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Abstract
This paper presents a quantum private comparison (QPC) protocol based on Bell states.
The proposed QPC protocol can secretly compare information of the two participants
without the help of a third party (T P ). The proposed protocol employs some decoy state
photons and quantum SWAP gates to resist various outside attacks and internal attacks.
This paper compares the presented quantum private comparison (QPC) protocol with other
schemes in terms of different indicators. The results show that the proposed protocol has
some advantages different from previous protocols.
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1 Introduction

Ever since quantum mechanics was introduced into the cryptography field, numerous
quantum cryptographic applications have been proposed, such as quantum secure direct
communication (QSDC) [1, 2], quantum secret sharing (QSS) [3, 4], quantum public key
cryptosystem (QPKC) [5, 6].

Recently, quantum private comparison (QPC) becomes an important branch of quan-
tum cryptography, which can privately compare two parties’ undisclosed information for
equality. In 2009 the first QPC protocol was presented by Yang and Wen based on Bell
states and a hash function [7]. Since then numerous QPC protocols have been proposed
to improve both the security and the qubit efficiency in [8–16], etc. Thus far, these pro-
tocols have accomplished the comparison work with the help of a semi-honest third party

� XiaoXue Ma
hbumxx@163.com

1 School of Cyber Security and computer, Hebei University, Baoding 071002,
People’s Republic of China

2 Department of Computer Teaching, Hebei University, Baoding 071002,
People’s Republic of China

International Journal of Theoretical Physics (2020) 59:1854–1865

Published online: 1 2020April

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-020-04453-w&domain=pdf
mailto: hbumxx@163.com


(T P ). But a semi-honest T P might try to steal the players private inputs, while he cannot
be corrupted by the adversary.

Although Lo (1997) pointed that a QPC may not be securely evaluated with a two-
party scenario under the technology of that time in [17]. With the advance in quantum
entanglement swapping, many papers reconstructed the two-party QPC protocols without
the help of a T P . In 2014 Lin et al. presented a QPC without a T P based on entanglement
swapping and a hash function [18]. In 2016 He proposed a QPC with two parties only
based on single photon sequences and hash function [19]. Soon afterwards, He proposed
the device-independent version of the QPC protocol [20]. One common feature of these
protocols is that they require the help of hash functions to complete the comparison in
[18–20].

Quantum private comparisons without third-party help are rare. In addition, publishing
more efficient and safer protocols are necessary. For the above reasons, this paper present a
new QPC protocol without a third party via using the Bell states and quantum SWAP gates.
The paper is organized as follows. Section 2 introduces some basic concepts. Section 3
presents a QPC protocol. Section 4 analyzes the security of the QPC protocol. Section 5
concludes the paper.

2 Background

2.1 Permutation Operation

We summarize some basic concepts about permutations. By definition, a permutation of set
A = {1, · · · , n} is simply a bijection π : A → A. We usually write a permutation π by
writing its values as a finite sequence π = (i1, · · · , in), where π(j) = ij and j = 1, · · · , n.
We denote all permutations of the set A on Sn. For example, let A = {1, 2, 3}, then S3 =
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

A transposition is a special permutation that fixes all but two integers, which
are interchanged. For example, the following are some of the transpositions in S3:
(1, 3, 2), (3, 2, 1), (2, 1, 3). We define the special notation [s, t] to denote the transposition
in Sn that interchanges s and t . For example, with n = 3, (1, 3, 2) = [2, 3], (3, 2, 1) =
[1, 3], (2, 1, 3) = [1, 2].

There are two basic facts about permutations. One is that every permutation can be writ-
ten as the composition of transpositions. For example, with n = 3, (3, 1, 2) = [2, 3][1, 2].
Another is that a representation of a permutation as a composition of transpositions is not
unique. For example, with n = 3, (3, 1, 2) = [2, 3][1, 2] = [1, 3][2, 3]. There are more
details in [21].

Next we define a special permutation operation called N -level permutation by iterating
the cyclic shift operation several times. Details as below.

