0

e2πi
xBk+Akj

N |j〉|j〉t

= 1√
N

N−1∑
j=0

e2πi
Ak+Bk

N
j |j〉|j〉t

Fig. 2 The final shared key by agreement with the three participants
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where, |A2
k〉 = 1√

N

N−1∑
j=0

e2πi
Ak
N

j |j〉|j〉t , UBk =
N−1∑
x=0

e2πi x
N

Bk |x〉〈x|.

2. QFT −1( 1√
N

N−1∑
j=0

e2πi
jk
N

j |j〉)

= 1√
N

N−1∑
j=0

e2πi
jk
N

jQFT −1|j〉

= 1√
N

N−1∑
j=0

e2πi
jk
N

j ( 1√
N

N−1∑
x=0

e−2πi
j
N

x |x〉)

= 1
N

N−1∑
j,x=0

e2πi(
jk−x

N
)j |x〉

= |jkmodN〉 + 1
N

N−1∑
x=0,x 	=jk

(
N−1∑
j=0

e2πi(
jk−x

N
)j |x〉)

= |jkmodN〉 + 1
N

N−1∑
x=0,x 	=jk

0 · |x〉
= |jkmodN〉

where, jk = Ak + Bk + Ck .
Furthermore,

N−1∑

j=0

e2πi
jk
N

j =
{
0 ifjk 	= 0modN

N ifjk = 0modN

We analyze the correctness of shared key with Alice, Bob and Charlie. After getting the
state|jA5〉, according to the proof of the correctness, Alice can obtain (jB + jC)modN by
QFT −1. Alice’s key is (jA + jB + jC)modN . After receiving the |jB5〉, Bob can get (jA +
jC)modN , his key is (jA + jB + jC)modN . For Charlie, he can determine (jA + jB)modN

by |jC5〉, his key is (jA + jB + jC)modN . After step 10, Alice, Bob and Charlie can obtain
(RA + RB + RC)modN . Therefore, three participants can correctly share the key final key
KA ⊕ KB ⊕ KC .

4.2 Internal Attack

Internal attack means that the participant determines the final key by cooperation or by
himself. As known to all, internal attack is more dangerous than outside attack. Therefore,
we will primarily focus on the security analysis of this protocol from internal attack. Internal
attacks include joint attacks and entanglement measurement attacks, etc.

4.2.1 Joint Attack

Joint attack means that participants collaborate to obtain the final shared key information
without being detected. In this protocol, we apply the random numbers and auxiliary particle
to resist participant attack.

First, suppose the dishonest participants want to replace their keys with other particles,
but they cannot change the final key as they expected. That’s because this protocol uses
auxiliary state |0〉. Each participant measures the second n qubits of |0〉t in step 8. If the
measured result is |0〉, she/he will perform the next step; otherwise she/he will realize that
there are one or two dishonest participants and end this protocol.
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Then, suppose Bob and Charlie are dishonest participants and want to cooperate to
determine Alice’s key. After step 9, Bob and Charlie can cooperate to obtain the jA =
(KA +RA)modN , because they cannot know Alice’s random numbers RA in advance, they
cannot successfully cooperate to determine Alice’s key KA. Therefore this protocol can
resistant to joint attacks.

4.2.2 Entangle-Measure Attack

The entanglement attack means that dishonest participant prepares the auxiliary particle.
The dishonest participant first generates an entanglement relationship with the intercepted
quantum state, then retransmits it to the other participants. At last, he obtains the final key by
measuring the auxiliary particle. Without loss of generality, we suppose Alice is dishonest
participant who wants to get the final key alone. In order to achieve it, she will prepare the
auxiliary particle |E〉. In this scene, Alice perform a cooperate operation UE on received
state as follows:

UE |0〉|E〉 = a|0〉|e00〉 + b|1〉|e01〉 (37)

UE |1〉|E〉 = c|0〉|e10〉 + d|1〉|e11〉 (38)

UE |+〉|E〉 = 1√
2
(a|0〉|e00〉 + b|1〉|e01〉 + c|0〉|e10〉 + d|1〉|e11〉) (39)

= 1

2
(a|e00〉 + b|e01〉 + c|e10〉 + d|e11〉) (40)

UE |−〉|E〉 = 1√
2
(a|0〉|e00〉 + b|1〉|e01〉 − c|0〉|e10〉 − d|1〉|e11〉) (41)

= 1

2
(a|e00〉 − b|e01〉 − c|e10〉 + d|e11〉) (42)

where |a|2 + |b|2 = 1 and |c|2 + |d|2 = 1, |0〉, |1〉, |+〉, |−〉 represent decoy state. If Alice
wants to introduce no error, the equation above must satisfy

a = d = 1, b = c = 0, |e00〉 = |e11〉 (43)

It means that if and only if Alice particles are |0〉 or |1〉, she will not be detected. If Alice
prepares |0〉 or |1〉, she will not get useful information about the final key. Alice can not get
the final key without being detected. Therefore, the proposed protocol meets the security
and fairness requirement.

4.3 Outside Attack

Outside attack means that the eavesdropper intercepts the key, measures retransmissions, or
tampers with a resend key.

4.3.1 Intercept-Resend Attack

During transmission, suppose there is an eavesdropper Eve. Eve intercepts the particles and
replaces the previous particles with new ones. He wants to perform the intercept-resend
attack on the ancillary |j〉t . However, he cannot know the positions of the decoy logical par-
ticles and the corresponding measurement bases before the eavesdropping check. Moreover,
all the decoy particles are chosen from the four states |0〉, |1〉, |+〉, |−〉 randomly, the proba-
bility that Eve cannot be detected is 1/4τ , where τ represents the number of decoy particles.
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He cannot get useful information about the final key without being detected. Therefore, this
protocol can resist intercept-resend attack.

5 Discussion

In this paper, we present a three-party QKA protocol based on the QFT. In the proposed
protocol, random numbers and hash functions make the protocol be resistant participant
attacks. The role of decoys is to resist external attacks. We use the QFT to add classical key
information to the phase. For some simple forms of quantum states, we can also replace the
QFT with I and X operations to encrypt the information of key. Through these methods, we
can design a secure QKA protocol. In theory, it can be generalized as a model for multiparty
QKA.

6 Conclusions

In all, the three-party QKA protocol based on the QFT is proposed. In addition, we utilize
random numbers, decoy states and a hash function to make this protocol be resistant external
attacks and participant attacks. From our analysis, each participant contributes equally and
can not get the final key alone without being detected by other participants. It can be seen
that this protocol meets the requirements of QKA fairness.
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