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Abstract

Entanglement-assisted quantum error-correcting codes (abbreviate to EAQECCs) expand
the usual paradigm of quantum error correction by allowing two parties to make use of pre-
shared entanglement. It is well-known that we can construct an EAQECC from arbitrary
classical linear code. In this paper, we construct several classes of entanglement-assisted
quantum MDS (EAQMDS) codes by utilizing generalized Reed-Solomon (GRS) codes. The
main contribution of the paper is extend the code length of EAQMDS in the literature (Guo
et al. 2019). Consequently, the results show that almost all of these EAQMDS codes are
new in the sense that the parameters of these codes are not covered by the previously known
ones.

Keywords Entanglement-assisted quantum error-correcting codes -
Generalized Reed-Solomon codes - MDS codes - Rank

Mathematics Subject Classification (2010) 81P45 - 81P70 - 94B05

1 Introduction

Quantum error correcting codes (QECCs) can safeguard quantum information from
unwanted noise. As pioneer discovery in the area of quantum error correction theory,
entanglement-assisted stabilizer formalism was developed to construct QECCs with the help
of pre-shared entanglement between the sender and the receiver. It was proposed by Brun
et al. in [1], and includes the standard stabilizer formalism as a special case. It has been
proven that the construction of quantum codes can be derived from arbitrary classical linear
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error-correcting codes without certain dual-containing properties, which greatly simplifies
their construction and leads to a more general framework for construction of quantum codes.
Currently, many researchers focused on studying the construction of EAQECCs and many
new and good-performing codes have been found (see [4-24]).

Let g be a prime power. An [[n, k, d; c]];, EAQECC that encodes k information qubits
into n channel qubits with the help of ¢ pairs of maximally-entangled ebits can correct up

to L%J errors, where d is the minimum distance of the code. If ¢ = 0, then it is called a

standard [[n, k, d]], quantum code.
Similar to the quantum Singleton bound of standard quantum codes, we have the
following more general EA-quantum Singleton bound.

Lemma 1 (EA-quantum Singleton bound [1-3]) An EAQECC [[n, k, d; c]l, satisfies n +
c—k=>2d-1)ifd < %, where 0 < ¢ < n — 1. Particularly, if c = O, thenn — k >
2(d—1). An[[n, k, d; c]ly EAQECC achieving n+c —k = 2(d — 1) is called an EAQMDS

code, an EAQMDS code with ¢ = 0 is a standard QMDS code.

Just like QMDS codes, EAQMDS codes is also of significantly theoretical interest, since
EAQMDS codes can achieve the entanglement-assisted quantum Singleton bound. The
search for best-performing codes has been an ongoing endeavor. In the past few years, a
large number of EAQMDS codes also have been constructed by employing GRS codes and
constacyclic MDS codes in [8—11, 13-24]. Up to now, GRS and extended GRS codes are
the most important classes of MDS codes, and many new results on EAQMDS codes have
been published based on them. In [8], Fan et al. proposed several constructions of g-ary
EAQMDS codes based on classical constacyclic codes and Reed-Solomon(for short RS)
codes. Since Guenda et al. [11] established a link between the number of maximally shared
qubits required to construct an EAQECC and the hull of the classical code, construction of
EAQMDS codes based on the dimension of the Euclidean and Hermitian hull of GRS codes
has been a hot issue. In [20], Luo and Cao studied the hull of GRS and extended GRS codes
over finite fields with respect to the Euclidean inner product and constructed several new
infinite families of EAQMDS codes. In [23] , Fang and Fu et al. completely determined
all possible parameters for g-ary EAQMDS codes of length n < ¢ and also obtained sev-
eral new classes of g-ary EAQMDS codes of length n > ¢ via GRS and extended GRS
codes. Meanwhile, Li and Zhu et al. [9] constructed two classes of EAQMDS codes by
using GRS codes. Enlightened by the work of [9] and [24], we construct several classes of
g-ary EAQMDS codes with flexible parameters.

The remainder of this paper is organized as follows. In Section 2, we present the funda-
mentals which are needed in the rest of the paper. In Section 3, several classes of EAQMDS
codes are derived from GRS codes. In Section 4, we conclude the paper.