Let πk be a cyclic left-shift operation (shorted by≪ k) defined as πk(i) = i+k mod r ,
that is

πk : (1, 2, · · · , r) → (k + 1, k + 2, · · · , r, 1, 2, · · · , k), (1)

where non-negative integer k < r . Another cyclic right-shift operation has the same
definition.
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Let S = {a(1,··· ,1,1,1), · · · , a(1,··· ,1,1,r), a(1,··· ,1,2,1), · · · , a(1,··· ,1,2,r), · · · , a(r,··· ,r,1), · · · ,

a(r, · · · , r, r︸ ︷︷ ︸
N

)} be a rN -dimension set, where r,N ≥ 2. By (1), the cyclic left-shift operation

π
(j)
kj

on set S is defined as

π
(j)
kj

⎛
⎜⎝a(1, · · · , 1︸ ︷︷ ︸

j−1

,1,1, · · · , 1, 1︸ ︷︷ ︸
N−j

), · · · , a(1, · · · , 1︸ ︷︷ ︸
j−1

,1,1, · · · , 1, r︸ ︷︷ ︸
N−j

),

· · · , a(r, · · · , r︸ ︷︷ ︸
j−1

,r,r, · · · , r, 1︸ ︷︷ ︸
N−j

), · · · , a(r, · · · , r︸ ︷︷ ︸
j−1

,r,r, · · · , r, r︸ ︷︷ ︸
N−j

)

⎞
⎟⎠

=
⎛
⎜⎝a(1, · · · , 1︸ ︷︷ ︸

j−1

,πkj
(1),1, · · · , 1, 1︸ ︷︷ ︸

N−j

), · · · , a(1, · · · , 1︸ ︷︷ ︸
j−1

,πkj
(1),1, · · · , 1, r︸ ︷︷ ︸

N−j

),

· · · , a(r, · · · , r︸ ︷︷ ︸
j−1

,πkj
(r),r, · · · , r, 1︸ ︷︷ ︸

N−j

), · · · , a(r, · · · , r︸ ︷︷ ︸
j−1

,πkj
(r),r, · · · , r, r︸ ︷︷ ︸

N−j

)

⎞
⎟⎠ (2)

where 1 ≤ j ≤ N, 1 ≤ kj ≤ r .

Example 1 With N = 2, r = 3, kj = 2, j = 2, it follows that

π
(2)
2 (a(1,1), a(1,2), a(1,3), a(2,1), a(2,2), a(2,3), a(3,1), a(3,2), a(3,3))

= (a(1,π2(1)), a(1,π2(2)), a(1,π2(3)), a(2,π2(1)), a(2,π2(2)), a(2,π2(3)), a(3,π2(1)),

a(3,π2(2)), a(3,π2(3)))

= (a(1,3), a(1,1), a(1,2), a(2,3), a(2,1), a(2,2), a(3,3), a(3,1), a(3,2)).

So the mathematical description of N -level permutation is

π = π
(N)
kN

◦ · · · ◦ π
(1)
k1

, (3)

where ◦ means the compound of operation and π
(j)
kj

is the cyclic left-shift operation in (2).

Example 2 With N = 2, r = 3, k1 = 2, k2 = 2, it performs π = π
(2)
k2

◦ π
(1)
k1

operation and
obtains

π
(2)
k2

◦ π
(1)
k1

(a(1,1), a(1,2), a(1,3), a(2,1), a(2,2), a(2,3), a(3,1), a(3,2), a(3,3))

= π
(2)
k2

(a(πk1 (1),1), a(πk1 (1),2), a(πk1 (1),3), a(πk1 (2),1), a(πk1 (2),2), a(πk1 (2),3), a(πk1 (3),1),

a(πk1 (3),2), a(πk1 (3),3))

= π
(2)
k2

(a(3,1), a(3,2), a(3,3), a(1,1), a(1,2), a(1,3), a(2,1), a(2,2), a(2,3))

= (a(3,π2(1)), a(3,π2(2)), a(3,π2(3)), a(1,π2(1)), a(1,π2(2)), a(1,π2(3)), a(2,π2(1)),

a(2,π2(2)), a(2,π2(3)))

= (a(3,3), a(3,1), a(3,2), a(1,3), a(1,1), a(1,2), a(2,3), a(2,1), a(2,2)).
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Now we define an induction operation of π as follows

π = π
(1)
k1

◦ · · · ◦ π
(N)
kN

. (4)

Next we discuss the commutativity of N -level permutation. By the (2), (3) and (4), it
directly fields the Proposition 1 as follows.

Proposition 1 Let πA and πB be two N -level permutations, πA and πB are induction
operation of πA and πB respectively, then πA ◦ πB = πB ◦ πA.

