
https://doi.org/10.1007/s10773-020-04440-1

Entanglement Dynamics of a Dissipative Two-qubit
System Under the Influence of a Global Environment

Ebrahim Ghasemian1 ·Mohammad Kazem Tavassoly1

Received: 27 November 2019 / Accepted: 10 March 2020 /
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper we propose a two-qubit system exposed to a common thermal reservoir as the
source of dissipation. Starting from the master equation, specially its dissipator part, we
find its explicit solution through which we investigate the time evolution of entanglement
between the two qubits via concurrence measure by considering different initial entangled
states. Our results show that the system can be found in Markovian and non-Markovian
regimes depending on the involved parameters. In the Markovian regime, the amount of
entanglement permanently deceases and therefore the two-qubit system is finally found
in a separable state. In the other hand, in non-Markovian regime, the two-qubit system
exchanges its entanglement with environment in such a way that it can recover its entangle-
ment loss as time passes. In this case, the system undergoes a death of entanglement at some
intervals of time, however, then restores its entanglement and gradually reaches to a maxi-
mally stable entangled state. Restoring of entanglement is a remarkable outcome of global
environment in comparison with its local counterpart. Also, the amount of entanglement
can be adjusted by choosing appropriate parameters involved in the proposed model such as
thermal excitation number as well as the initial condition of the two-qubit state of system.

Keywords Global environment · Master equation · Markovian and non-Markovian
regime · Death and revival of entanglement · Concurrence

1 Introduction

Realistic quantum systems are important for their fundamental concepts and up-to-date
technological applications. Such physical systems are open and their unavoidable corre-
lations with surrounding environments are of statistical nature. [1–4]. Nowadays, many
researchers have focused on the investigation of open quantum systems in the fields of quan-
tum optics [5], quantum information [6, 7] and more recently in quantum biophysics [8] to
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investigate and interpret their non-unitary behaviors. The composite open quantum systems
are essential tools for quantum information and computation tasks. In quantum information
theory entanglement plays a key role for many different applications, for instance in quan-
tum cryptography [9], teleportation schemes or quantum computation [10]. Keeping and
maintenance of entanglement in open quantum systems as long as possible require to protect
it against different environmental influences. Therefore, representation and investigation of
different dissipative models of open quantum systems help us to develop our understanding
about plausible phenomena occurring in such interacting systems. Engineering and control
of dynamical evolution of qubits in the presence of environmental noises and manipula-
tion inaccuracies is one of the challenges for realizing quantum information processing [1].
Since the dynamics of composite open quantum systems strongly depends on the noises
produced by the surrounding environment, therefore the most important aspects of the envi-
ronment is whether it can be described either as memoryless (Markovian) or as with memory
(non-Markovian). The Markovian or non-Markovian behavior of environment, with respect
to a given system, can be characterized by comparing its typical correlation time and the
system relaxation time [11–13].

For two-qubit systems interacting with Markovian environments, some kinds of cor-
relations may undergo early-stage disappearance (ESD) or sudden death. Indeed, they
completely disappear at a finite time in spite of exponential decaying manner of single-qubit
coherence [11]. In the other hand, two-qubit systems subjected to non-Markovian environ-
ments may present phenomena such as revivals and trapping of correlations meaning that
such systems may overcome ESD process. The study of dynamics of correlations under
non-Markovian noise is of fundamental interest for quantum information purposes [14–20].
One of the most useful and applicable approach for the study of open two-qubit system is
the master equations correspond to the density operator of the system under consideration.
The master equations describe both memoryless Markovian dynamics and non-Markovian
evolutions [21, 22]. The master equations are usually used for microscopical modeling of
the interaction of the system under study and its environment via the tracing out the envi-
ronment variables in some exact or perturbative treatment [21, 23]. The master equation
approach has been frequently utilized in dissipative qubit systems. In this line, the authors
in [24] have shown that stationary entanglement can be achieved by environment-induced
chain links into dissipative qubit systems. Furthermore, the static behavior of entanglement
power in two-qubit system interacting with a glocal environment has been studied in [25].