2 Preliminaries

Firstly, we recall some definitions and basic theory of GRS codes and EAQECCs.
Let g be a prime power and F > be the finite field with q? elements. Let F*, denote the

multiplicative group of nonzero elements of F 2. For any o € IE‘ZZ, the conjugation of « is
denoted by @ = «9. Let FZZ be the F 2> vector space of n-tuples. A linear code C of length
nis an IF > subspace of F”,. A linear code of length n over F 2 is called an [n, k, d] 2 code
if its dimension is k and minimum Hamming distance is d.
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Letx = {x1,x2,..., %}, Yy={y1,¥2,...,Vn} € ]F;Z, the Euclidean and Hermitian dual
code of C are defined as

ct= [x | x ngz, X, V)g =xiy1 +x2y2 4+ -+ x5, =0, forally € C].
and
cHH — {x X € F, (X, ¥hyg = X137 + X033 + -+ 2,35 = 0, forally € C}.
IfCt c C (CH < (), then C is called a (Hermitian) dual-containing code and C+(C+H)
is called a self-orthogonal code.

The GRS codes are defined as follows.
For a positive integer k, let

Folxle = { () € Fpalx]ldeg(f (x) < k — 1}

be an Iqu-linear space of dimension k. Let a = (aq, a2, ..., a,) with ay, a2, ..., a, dis-
tinct elements, v = (vy, v2,...,U,) € (FZZ)”, and k < n (< ¢°). Therefore, we have the
generalized Reed-Solomon code

GRSi(a,v) = {(vi f (@), v2f (@2), ..., vpf () | forall f(x) € Fpalx]e}.

It is known that the GRS code is an [n, k,n — k + 1] linear MDS code over qu. A
generator matrix of GRSk (a, v) is presented by

V1 [%) e Un
V1] V02 ... Uply
G =
k—1 k—1 k—1
vlazl Uzotz cee Upoy,

In [5], Wilde and Brun proved that EAQECCs can be constructed using classical linear
codes with respect to the Hermitian case as follows.

Theorem 1 [5] If C is an [n,k, d]qz classical code over qu with parity check matrix
H, then there exists an EAQECC with parameters [[n,2k — n + c,d; c]l,, where ¢ =
rank (H H T) is the number of maximally entangled states required and H' is the conjugate
transpose of H over ]qu .

3 New EAQMDS Codes

We devote this section to derive several classes of entanglement-assisted quantum MDS
codes from generalized Reed-Solomon codes over IE‘qz. As we all know, the dual of a GRS
code is also a GRS code. Hence we just need to consider k-dimensional codes of length n
with 1 < k < [n/2]. We also always assume that w is a primitive element of F >, that is
]FZZ = (w). Then we present our contributions in the following.

3.1 Lengthn =1+ qTq(q + 1), g isEven

2_
In this subsection, we always assume that ¢ = hm + 1, h > 11is an integer,n = 1 + qh—l.

Seta; = w?T!, oy = w771, then ord(e;) = q — 1, ord(az) = g + 1. Moreover, let § = a?,
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then ord(9) = 4= ! Thus gcd(ord(6),ord(cr2))=1. Hence, (0), 2(0), - - - ,o:g (6) are distinct

h

cosets in the multiplicative group IF; . Assume

_ 0/,.5 .8 spLl g 1,008 ...8 spll g
ag = |0,y (w’, w0, -, wo ), o (w’, wé, -, woF ),

9.5 .8 s ql_l
.o.7a (w’we’...’wgl

).

_1)) € FZzs

| |
A

= (1, : ll) € (]F*z)"
(q+l) times

Forany 0 <i, j <n — 1, we have

Thus

g—1 -1

h q
.+. . . . . _ '+'
<agz J’Vq+]>E — o’@i+h) Z 91 @i+)) ch(q-!—])tza;(ql )
=0 v=0
q 1 q
_ . s(qi+)) t(qi+j—c) v(gi+))
= @it quljczaz )
v=0
—1 . .
(aqi+J Vq+1> _Jo  Ietgitj—c
S E | 0@t n, Cligidj—c g+ 11gi + .