Proof The proof is easy. Let πA = π
(N)
kN

◦ · · · ◦ π
(1)
k1

and πB = π
(N)
sN ◦ · · · ◦ π

(1)
s1 be two

N -level permutations. Then it has

πA ◦ πB(a(1, · · · , 1, 1︸ ︷︷ ︸
N

), · · · , a(1, · · · , 1, r︸ ︷︷ ︸
N

), · · · , a(r, · · · , r, 1︸ ︷︷ ︸
N

), · · · , a(r, · · · , r, r︸ ︷︷ ︸
N

))

= π
(N)
kN

◦ · · · ◦ π
(1)
k1

◦ π(1)
s1

◦ · · · ◦ π(N)
sN

(a(1,··· ,1,1), · · · , a(1,··· ,1,r), · · · , a(r,··· ,r,1),
· · · , a(r,··· ,r,r))

= π
(N)
kN

◦ · · · ◦ π
(1)
k1

(a(s1+1,··· ,sN−1+1,sN+1), · · · , a(s1+1,··· ,sN−1+1,sN+r), · · · ,

a(s1+r,··· ,sN−1+r,sN+1), · · · , a(s1+r,··· ,sN−1+r,sN+r))

= (a(k1+s1+1,··· ,kN−1+sN−1+1,kN+sN+1), · · · , a(k1+s1+1,··· ,kN−1+sN−1+1,kN+sN+r), · · · ,

a(k1+s1+r,··· ,kN−1+sN−1+r,kN+sN+1), · · · , a(k1+s1+r,··· ,kN−1+sN−1+r,kN+sN+r))

and

πB ◦ πA

⎛
⎝a(1, · · · , 1, 1︸ ︷︷ ︸

N

), · · · , a(1, · · · , 1, r︸ ︷︷ ︸
N

), · · · , a(r, · · · , r, 1︸ ︷︷ ︸
N

), · · · , a(r, · · · , r, r︸ ︷︷ ︸
N

)

⎞
⎠

= π(N)
sN

◦ · · · ◦ π(1)
s1

◦ π
(1)
k1

◦ · · · ◦ π
(N)
kN

(a(1,··· ,1,1), · · · , a(1,··· ,1,r), · · · , a(r,··· ,r,1), · · · ,

a(r,··· ,r,r))
= π(N)

sN
◦ · · · ◦ π(1)

s1
(a(k1+1,··· ,kN−1+1,kN+1), · · · , a(k1+1,··· ,kN−1+1,kN+r), · · · ,

a(k1+r,··· ,kN−1+r,kN+1), · · · , a(k1+r,··· ,kN−1+r,kN+r))

= (a(k1+s1+1,··· ,kN−1+sN−1+1,kN+sN+1), · · · , a(k1+s1+1,··· ,kN−1+sN−1+1,kN+sN+r), · · · ,

a(k1+s1+r,··· ,kN−1+sN−1+r,kN+sN+1), · · · , a(k1+s1+r,··· ,kN−1+sN−1+r,kN+sN+r)).

It is clear that πA ◦ πB = πB ◦ πA. Thus it holds.

Example 3 For N = 2, r = 2, let πA = π
(2)
1 ◦ π

(1)
2 and πB = π

(2)
2 ◦ π

(1)
1 be two 2-level

permutations, then it has

πA ◦ πB(a(1,1), a(1,2), a(2,1), a(2,2))

= π
(2)
1 ◦ π

(1)
2 ◦ π

(1)
1 ◦ π

(2)
2 (a(1,1), a(1,2), a(2,1), a(2,2))

= π
(2)
1 ◦ π

(1)
2 (a(2,1), a(2,2), a(1,1), a(1,2))

= (a(2,2), a(2,1), a(1,2), a(1,1))
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and

πB ◦ πA(a(1,1), a(1,2), a(2,1), a(2,2))

= π
(2)
2 ◦ π

(1)
1 ◦ π

(1)
2 ◦ π

(2)
1 (a(1,1), a(1,2), a(2,1), a(2,2))

= π
(2)
2 ◦ π

(1)
1 (a(1,2), a(1,1), a(2,2), a(2,1))

= (a(2,2), a(2,1), a(1,2), a(1,1))

It is clear that πA ◦ πB = πB ◦ πA.