The keystone of the present paper is the model proposed in [26] wherein the authors have
considered two qubits, while each of them interacts with an independent (local) environ-
ment. Here, we aim to consider their model to survey the influence of a common (global)
environments on the decoherence effects on a two-qubit system. Indeed, we motivated to
find out whether one can maintain (or at least restore) the quantum entanglement in dissi-
pative two-qubit systems for a long time in the case of global environment (since in Ref.
[26] the entanglement decay has been reported). We show that, the preservation of entangle-
ment can be adjusted by controlling the parameters involved in the model such as thermal
excitation number as well as the initial state of two-qubit system. As we will observe in the
continuation of the paper, an outstanding effect of global environment on the dynamics of
two-qubit system is the restoring effect (revival phenomenon) of entanglement which has
not been reported in [26] in the case of local environment. Indeed, our results describe that
the system under study can be conditionally found in both Markovian and non-Markovian
regimes. In this regard, as is observed, the revival of entanglement can be appeared in some
special conditions (non-Markovian regime) while in some other cases the permanent death
of entanglement occurs due to Markovian behavior of environment.
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This paper is organized as follows. In the next section, we introduce the master equation
of a two-qubit system under the influence of global environment. The entanglement dynam-
ics of the system under study is investigated by considering different initial conditions in
Section 3 and finally the last section is allocated to our conclusions and remarks.

2 Master Equation of Two-Qubit SystemUnder the Influence of Global
Environment

We consider a two-qubit system undergoing a global dissipative dynamics described by the
following dissipator [25]:

ρ̇(t) = Lρ(t)

= γ n̄[2(σ1 + σ2)ρ(σ1 + σ2)
† − (σ1 + σ2)

†(σ1 + σ2)ρ − ρ(σ1 + σ2)
†(σ1 + σ2)]

+ γ (n̄+1)[2(σ1+σ2)
†ρ(σ1+σ2) − (σ1+σ2)(σ1+σ2)

†ρ − ρ(σ1+σ2)(σ1+σ2)
†],
(1)

where σ1, σ2 are the lowering operator of qubit 1 and 2, respectively, and n̄ is the mean
number of thermal excitations corresponds to the global environment and γ is the common
dissipation parameter which indicates the presence of global environment.

Figure 1 shows the schematic of the two-qubit interaction in the presence of a common
environment.

To study the dynamics we can formally expand the density operator in the basis {|1〉 :=
|e〉|e〉; |2〉 := |e〉|g〉; |3〉 := |g〉|e〉; |4〉 := |g〉|g〉}. So, we have

ρ(t) =
4∑

j,k=1

ρj,k(t)|j〉〈k|, (2)

where ρj,k(t) are unknown time-dependent coefficients. Upon inserting (2) into (1), the
dynamics will be described by a set of linear differential equations for the unknown

Fig. 1 Schematic of two-qubit system undergoes dissipative dynamics via interaction with environment. The
coefficients of local and global dissipations are respectively introduced by � and γ in such systems. Here,
we focus on the effect of global environment
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coefficients ρj,k(t). The sixteen coupled differential equations can be compactly expressed
via the following relation:

v̇(t) = Mv(t), (3)

where

v(t) = (ρ11(t), ρ12(t), . . . , ρ43(t), ρ44(t))
� ,

with M as a 16 × 16 matrix with constant elements. After some lengthy calculations, the
matrix M can be obtained as below:

M = γ

[
M11 M12
M21 M22

]
, (4)