Then( qiti vq+1> # 0if and only if

. . q—1
qgi+j=c, mod o
qgi+j=0, mod g+1.

According to [24], the system has a solution

1 g—1
gi+j= E(qT + (g + 1)c (mod n).

Hence, <aq + Vq+1>E # 0if and only if Tt |qi + j — i(qT + (g + 1.
We firstly present the following result.

Lemma 2 [24] Suppose the notations ag, v be given as above. Let ¢ = hm + 1 be a prime
power and h > 1 be an integer. Assume c is some integer such that 1 <c < h + 1.

ey

(@)

If ¢ is some integer such that c = qu_l,l =1,2,---. Suppose (c — l)qh +1<
k < c@ thenforcmyO <i,j<k-—1, < qiﬂ Vq+l> # 0ifand only if (i, j) =
A2+ De+r st L 4 er gt )re[—f(th—l—l)l c—(?t 1+1)1+1]]

If ¢ is some integer such that 1+ lth <c< ((+ 1) =0, 1 -. Suppose

L+ e+ ( == ﬂ +1 <k <55+ De+ [F] 47 then for any
0<ij<k—1 <aqi+f v‘1+1>E £ 0 if and only if (i, j) = (AL + De +
P A 4 Dot r g e (- [ [

Next we will obtain below result in the light of the previous lemma.
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2
Theorem 2 Let g = hm + 1 be a prime power with h > 1 an integer. Setn = 1 + qh—_l
Assume ¢ be some integer such that 1 < ¢ < h + 1, then

(1) Foranyc= lqh;l,l =1,2,---, there exist EAQMDS codes with parameters [[n, n —
2k + ¢,k +1; cllg, where (c — D4 +1 <k < L

) Foranyl+ lqh;1 <c<((+ l)qh;l,l =0,1,---, there exist EAQMDS codes with
parameters [[n,n — 2k + ¢, k + 1; c]lq, where %(qh;l + e+ {%—I qh;l +1<
k<3 + et [ 45

Proof Suppose the notations ag, v be given as above, let GRSk (ag, v) be a classical
[n, k,d] o code with generator matrix Gy = AV, where

1 1 1 1 1 1

0 w’ w'e .. wsgm—1 wid—1+s .. wi@—D+sgm—1
Ao 0 sz w23'92 . w23€2(m71) wZ(q71+s) . wz[q(l[*l>+.¥]92(m*1)
s= s
0 wk—Ds ,k=Dsgk—1 ) (k=Dsgk=D(m—1) ,(k=D(g—1+s) . . o, (k=DIg(g=D)+s]gk—1)(m—1)
1
1
w—ch
V= —em—
w c(m—1)h
1
w—c(m—l)h

In accordance with the proof of Theorem 2 in [24], we can obtain the conclusion.
We can obtain a more general result as follows. O

2
Theorem 3 Let g = hm + 1 be a prime power with h > 1 an integer. Setn = 1 + rqh;l,
1 <r < h. Assume c is some integer such that 1 < c < h + 1, then

(1) Foranyc= l%, 1 =1,2,---, there exist EAQMDS codes with parameters [[n,n —
2%k + ¢, k+ 1; cllg, where (c — DI +1 <k < ¢ 5L

(2) Forany 1 + lqh;l <c<({+ l)qh;l,l =0,1,---, there exist EAQMDS codes with
parameters [[n,n — 2k + ¢, k + 1; cll,, where %(qh;l + e+ ’VHT%-‘ qh;l +1<
=0+ et [5]52

Proof Leta = (0,a1,a2,---,a,)and v, = (1,v,v,---,v), where | <r < h. Assume
N e’

r times
GRSk (a, v,) is a classical [n, k, d] 42 code with generator matrix G, where

G=|+1G61 G- G, ],
U
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With the same manner in Theorem 2, there exsits the linear code GRS, _;(a, w,) has
parameters [n, n — k, k + 1],2 and parity check matrix H = G.