2.2 General Quantum SWAP Gates

In this subsection we introduce a quantum SWAP gate. The SWAP gate is seen as an
important component in theory of quantum computation. For a n-qubit quantum systems
|c1, · · · , cn〉, the general quantum SWAP gate in [22] will act as:

SWAPπ : |c1, · · · , cn〉 = |ci1 , · · · , cin〉, (5)

where a permutation π = (i1, · · · , in).
Let π be a permutation, then π = π1 ◦ · · · ◦ πm, where πi is also a transposition, 1 ≤

i ≤ n. Since every permutation can be written as the composition of transpositions. By (5),
we have

SWAPπ = SWAPπ1 · · · SWAPπm .

For example, in 3-qubit system, SWAP(3,1,2)|c1, c2, c3〉=SWAP[2,3]SWAP[1,2]|c1, c2, c3〉
= |c3, c1, c2〉. Thus, it directly fields the following Proposition 2.

Proposition 2 Let πA and πB be two N -level permutations, πA and πB are induction oper-
ation of πA and πB respectively, then SWAPπA◦πB

= SWAPπB◦πA
for n-qubit quantum

system.

3 The Proposed Two-Party QPC Protocol

3.1 A Description of QPC Protocol

Alice and Bob are two parties who want to compare the equality of their secret messages
with same bit-length, a, b ∈ {0, 1}∗, respectively. They agree that the two Bell states |φ0〉 =
1√
2
(|00〉 + |11〉), |φ1〉 = 1√

2
(|01〉 + |10〉) represent the classical bits 0, 1, respectively. The

proposed protocol can be depicted in steps as following.
Alice divides the secret message a into m groups, which are

X0 = {a1, · · · , ar2} = {a(1,1), · · · , a(1,r), · · · , a(r,1), · · · , a(r,r)},
X1 = {ar2+1, · · · , a2r2} = {a(1)

(1,1), · · · , a
(1)
(1,r), · · · , a

(1)
(r,1), · · · , a

(1)
(r,r)},

· · · ,

Xm−1 = {a(m−1)r2+1, · · · , a(m−1)r2} = {a(m−1)
(1,1) , · · · , a

(m−1)
(1,r) , · · · , a

(m−1)
(r,1) , · · · , a

(m−1)
(r,r) }.

If |Xm−1| 
= r2, Alice fills in the data alternately 0 and 1 after Xm−1.
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Bob does the same things for the secret message b and obtains

Y0 = {b1, · · · , br2} = {b(1,1), · · · , b(1,r), · · · , b(r,1), · · · , b(r,r)},
Y1 = {br2+1, · · · , b2r2} = {b(1)

(1,1), · · · , b
(1)
(1,r), · · · , b

(1)
(r,1), · · · , b

(1)
(r,r)},

· · · ,

Ym−1 = {b(m−1)r2+1, · · · , b(m−1)r2} = {b(m−1)
(1,1) , · · · , b

(m−1)
(1,r) , · · · , b

(m−1)
(r,1) , · · · , b

(m−1)
(r,r) },

where a(i,j), b(i,j) ∈ {0, 1}, i, j = 1, · · · , r2, as, bs ∈ {0, 1}, s = 1, · · · , mr2 and r ∈ Z+.

Step 1. Alice (Bob) selects two transpositions π
(1)
k1

, π
(2)
k2

(π
(1)
s1 , π

(2)
s2 ) in (4). Then Alice

(Bob) computes

πA(X0) = πA(a(1,1), · · · , a(1,r), · · · , a(r,1), · · · , a(r,r)) = (aπA(1), · · · , aπA(r2))

(πB(Y0) = πB(b(1,1), · · · , b(1,r), · · · , b(r,1), · · · , b(r,r)) = (bπB(1), · · · , bπB(r2)))

for first group X0(Y0), where πA = π
(1)
k1

◦ π
(2)
k2

(πB = π
(1)
s1 ◦ π

(2)
s2 ).

Step 2. Alice (Bob) encodes each bit of πA(X0)(πB(Y0)) and prepares r2 Bell states as
initial states. Alice (Bob) records these initial states as

SA = {|φaπA(1)〉1, · · · , |φa
πA(r2)〉r2} (SB = {|φbπB(1)〉1, · · · , |φb

πB(r2)〉r2}),
where |φaπA(i)〉i , |φbπB(i)〉i ∈ {|φ0〉, |φ1〉}, i = 1, · · · , r2. Further, Alice (Bob) divides
them into two ordered sequences SA1 and SA2(SB1 and SB2) composed of the 1st and 2nd
particles of each Bell state respectively, that is

SA1 = {|φaπA(1)