where

M11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4n̄ − 4 0 0 0 0 0 0 0
0 −4n̄ − 3 −n̄ − 1 0 0 0 0 2n̄
0 −2n̄ − 1 −4n̄ − 3 0 0 0 0 2n̄
0 0 0 −4n̄ − 2 0 0 0 0
0 0 0 0 −4n̄ − 3 0 0 0
2n̄ + 2 0 0 0 0 −4n̄ − 2 −2n̄ − 1 0
2n̄ + 2 0 0 0 0 −2n̄ − 1 −4n̄ − 2 0
0 2n̄ + 2 2n̄ + 2 0 0 0 0 −4n̄ − 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2n̄ 2n̄ 0 0 0 0 0
0 0 0 2n̄ 0 0 0 0
0 0 0 2n̄ 0 0 0 0
0 0 0 0 0 0 0 0
−2n̄ − 1 0 0 0 0 2n̄ 2n̄ 0
0 −2n̄ − 1 0 0 0 0 0 2n̄
0 0 −2n̄ − 1 0 0 0 0 2n̄
0 0 0 −2n̄ − 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M21 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −2n̄ − 1 0 0 0
2n̄ + 2 0 0 0 0 −2n̄ − 1 0 0
2n̄ + 2 0 0 0 0 0 −2n̄ − 1 0
0 2n̄ + 2 2n̄ + 2 0 0 0 0 −2n̄ − 1
0 0 0 0 0 0 0 0
0 0 0 0 2n̄ + 2 0 0 0
0 0 0 0 2n̄ + 2 0 0 0
0 0 0 0 0 2n̄ + 2 2n̄ + 2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M22 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4n̄ − 3 0 0 0 0 2n̄ 2n̄ 0
0 −4n̄ − 2 −2n̄ − 1 0 0 0 0 2n̄
0 −2n̄ − 1 −4n̄ − 2 0 0 0 0 2n̄
0 0 0 −4n̄ − 1 0 0 0 0
0 0 0 0 −4n̄ − 2 0 0 0
2n̄ + 2 0 0 0 0 −4n̄ − 1 −4n̄ − 1 0
2n̄ + 2 0 0 0 0 −2n̄ − 1 −2n̄ − 1 0
0 2n̄ + 2 2n̄ + 2 0 0 0 0 −4n̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In fact, the matrix M , which plays the role of Lindblad operator in matrix representation,
can be found from the comparison of (1) and (3).
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3 Concurrence of the Two-Qubit System for Different Initial States

For a mixed state represented by the density operator ρ, one can perform a spin-flip
operation as below [27]:

ρ̃ = (σ 1
y ⊗ σ 2

y )ρ∗(σ 1
y ⊗ σ 2

y ), (5)

where ρ∗ is the complex conjugate of the density matrix ρ and σy is the Pauli matrix. Now,
if one defines R := ρ · ρ̃ and uses the square roots of the eigenvalues of the matrix R

denoted by Gi , then the concurrence of the mixed state ρ can be obtained as below:

C(ρ) = max(0,G1 − G2 − G3 − G4), (6)

where Gi > 0 and also G1 is the largest of them. Now we want to investigate the entangle-
ment dynamics of system by considering different initial states of the two qubits. For this
purpose, we initially consider entangled two-qubit state within the class of X-state:

ρX(0) =

⎡

⎢⎢⎣

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

⎤

⎥⎥⎦ , (7)

Therefore, the matrix R has the following explicit form:

RX =

⎡

⎢⎢⎣

ρ14ρ41 + ρ11ρ44 0 0 2ρ11ρ44
0 ρ23ρ32 + ρ22ρ33 2ρ22ρ23 0
0 2ρ32ρ33 ρ23ρ32 + ρ22ρ33 0
2ρ44ρ41 0 0 ρ14ρ41 + ρ11ρ44

⎤

⎥⎥⎦ , (8)

where its eigenvalues are as below:

E1(2) = (
√

ρ22ρ33 ± √
ρ23ρ32)

2,

E3(4) = (
√

ρ11ρ44 ± √
ρ14ρ41)

2. (9)

The X states may be found in a wide variety of physical situations like in the Ising and the
XY models [30, 31]. Now, we proceed to obtain the solution of (3) with different initial
conditions and then investigate the dynamics of entanglement. In this line, we consider
tunable Werner states [28], maximally entangled mixed states (MEMS) [29] and a typical
X state as the initial states of system. These two well-known families of mixed states which
are important in quantum information. Werner states can be defined as a mixture of the
maximally mixed state and a Bell state where their density matrix can be written as:

ρW =

⎡

⎢⎢⎣

A 0 0 0
0 B C 0
0 C B 0
0 0 0 D

⎤

⎥⎥⎦ , (10)

whereA + 2B + D = 1.
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3.1 First Initial State

As the first case, let us consider the following initial state:

ρ1(0) =

⎡

⎢⎢⎣

A 0 0 0
0 1−A

2
1−A
2 0

0 1−A
2

1−A
2 0

0 0 0 0

⎤

⎥⎥⎦ , (11)

which is indeed a mixed state constitutes from the maximally entangled state (|e, g〉 +
|g, e〉)/√2 and a double excited state |e, e〉 respectively with weights 1-A and A (0 ≤ A <

1). So, the initial state of two-qubit system can be changed by varying the parameter A.
So, in general, the dynamics of the system can be tuned by choosing different values of
parameter A, various initial atomic states.

Considering vacuum reservoir (n̄ = 0), the solution of (3) with initial state (11) can be
obtained as follows:

ρ1(t) =

⎡

⎢⎢⎣

ρ11(t) 0 0 0
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
0 0 0 ρ44(t)

⎤

⎥⎥⎦ , (12)

where

ρ11(t) = Ae−4γ t ,

ρ22(t) = 1

2
(4At − A + 1)e−4γ t , ρ33(t) = ρ23(t) = ρ32(t)

ρ44(t) = −(4At + 1)e−4γ t + 1. (13)

In this case, the corresponding eigenvalues of matrix (12) can be obtained as:

E1 = 0, E2 = (4At −A+1)e−4γ t , E3 = Ae−4γ t , E4 = 1−(4At +A)e−4γ t . (14)

On the other hand, in the presence of thermal reservoir (n̄ 	= 0) the analytical solution of (3)
is a very complicated expression. For instance, for a thermal reservoir with mean number of
excitation as n̄ = 1, the corresponding eigenvalues of matrix R can be calculated as follow:

E1 = 0,

E2 = − 1

14
[(7A − 1 + 2

√
2)e8

√
2γ t − 7A − 4

√
2e4(3+

√
2)γ t + 1 + 2

√
2]e−4(3+√

2)γ t ,

E3 = −
√
2

14
[(7A − 1 + 2

√
2)e8

√
2γ t − 7A − 4

√
2e4(3+

√
2)γ t + 1 + 2

√
2]e−4(3+√

2)γ t ,

E4 = − 1

14

[(−7A+1−2
√
2)e8

√
2γ t −4(1+√

2)e4(3+
√
2)γ t +(21+14

√
2)A−11−8

√
2]e−4(3+√

2)γ t

1 + √
2

.

(15)

The analytical expression of concurrence can then be written in terms of Ei as follows:

C1 = max(0,
√

E2 − √
E3 − √

E4) (16)

The time evolution of concurrence for different values of parameter A, i.e. various initial
states, is plotted in Fig. 2. As is clear, the amount of entanglement reduces due to the
interaction of system with its surrounding environment. Also, the entanglement dies in
the presence of both vacuum (n̄ = 0) and thermal (n̄ = 1) reservoirs. The death time
of entanglement can be manipulated by tuning the parameters involved in the model. In
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Fig. 2 The time evolution of entanglement with initial state (11) in the presence of vacuum and thermal
reservoirs. Clearly, death time of entanglement decreases by increasing both thermal excitation and parameter A

particular, the entanglement wipes out sooner by increasing the parameter A in the pres-
ence of vacuum (Fig. 2c) and thermal (Fig. 2d) environments. Also, the thermal excitations
degrades the maintenance of entanglement. Therefore, one can deduce that the system
possesses a Markovian behaviour in the considered cases (all plots in Fig. 2 show death of
entanglement which indicate the memoryless regime).

3.2 Second Initial State

As the second case, we consider the following initial state for the two-qubit system:

ρ2(0) =

⎡

⎢⎢⎣

A
4 + 2−A

2 0 0 A
4

0 0 0 0
0 0 0 0
A
4 0 0 A

4

⎤

⎥⎥⎦ . (17)
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This state consists of the maximally entangled Bell state (|e, e〉 + |g, g〉)/√2 and double
excited state |e, e〉.