Apparently, rank (G GT) = rank (G s GI) = c. It follows from Theorem 1 that the result

holds.
This completes the proof. O

Firstly, we compare parameters of new EAQMDS codes with corresponding QMDS
codes in Theorem 2 [25] for ¢ even by Table 1.

Particularly, when ¢ = 1,if h = ¢ — 1, then we have k = ¢ = 1;if h < g — 1, then we
obtain J(L + )+ 1<k < 3G + D+ 5

3.2 Lengthn =1+ 21 . 41 g = 1(mod 4)

2_
In this subsection, we always assume thatg = hm+1, h > 1is aninteger,n = 1+ %. Set

o = wit! @y = 0?97V then ord(e;) = g — 1, ord(er2) = %. Moreover, let 6 = a{‘,

atl_y

then ord(#) = ‘7771. Thus gcd(ord(0),ord(e2))=1. Hence, (0), @2(0), - - - ,a22 (6) are
distinct cosets in the multiplicative group FZZ' Assume

_ 0 K K spll 1 K} K spil
a; = (0, ay(w’, w'd, -, w0 F ), ay(w,we, -, wl ),
%_1 s .8 spt—q n
C, 0y (w*, w0, -, wo ") quQ,

¢ Pl
u = l’w Lh’...’w C(h l)h)’
v=(luwu - we )"
———
"%‘times

Firstly, we present the following result.
Forany 0 <i, j <n — 1, we have
1 el
= *@ith Z gt (@i+)) jy—ch(g+D1 Z a;(qt’—#j)
t=0 v=0

<a§zl+/, Vq+1>
E

q—

1_1 g+l _
h

= @*@it+h Z pt(qi+ij—c)
=0

-1

v(git))
PR :
v=0

Thus

-1 . .
<a;]i+j’vq+1> _lo qT] tqi+j—c, 1
i E w4ty T=lgi+j —c, %|qi +J.

Then (a;”'“, vq+1>E £ 0 if and only i
Ce —1
[qz—l—]:c, mod‘;hj,
qi+j=0, mod 5.
According to [24], the system has a solution

qg+1

qi+j= ¢ (mod n).
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MEN ...,N;HN,_\#NHU o1 439+ yg — uul] SaWovd
szl IR P[1 + ¥ yg — uul] SAWO
BN ¥ ‘sered adA,
Y>> 1 a4+ 1= upBud Jo s9pod SANOVE dwos L 3jqel

pringer

N



1248 International Journal of Theoretical Physics (2020) 59:1241-1254

Next, we discuss the following two cases:

3.2.1 qT—‘I is Even

Lemma 3 [24] Let g = hm + 1 be a prime power with h > 1 an integer, where m is even.

Setn = 7 Assume c is some even integer such that 2 < ¢ < 2h.

(1) If c is some even integer such that ¢ = lqh;],l = 1,‘2,‘- --. Suppose (¢ — 1)% +
1 <k < c%, then forany 0 < i,j <k —1, <agl+],vq+1>E # 0 if and only if
G )=t + 55t + 5, rel—lc— I+ DL

(2) If c is some even integer such that 2 + lq_1 <c< (I+ l)qT, =01,---
Suppose (c — 1 — l)qh —|— +1 <k < (c—l)qh + £ 5, then for any 0 < i,

qi+j 1 _ 1

Jj<k- l,(x ,vit )E # 0 if and only if (i, j) = (rﬁ+§, LT+ 5hre
[-l,c— I+ D]

Theorem 4 Let q = hm + 1 be a prime power with h > 1 an integer, where m is even. Set

n=1+ q L. Assume c is some even integer such that 2 < ¢ < 2h, then

(1) Foranyc= l@, =12, there exist EAQMDS codes with parameters [[n,n —
2k+ck+1c]]q,where(c—l) +1<k<c2h

(2) Forany?2+ lq—1 <c<((+ l)q l 1 =0,1,---, there exist EAQMDS codes with
parameters [[n n — 2k +ck+1;clly, where (c —1 — l)qh + +1 <k <
(c—DHLT-= 2h

We can also obtain a more general result.

Theorem 5 Let g = hm + 1 be a prime power with h > 1 an integer, where m is even.