1 〉1, · · · , |φa
πA(r2)

1 〉r2} (SB1 = {|φbπB(1)

1 〉1, · · · , |φb
πB(r2)

1 〉r2}),

SA2 = {|φaπA(1)

2 〉1, · · · , |φa
πA(r2)

2 〉r2} (SB2 = {|φbπB(1)

2 〉1, · · · , |φb
πB(r2)

2 〉r2}).
Step 3. Alice (Bob) randomly prepares decoy photons ⊗DA

j (⊗DB
j ), where |DA

j 〉
(|DB

j 〉) ∈ {|0〉, |1〉, (|0〉+|1〉)/√2, (|0〉−|1〉)/√2}(j = 1, 2, · · · , k). Then Alice (Bob)

randomly inserts ⊗DA
j (⊗DB

j ) in SA1(SB1) to form a new sequence S′
A1

(S′
B1

), and sends
it to Bob (Alice).

Step 4. After confirming that Bob (Alice) has received the quantum sequence S′
A1

(S′
B1

),

Alice (Bob) informs the positions and the measurement bases of ⊗DA
j (⊗DB

j ) to Bob

(Alice). Subsequently, Bob (Alice) extracts the particles in ⊗DA
j (⊗DB

j ) from S′
A1

(S′
B1

),
and gets the sequence SA1(SB1). Thereafter, Alice and Bob can check the existence of an
Eve by a predetermined threshold of error rate. If the error rate is limited in a predeter-
mined threshold, there is no eve and the protocol continues. Otherwise, Alice and Bob
abort the protocol and restart from Step 1.

Step 5. Bob (Alice) performs quantum swapping gate SWAPπB
(SWAPπA

) on quantum
particle sequence SA1(SB1) and obtains

S′′
A1

={|φaπA(1)

1 〉πB(1), · · · , |φa
πA(r2)

1 〉πB(r2)} (S′′
B1

={|φbπB(1)

1 〉πA(1), · · · , |φb
πB(r2)

1 〉πA(r2)}).
Step 6. Bob (Alice) selects a binary random sequences eB = (eB

1 , eB
2 , · · · , eB

r2
) ∈ {0, 1}r2

(eA = (eA
1 , eA

2 , · · · , eA
r2

) ∈ {0, 1}r2 ). Bob (Alice) performs unitary operation U on quan-

tum particle sequence S′′
A1

(S′′
B1

) and obtains a new quantum particle sequence S̃′′
A1

(S̃′′
B1

),

where U = I if eB
i = 0 (eA

i = 0) and U is X-gate if eB
i = 1 (eA

i = 1).

International Journal of Theoretical Physics (2020) 59:1854–1865 1859



Step 7. Bob (Alice) randomly inserts ⊗D′A
j (⊗D′B

j ) in S̃′′
A1

and SB2(S̃
′′
B1

and SA2) to

form a new sequence S′′′
A1

(S′′′
B1

) and S′
B2

(S′
A2

), where |D′A
j 〉(|D′B

j 〉) ∈ {|0〉, |1〉, (|0〉 +
|1〉)/√2, (|0〉−|1〉)/√2}(j = 1, 2, · · · , k). Then Bob (Alice) sends sequences S′′′

A1
(S′′′

B1
)

and S′
B2

(S′
A2

) to Alice (Bob).
Step 8. Alice and Bob check the existence of an Eve just as Step 4 introduced, and obtains

S̃′′
A1

, SB2 and S̃′′
B1

, SA2 respectively.
Step 9. Bob (Alice) performs quantum swapping gate SWAPπB

(SWAPπA
) on quantum

particle sequence SA2(SB2), and obtains

S′′
A2

={|φaπA(1)

2 〉πB(1), · · · , |φa
πA(r2)

2 〉πB(r2)} (S′′
B2

={|φbπB(1)

2 〉πA(1), · · · , |φb
πB(r2)

2 〉πA(r2)}).