The solution of (3) with n̄ = 0 considering (17) can be obtained as below:

ρ2(t) =

⎡

⎢⎢⎣

ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
ρ41(t) 0 0 ρ44(t)

⎤

⎥⎥⎦ , (18)

where

ρ11(t) = −1

4
(A − 4)e−4γ t , ρ14(t) = A

4
e−4γ t ,

ρ22(t) = −1

2
(A − 4)γ te−4γ t ,

ρ23(t) = ρ32(t) = ρ33(t) = ρ22(t),

ρ44(t) =
(

At + 1

4
A − 4γ t − 1

)
e−4γ t + 1. (19)

Equation (18) is a X-type density matrix. The eigenvalues of matrix R are as follow:

E1 = 0

E2 = (4 − A)γ te−4γ t

E3 = = 1

2
+ 1

2
(A − 2)te−4γ t

+ 1

4
[(4A2γ 2t2−32Aγ 2t2+64γ 2t2+4A2γ t+A2−32Aγ t−8A + 64γ t+16)e−8γ t

+ (8Aγ t − 32γ t + A2 + 4A − 16)e−4γ t + 4]1/2,
E4 = 1

2
+ 1

2
(A − 2)γ te−4γ t

− 1

4
[(4A2γ 2t2−32Aγ 2t2+64γ 2t2+4A2γ t+A2−32Aγ t−8A+64γ t + 16)e−8γ t

+ (8Aγ t − 32γ t + A2 + 4A − 16)e−4γ t + 4]1/2. (20)

Figure 3 clearly shows that after beginning the interaction, the entanglement decreases
very rapidly and tends to zero at somemoments of time. Also, there is a time interval without
entanglement. After this time interval of entanglement death, the revival of entanglement
takes place and the amount of concurrence tends to its maximum values. Figure 3b shows the
sudden death and then revival of entanglement for three different values ofA = 0.1, 1.0, 2.0,
respectively. Recovering the entanglement implies that the system is in the non-Markovian
regime and the memory effects of the environment restore the concurrence. In this case,
the entanglement is stored in the reservoir and then transfered into the system. Therefore,
we can conclude that the system and its surrounding reservoir are in a correlated state. It
is worth noticing that the time interval of sudden death of entanglement can be tunned by
justifying the parameter A. The time of sudden death decreases by increasing parameter A.
Since the eigenvalues of matrix R for n̄ = 1 are very complicated and more lengthy than
the case of n̄ = 0, therefore we only present the numerical result of concurrence in Fig. 4.
In this case, only the sudden death of entanglement occurs in the dynamics of system and
there is no revival of entanglement. Also, as is clear from Fig. 4a the time of sudden death
depends on the amount of parameter A. Figure 4b shows the time evolution of concurrence
for A = 0.5.
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Fig. 3 The time evolution of concurrence with initial state (17) for different values of parameter A. The
sudden death and revival of entanglement can be manipulated by adjusting parameter A. In this case, the
revival of entanglement indicates the non-Markovianity of the interaction model

3.3 Third Initial State

Now, we choose the following initial state:

ρ3(0) =

⎡

⎢⎢⎣

A
3 0 0 0
0 1

3
1
3 0

0 1
3

1
3 0

0 0 0 1−A
3

⎤

⎥⎥⎦ . (21)

Fig. 4 The time variation of concurrence for the two-qubit system with initial state (17). In this case, the
memoryless effect corresponding to Markovian regime leads to disappearing of entanglement
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This state consists of both double excitation (|e, e〉) and the ground state (|g, g〉) components
in addition to a maximally entangled state as (|e, g〉 + |g, e〉)/√2. The solution of (3) with
n̄ = 0 can be obtained as,

ρ3(t) =

⎡

⎢⎢⎣

ρ11(t) 0 0 0
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0
0 0 0 ρ44(t)