Setn =1+ rqzz—;l, 1 < r < 2h. Assume c is some even integer such that 2 < ¢ < 2h,

then

(1) Foranyc= lq ! =12, - there exist EAQMDS codes with parameters [[n,n —
2k+c,k+1; c]]q, where (c — D5 +1 <k <c‘12h1.

(2) Forany?2+ l"—l <c<((+ I)Q,l = 0,1, -, there exist EAQMDS codes with
parameters [[n n—2k+ck+1;clly, where (c —1 — 1)qh + +1 <k <
(e =D 2h

322 21 is0dd

Lemma 4 [24] Let q = hm + 1 be a prime power with h > 1 an even integer, where m is

odd. Setn = 1 + L1, Assume c is some integer such that 1 < ¢ < %

(1) If ¢ is some integer such that c = 12 =,1 = 1,2, ---. Suppose (c — l)qh;1 +1 <
k < ¢%L then for any 0 < ij < k — 1, < allts vq+1>E £ 0 if and only if

G, )= G+ De+r S L+ Detr S, r e [ 3G+ DL e~ [A (5 +
D+ 171,
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(2) If c is some integer such that 1+ lqh;1 <c<(+1 )E [ =0,1,---. Suppose
%(‘1;1 + De + ’VC = 2—I +1<k< (q Ly De+ [C l—| i thenfor any
0<ij<k—1 <aq‘“ vq+1) £ 0 if and only if (i, ) = (5 + e +

P AR e it e = [ <] [ <2

A

Next we will obtain the following result in the light of the previous lemma.

Theorem 6 Let q = hm + 1 be a prime power with h > 1 an even integer, where m is odd.

Setn =1+ L5—. Assume c is some integer such that 1 < ¢ < 7, then

(1) Foranyc=149—,1=1,2,---, there exist EAOMDS codes with parameters [[n, n —
2k +c,k+1; c]]q, where (¢ — l)qh +1<k< cth.

(2) Forany1l+19— h <c<((+ )th,l =0,1, -, there exist EAQMDS codes with
parameters [[n,n — 2k + ¢, k + 1; clly, where %(qh;l + e+ {#—‘ qh;l +1<
k<3 + De+ 5 42

Theorem 7 Let g = hm + 1 be a prime power with h > 1 an even integer, where m is odd.

2— . .
Setn =1+ r%, 1 <r < 2h. Assume c is some integer such that 1 < ¢ < ﬁ, then

(1) Foranyc= l A =1,2,---, there exist EAQMDS codes with parameters [[n, n —
2k +c,k+1; c]]q, where (¢ — 1)qh +1<k <c‘1h1

(2) Foranyl+ lg <c<({+ 1) ,1 =0,1,---, there exist EAQMDS codes with
parameters [[n,n — 2k + ¢,k + 1; clly, where j(qh;l + De + ’V%—‘ qh;l +1 =<
k= U+ e+ [ ] 45

We compare parameters of new EAQMDS codes with corresponding QMDS codes in
Theorem 2 [25] for ¢ = 1(mod 4) by Table 2.

3.3 Lengthn =1+ ‘72—7,1(q + 1), q = 3(mod 4)
In this subsection, we always assume that g = 2hm + 1, h > 1 is an integer,n = 1 + 4 _1.

Seta; = wz(‘ﬁ‘l) az = w9~ !, thenord(er;) = q2 , ord(ap) = g+ 1. Moreover, let § = ozl,

then ord(9) = 2h . Thus ged(ord(0),ord(a2))=1. Hence, (0), a2(0), - - - ,ag (@) are distinct
cosets in the multiplicative group IFZ . Assume

a; = (O, ag(ws,wse,... ’wsg%—l),a](ws’ w'e, - ,wfe%—‘),
o wt w'e, - W' 1)> anZ’
_ ( w2 U —l)h)
= (1, u) € (]F*z)"

(q +1) times

We firstly give the following result.
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Forany 0 <i, j <n — 1, we have

1
2h q
<azi+j,vq+l> — o’@ith Z g1 @i+J) jy=2ch(q+Di Zag(qﬂrj)
E =0 v=0
=1
@it Z g!qi+j— L)Z v(ql+1)
Thus
—1 . .
(azgiJrj vq+]> _ 1o o Lrtaqi+j—c
s E | 0@t Cligi+j—c g+ gi + ).