Step 10. Alice (Bob) obtains the sequence of classical results {aA1
1 ⊕ eB

1 , · · · , a
A1
r2

⊕
eB
r2

, b
B2
1 , · · · , b

B2
r2

}, ({bB1
1 ⊕ eA

1 , · · · , b
B1
r2

⊕ eA
r2

, a
A2
1 , · · · , a

A2
r2

}) from quantum parti-

cles S̃′′
A1

S′′
B2

(S̃′′
B1

S′′
A2

) after the |0〉, |1〉 basis measurement. Alice (Bob) computes the

tAi = a
A1
i ⊕ eB

i ⊕ b
B2
i ⊕ eA

i (tBi = b
B1
i ⊕ eA

i ⊕ a
A2
i ⊕ eB

i ), and obtains result tA =
{tAi , i = 1, · · · , r2} (tB = {tBi , i = 1, · · · , r2}). Alice and Bob publish the tA and tB

respectively. If tA = tB , then they announce the compared secret information X0 and Y0
are identical, and perform the protocol for the next group Xj and Yj , j = 1, · · · ,m − 1.
Otherwise, they announce the comparison are regarded as different.

3.2 An Example

Next, we taken an example when N = 2, r = 2. Suppose that Alice’s and Bob’s secret
inputs are a = a(1,1)a(1,2)a(2,1)a(2,2) = 1001, b = b(1,1)b(1,2)b(2,1)b(2,2) = 1001.

Step 1. Alice selects two integers k1 = 1, k2 = 2 and computes

πA(a(1,1), a(1,2), a(2,1), a(2,2)) = π
(1)
k1

◦ π
(2)
k2

(a(1,1), a(1,2), a(2,1), a(2,2))

= (a(2,1), a(2,2), a(1,1), a(1,2)) = 0110.

Bob selects two integers s1 = 1, s2 = 1 and computes

πB(b(1,1), b(1,2), b(2,1), b(2,2)) = π(1)
s1

◦ π(2)
s2

(b(1,1), b(1,2), b(2,1), b(2,2))

= (a(2,2), a(2,1), a(1,2), a(1,1)) = 1001.

Step 2. Alice (Bob) encodes each bit and prepares 4 Bell states as initial states. Alice
(Bob) records these initial states as

SA = {|φ0〉1, |φ1〉2, |φ1〉3, |φ0〉4} (SB = {|φ1〉1, |φ0〉2, |φ0〉3, |φ1〉4}.
Further, Alice (Bob) divides them into two ordered sequences SA1 and SA2(SB1 and

SB2) composed of the 1st and 2nd particles of each Bell state respectively, that is

SA1 = {|φ0
1〉1, |φ1

1〉2, |φ1
1〉3, |φ0

1〉4} (SB1 = {|φ1
1〉1, |φ0

1〉2, |φ0
1〉3, |φ1

1〉4}),

SA2 = {|φ0
2〉1, |φ1

2〉2, |φ1
2〉3, |φ0

2〉4} (SB2 = {|φ1
1〉1, |φ0

1〉2, |φ0
2〉3, |φ1

1〉4}).
Step 3. Alice (Bob) randomly inserts decoy photons in SA1(SB1) to form a new sequence

S′
A1

(S′
B1

), and sends it to Bob (Alice).

International Journal of Theoretical Physics (2020) 59:1854–18651860



Step 4. Alice and Bob check the presence of an Eve. There is no an Eve and the protocol
continues. Otherwise, Alice and Bob abort the protocol and restart from Step 1.

Step 5. Bob (Alice) performs quantum swapping gate SWAPπB
(SWAPπA

) on quantum
particle sequence SA1(SB1) and obtains

S′′
A1

= {|φ0
1〉4, |φ1

1〉3, |φ1
1〉2, |φ0

1〉1} (S′′
B1

= {|φ0
1〉3, |φ1

1〉4, |φ1
1〉1, |φ0

1〉2}).

Step 6. Bob (Alice) selects a binary random sequences eB = (0, 0, 1, 1)(eA =
(1, 1, 0, 0)). Bob (Alice) performs unitary operation U on quantum particle sequence
S′′

A1
(S′′

B1
) and obtains a new quantum particle sequence S̃′′

A1
(S̃′′

B1
), where U = I if

eB
i = 0 (eA

i = 0) and U is X-gate if eB
i = 1 (eA

i = 1).
Step 7. Alice (Bob) randomly inserts decoy photons in S̃′′

A1
and SB2(S̃

′′
B1

and SA2) to form
a new sequence S′′′

A1
(S′′′

B1
) and S′

B2
(S′

A2
), and sends them to Bob (Alice).

Step 8. Alice and Bob check the existence of an Eve just as Step 4 introduced, and obtains
S̃′′

A1
, SB2 and S̃′′

B1
, SA2 respectively.