⎤

⎥⎥⎦ , (22)

where

ρ11(t) = 1

3
Ae−4γ t ,

ρ22(t) = 1

3
(2Aγ t + 1)e−4γ t ,

ρ23(t) = ρ32(t) = ρ33(t) = ρ22(t),

ρ44(t) = −1

3
(4Aγ t + A + 2)e−4γ t + 1. (23)

The eigenvalues of matrix R with this initial state for n̄ = 0 can be obtained as:

E1 = 0

E2 = A

3
e−4γ t

E3 = 2

3
(2At + 1)e−4γ t ,

E4 = −1

3
(4At + A + 2)e−4γ t + 1. (24)

and for n̄ = 1 as follow,

E1 = 0

E2 = − 1

42

[−2
√
2−1+(8

√
2−11+7A)e8

√
2γ t +21A−14

√
2A+(12−6

√
2)e4(3+

√
2)γ t ]e−4(3+√

2)γ t

√
2 − 2

,

E3 = − 1

42

[(7A − 11+8
√
2)e8

√
2γ t +(24−24

√
2)e4(3+

√
2)γ t −21A+14

√
2A+2

√
2+1]e−4(3+√

2)γ t

√
2 − 1

,

E4 =
√
2

84
[(7A − 11 − 8

√
2)e8

√
2γ t + 12e4(3+

√
2γ t − 7A + 11 + 8

√
2]e−4(3+√

2)γ t . (25)

Figure 5 shows the concurrence of two-qubit system with initial state (21). In this case the
initial value of concurrence is smaller than the other cases. Also, the moment of time at
which the sudden death of entanglement occurs is sooner than the previous discussed cases
in this paper. In addition one can observe a symmetric behavior of concurrence with respect
to A = 0.5 (the maximal values of concurrence take place at A = 0 and A = 1, while for
A = 0.5 the concurrence tends to zero).

Figure 6 depicts the time evolution of concurrence when the system is initially in the
maximally entangled state (|e, g〉 + |g, e〉)/√2 for different thermal excitations. The solid
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Fig. 5 The time evolution of the concurrence when the system is initially in the state (21). In both plots, the
entanglement wipes out, indicating the Markovian regime

line is the concurrence for vacuum reservoir (n̄ = 0), the dashed and dotted lines are for
thermal reservoir wit n̄ = 0.5 and n̄ = 1, respectively. As can be seen, by increasing the
thermal excitation (n̄) the time at which sudden death of entanglement occurs decreases.
In conclusion, the two-qubit system reaches sooner to its separable state by increasing the
mean number of photons (excitations) in the thermal reservoir.

Fig. 6 Time evolution of concurrence of the two-qubit system for different thermal excitations with initial
state (|e, g〉 + |g, e〉)/√2 for A = 1. Solid line is for vacuum reservoir (n̄ = 0), dashed and dotted lines are
for n̄ = 0.5 and n̄ = 1, respectively
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4 Conclusion

In this paper we considered an open quantum system consists of two qubits under the influ-
ence of a common environment. Here, we focused on the dissipator part of master equation
to investigate the time evolution of concurrence as a suitable measure of entanglement. Con-
sidering different initial conditions, we computed the analytical expressions for concurrence
and then investigated its time evolution, numerically. Our results showed that the given
system behaves in both Markovian and non-Markovian regimes. In the Markovian regime,
concurrence permanently deceases and cannot recover again, till the entanglement tends to
small values and eventually vanishes. In this case, the system reaches a separable quantum
state by passing of time. In fact, the environment forgets the past interactions with the sys-
tem due to the dispersion of correlations into the many environmental degrees of freedom.
In addition, the non-Markovian manner can be observed in the dynamical evolution of our
two-qubit system. In this situation, the entanglement is lost (or transfered) to the reservoir,
however, it can be restored by the memory effects. Our results imply that two-qubit systems
in non-Markovian regime may play a crucial role in recovering or restoring entanglement in
a quantum dynamical system. Therefore, generally the state of system can be governed by
tunning the parameters involved in the proposed model in such a way that the system and
its surrounding reservoir can be found in a correlated or separable state.
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