Then< qiti vq+1> # 0 if and only if
. 1
gi+j=c, mod%L -,
gi+j=0, modgqg+ 1.

According to [24], the system has a solution
1
qgit+j = 5(7 + 1)(g + 1)c (mod n).

According to previous discussions, we can obtain the result as follows.

Lemma S [24] Let ¢ = 2hm +1 be a prime power with h > 1 an integer. Setn = 1+ q ] .

Assume c is some integer such that 1 < c <2h + 1.
(1) If c is some integer such that ¢ = lq2h1 I =1,2,---. Suppose (¢ — 1) L
k < c%, thenforanyO <i,j<k-1, < ‘?H_j V"+l> #0 lfandonly lf(l J)

G+ Detrizt L2 4 Detr il r e [ (5 +1)1 c—[3 (G +Di+111.

2) Ifc is some integer such that 1 + l" L <c< (l + ) o ,l =0,1,---. Suppose

Leat +1)c+(”ﬂ2h+1<k5( +1)c+[‘l—|2h,thenf0rany
0<ij<k—1 <aq’+f vq“)E £ 0 if and only if (i, j) = (A(5L + De +

P R N A R e e o o P*’ ﬂ{#]}

Theorem 8 Let g = 2hm + 1 be a prime power with h > 1 an integer. Setn = 1 + 4 _1.

Assume c is some integer such that 1 < ¢ <2h + 1, then

(1) Foranyc = l%, 1 =1,2,---, there exist EAQMDS codes with parameters [[n,n —
2%k +ck+1; c]]q,where(c— DLl +l<k<c 2,1‘

(2) Forany 1l +19 -~ 2h <c<((+ I)qZh1 ,1=0,1, there exist EAQMDS codes with
parameters [[n,n — 2k + ¢, k + 1; c]lq, where i( + e + P =I= 2—I % +1<

k<2( +])+|'Clql

We can similarly yield a more general result as follows.

@ Springer



International Journal of Theoretical Physics (2020) 59:1241-1254

1252

L4
1-b

55 ] 4+ 01 + 155)

<
!

Sy5 1+ 5% | s | +o0+ 5t

(I+yz>2>1)

MEN 0= S0+ D >0 E1+ P01+ 10+ yg — uu]] Samwovd
TGS Y5 1+ 150 -9) I+uz=2>1

MEN = =0 o1 459+ yg — uul] SaWovd

szl 1S y> Pl1 + ¥ yg — uul] SAWO

PN ¥ ‘sered adA,

Yyc> 4> 1

7255+ 1 = 4B JO $9P0d SANOVA wWoS € 3)qeL

pringer

A



International Journal of Theoretical Physics (2020) 59:1241-1254 1253

q—l

Theorem 9 Let g = 2hm + 1 be a prime power with h > 1 an integer. Setn = 1 + r*5—,

1 <r < 2h. Assume c is some integer such that 1 < ¢ <2h + 1, then

(1) Foranyc = l%, [=1,2,--- there exist EAQMDS codes with parameters [[n,n —
2%k +c k+1; c]]q,where(c—l) Ltl<k=<e 2h‘

) Foranyl+ IW <c<((+ l)qZh1 ,1=0,1, there exist EAQMDS codes with
parameters [[n,n—2k+c, k + L; clly, where 1 ( + e + (” —I= 2—I +1<

Now, we compare parameters of new EAQMDS codes with corresponding QMDS codes
in Theorem 2 [25] for ¢ = 3(mod 4) by Table 3.

4 Conclusion and Discussion

We have known that GRS and extended GRS codes have become one of the best resources
for constructing optimal quantum codes and entanglement-assisted quantum codes. In this
paper we have employed GRS codes to construct several classes of entanglement-assisted
quantum MDS codes which have best parameters. In addition to the existing results, these
quantum codes are new. The further investigation is to construct g-ary EAQMDS codes that
minimum distance as large as possible with respect to the code length.
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