Step 9. Bob (Alice) performs quantum swapping gate SWAPπB
(SWAPπA

) on quantum
particle sequence SA2(SB2), and obtains

S′′
A2

= {|φ0
2〉4, |φ1

2〉3, |φ1
2〉2, |φ0

2〉1} (S′′
B2

= {|φ0
2〉3, |φ1

2〉4, |φ1
2〉1, |φ0

2〉2}).

Step 10. Alice (Bob) obtains the sequence of classical results {0, 1, 0, 1, 1, 1, 0, 0},
({0, 1, 1, 0, 0, 0, 0, 0) from quantum particles S̃′′

A1
S′′

B2
(S̃′′

B1
S′′

A2
) after the |0〉, |1〉 basis

measurement. Alice (Bob) computes the tA = {0, 1, 0, 1} (tB = {0, 1, 0, 1}). Alice and
Bob publish the tA and tB respectively. The tA = tB , then they announce the compared
secret information a and b are identical.

4 Analysis

4.1 Correctness

Alice and Bob use the N -level permutation to process secret information. They encode
secret information and insert decoy states randomly. Then they send the first sequence of
quantum particles to each other. Alice and Bob check the presence of an Eve. They use the
quantum swapping gate SWAPπB

and SWAPπA
to process the sequence of quantum parti-

cles received separately. Before sending, Alice and Bob perform some unitary operations U

on quantum particle sequences according to the random number sequences selected. Then
they insert the decoy states in the sequence of quantum particles, and return to each other.
After checking the presence of an Eve, they respectively obtain the sequence of quantum
particles S̃′′

A1
, SB2 and S̃′′

B1
, SA2 from each other. Furthermore, they perform quantum swap-

ping gate SWAPπA
and SWAPπB

on quantum particle sequence SB2 and SA2 , separately.
After the measurement, Alice and Bob obtain some corresponding encoding information
respectively. That is, after performing 0, 1 basis measurement, Alice and Bob obtain the
a

A1
i ⊕ eB

i , b
B2
i and b

B1
i ⊕ eA

i , a
A2
i , respectively. Since Proposition 1, πB ◦ πA = πA ◦ πB

holds. From Table 1 we observe that when the secret information is the same, that is ai = bi ,
there is always tAi ⊕ tBi = 0. Otherwise, when ai 
= bi , there is always tAi ⊕ tBi = 1. So our
protocol is correctness.
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Table 1 The mainly parameters and their values

ai bi ai ⊕ bi |φai 〉 |φbi 〉 a
A1
i a

A2
i b

B1
i b

B2
i a

A1
i ⊕ b

B2
i a

A2
i ⊕ b

B1
i tAi ⊕ tBi

0 0 0 |00〉+|11〉√
2

|00〉+|11〉√
2

0 0 0 0 0 0 0

0 0 1 1 1 1

1 1 0 0 1 1

1 1 1 1 0 0

0 1 1 |00〉+|11〉√
2

|01〉+|10〉√
2

0 0 0 1 1 0 1

0 0 1 0 0 1

1 1 0 1 0 1

1 1 1 0 1 0

1 0 1 |01〉+|10〉√
2

|00〉+|11〉√
2

0 1 0 0 0 1 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 1 1 0 1

1 1 0 |01〉+|10〉√
2

|01〉+|10〉√
2

0 1 0 1 1 1 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 1 0 1 1

4.2 Outsider Attack

In presented protocol, Alice and Bob exchange compared secret information under insecure
channels. In order to ensure the security of information, all parties publicly check for the
existence of an Eve. There are two steps need to detect the presence of an Eve in presented
protocol.

Since the Eve doesn’t know the measuring bases, and the positions of all decoy photons
in S′

A1
and S′

B1
. Eve will lead to an error to each decoy photon with a probability of 1

4 .
Thus, let n be the number of decoy photons, if n is large enough, then the probability of
detecting Eve’s attack from the public discussion 1−( 34 )

n is close to 1. In addition, in step 8,
Alice and Bob check the existence of an Eve just as Step 4 introduced. Hence, the presented
protocol can withstand some known outsider attacks, such as entanglement-measure attack,
measurement-resend attack, and intercept-resend [23–27].

4.3 Insider Attack

In general, dishonest participant can learn the secret of other party’s partial information
without being detected. This congenital advantage for any participants should be limited
such that it doesn’t threaten the security of the presented protocol.

The presented protocol is symmetric, Alice and Bob can execute the same attack strategy.
Without loss of generality, we consider the case that Bob learns the Alice’s secret.

For comparing private information a, Alice divides the secret information into some
groups, rearranges them according to a cyclic left-shift operation πA and encoding the new
secret information using the Bell states on Step 1 and Step 2. At Step 3, Alice randomly
inserts some decoy photons in SA1 and sends the quantum sequences to Bob. After checking
the existence of an Eve, Bob can obtain the sequences of quantum particles SA1 .
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So Bob can distinguish between aj = 0 and aj = 1, j = πA(i) if Bob can distinguish
between the two states |00〉+|11〉√

2
and |01〉+|10〉√

2
. Bob needs to distinguish between the density

matrices

ρA = tr2

( |00〉 + |11〉√
2

〈00| + 〈11|√
2

)

= |0〉〈0| + |1〉〈1|
2

=
( 1

2 0
0 1

2

)
and

σA = tr2

( |01〉 + |10〉√
2

〈01| + 〈10|√
2

)

= |0〉〈0| + |1〉〈1|
2

=
( 1

2 0
0 1

2

)
.

It is clear that ρA = σA. Then Bob cann’t distinguish the Alice’s initial Bell states by
measuring the first photon of the j -th state.

In Step 8, Bob can obtain the quantum particle sequence SA2 . But Bob only knows the
πB and doesn’t know the πA. The probability of obtaining another correct πA is 1

r2
, that is

the order πAπB is secret for Bob. Through the particle sequences SA1 and SA2 , Bob only
guesses the correct Bell state or the corresponding message X0 with a probability of 1

r2
.

In addition, in Step 8, Bob obtains other quantum particle sequence S̃′′
B1
. Bob doesn’t

obtain Alice’s secret information. The reason is that Bob does not know random num-
ber sequence eA except eB . So Bob only guesses the correct random numbers with 1

2r2

successful probability. Furthermore, the presented protocol can resist the inside attacks.

4.4 Comparison

In this subsection, the comparisons of Lin et al.’s protocol [18], He’s protocol [19], and the
proposed scheme is described in the following Table 2. The qubit efficiency η is defined as
η = ηc

ηq
, where ηc denotes the classical bits that can be employed, and ηq denotes the total

photons.

Table 2 The comparison of the proposed protocol to the other QPCs

Lin et al.’s [18] He’s [19] Proposed protocol

Quantum state Bell state Single photon state Bell state

Need of entanglement Yes No Yes

swapping

Operations for two players Hash function Hash function Quantum SWAP gate

Quantum measurement Bell-basis Single-photon {0, 1}-basis
for users measurement measurement measure

Need of decoy states Yes No Yes

Qubit efficiency (%) 50% 100% 50%

Times Lower Lower Faster

Communication One One Two

complexity
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Lin et al. use Bell states to design their QPC protocol, in which two qubits can compare
one bit of information. However, the qubit efficiency can be computed as 50%. In He’s
protocol, single photon states are used to construct the QPC, in which one photons can
compare one bit of information among two parties. Therefore, its qubit efficiency is 100%.
Comparing these protocol, the presented protocol also uses the Bell states to construct the
new QPC, It leads to the qubit efficiency of 50%.

Lin et al.’s and He’s scheme need more quantum devices such as quantum operations,
and quantum measurement to perform the comparison. For Lin et al.’s and He’s scheme,
both users have to perform one-to-one hash operation to encode the hash code of their
information in advance, and encode each bit to the corresponding quantum states. In the
proposed scheme, it does not require hash coding in advance.

In addition, in Lin et al.’s QPC, it need Bell-basis measurement to accomplish the
comparison phase. In He’s scheme, it requires single photon measurements. In the
proposed scheme, the two players only need to perform the {0, 1}-basis measure to
retrieve their own result of comparison. Thus, the proposed scheme is more efficient and
practical.

5 Conclusion

In this paper, we described a protocol to compare the quantum secrets without a third party
based on the Bell states and quantum SWAP gates. The proposed protocol has adopted
quantum transmission strategy and the decoy state photons to prevent various types of eve
attacks. In addition, Bob (Alice) only knows the πB(πA), and doesn’t know the πA(πB).
Thus they have only the same order of information arrangement, but the πAπB = πAπB is
secret for two parties. The participants’ encoded secrets are protected by the entanglement
of Bell states. So, it provides security for inside attackers. In summary, through the security
analysis, the presented protocol is demonstrated to be secure against outsider attack and
insider attack.
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