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Abstract
In this paper, we construct optimal or almost optimal dual-containing cyclic codes from
cyclotomic classes of order r . Based on these cyclic codes constructed, we obtain many
new quantum codes comparing with the known literatures. Furthermore, we construct some
quantum synchronizable codes with good error-correcting ability towards bit errors and
phase errors by a pair of cyclic codes with special containing property.

Keywords Cyclotomic classes · Quantum codes · Quantum synchronizable codes

1 Introduction

Quantum error-correcting codes (QECCs) play an important role in protecting quantum data
transmitted over noisy quantum communication channels. The construction of new QECCs
is a hot topic in recent decades [1, 9, 12, 14, 15, 21]. The quantum BCH codes were studied
in many literatures [1, 14, 21]. In 2013, Kai et al. constructed some new quantum MDS
codes from negacyclic codes. Recently, La Guardia constructed some new quantum codes
from cyclic codes. After that, Gao et al. construct some new quantum codes from a special
class of negacyclic codes. And they only consider the Pauli errors. However, this error model
is not the only one of importance.
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Scholars paid little attention to another type of significance error misalignment, which
respect to the block structure of a qubit stream in quantum information processing. Where
the information receiver or processing device misidentifies the boundary of an information
block, the catastrophic failure can be brought. As the special QECCs, quantum synchroniz-
able codes (QSCs) correct the effects of both quantum noise on qubits and misalignment
in block synchronization [7]. The method of constructing the binary QSCs is to find out
a pair of cyclic codes with special containing properties [7]. Fujiwara et al. improved the
original construction method by widening the range of tolerable magnitude of misalignment
and presented more examples of quantum synchronizable codes [6]. After that, there are
many good QSCs from BCH codes, punctured Reed-Muller codes, certain finite geometric
codes and quadratic or duadic codes [5, 6, 23]. Xie and Luo generalized the constructing
of the binary QSCs to the q-ary QSCs [16, 22]. Xie et el. presented a general construc-
tion of QSCs from q-ary cyclic codes and derived the distance bound of the resulting QSCs
of Calderbank-Shor-Steane (CSS) structure [22]. Luo and Ma constructed a new family of
QSCs from repeated-root cyclic codes of lengths ps and lps over Fq and proved that the
QSCs with those lengths from the repeated-root cyclic codes can in general correct more
Pauli errors than narrow-sense BCH codes of close lengths [16]. Li et al. utilized the cyclo-
tomic classes of order four to obtain some cyclic codes with dual-containing properties and
constructed two classes of QSCs [18]. Inspired by current work, we consider QECCs and
QSCs from the cyclic codes, which are obtained by the cyclotomic classes of order r for
any positive even integer.

In this paper, we give some results and properties of cyclic codes and the cyclotomic
classes of order r in Section 2. In Section 3, we construct some dual-containing cyclic
codes over Fq . We also obtain the bound of minimum distance of those cyclic codes and
some optimal or almost optimal cyclic codes. Hence, we construct many optimal or almost
optimal LCP of codes. In Section 4, we construct some new QECCs with cyclic codes
obtained. We also construct some QSCs whose synchronization capabilities attain the upper
bound. We conclude the paper in Section 5.

We will compare some of the codes obtained in this paper with the known literatures
and the tables of best known linear codes (referred to as the Database later) maintained by
Markus Grassl at http://www.codetables.de. The examples in this paper are computed by
Magma.

2 Auxiliary Results

In this section, we give some simple introductions to cyclic codes. Furthermore, we present
the definition and the properties of cyclotomy of order r .

Throughout this paper, let Fq be a finite field, where q is an odd prime power. An [n, k]
linear code C over Fq is a k-dimensional linear subspace of Fn

q . The (Euclidean) dual code

of C, denoted by C⊥, is defined by

C⊥ = {u ∈ F
n
q | u · c = 0 ∀ c ∈ C},

where u · c denotes the standard inner product.
An [n, k] linear code C over Fq is called a cyclic code if it is invariant under cyclic-

shift on Fq , (c0, c1, · · · , cn−1) �→ (cn−1, c0, · · · , cn−2). By identifying a codeword with its
polynomial representation in Fq [x]/〈xn − 1〉, a linear code of length n over Fq is cyclic if
and only if the corresponding set in Fq [x]/〈xn − 1〉 is just an ideal in Fq [x]/〈xn − 1〉. Since
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Fq [x]/〈xn−1〉 is a principal ring. Then there is a monic polynomial g(x) of minimal degree
in C such that C = 〈g(x)〉, where g(x)| (xn − 1). Furthermore, dim(C) = n−degg(x). Let
h(x) = (xn − 1)/g(x), h(x) is called the check polynomial of C. We have C⊥ = 〈h(x)∗〉,
where h(x)∗ = h(0)−1xdeg(h(x))h( 1

x
) is the reciprocal polynomial of h(x).

The q-cyclotomic coset containing j modulo n is defined by Cj = {qij mod n} ⊂
Zn, where gcd(n, q) = 1. As we all known that mj(x) = �i∈Cj

(x − ξ i) is the minimal
polynomial of ξj over Fq , where ξ is a primitive n-th root of unity in some extension field
of Fq . Let �(q,n) be the set of all the coset representatives. Then we have

xn − 1 =
∏

j∈�(q,n)

mj (x),

There is a pair of cyclic codes (C, C′) with generator polynomials g(x) and g′(x), respec-
tively. The cyclic codes C and C′ have parameters [n, k]q and [n, k′]q , where k < k′,
respectively. Then, C′ is said to be C-containing if C ⊆ C′. Specially, we called C′ dual-
containing if C = C′⊥. Furthermore, assume that C′ is C-containing, we have that the
generator polynomial g′(x) is a factor of every codeword of C. i.e., for any c(x) ∈ C,
there must exists a polynomial fc(x) such that c(x) = fc(x)g′(x) in Fq [x]. Let f (x) =
g(x)/g′(x) . We have that f (x) ∈ Fq [x] has degree k′ − k and f (0) 
= 0. What’s more,
the cardinality of the set {xa(modf (x))|a ∈ N} is called the order of the polynomial f (x),
where N is the set of positive integers.

Let n = rf + 1 be an odd prime, where f is a positive integer and r is a positive even
integer. Let α be a generator of F∗

n. We consider cyclotomic classes D
(r,n)
i,α of order r , which

are defined as follows
D

(r,n)
i,α = αi(αr), 0 ≤ i < r,

where (αr) denotes the multiplication subgroup of F∗
n generated by αr . Clearly, we have

f = |D(r,n)
i,α | for 0 ≤ i ≤ r , where |A| denotes the cardinality of set A. Obviously, the D

(r,n)
i,α

for 0 ≤ i < r forms a partition of F∗
n. Next we show that this partition is unconcerned with

the selection of generator of F∗
n.

Proposition 2.1 Let symbols be the same as before. Let α and β be distinct primitive ele-
ments of Fn and denote the cyclotomic classes D

(r,n)
i,α and D

(r,n)

j,β , respectively. For anyone
0 ≤ j < r , there exists unique integer j (0 ≤ i < r) such that

D
(r,n)
i,α = D

(r,n)

j,β .

Proof There exists an integer s such that β = αs since α and β are distinct primitive ele-
ments of Fn, where 0 ≤ s < n and gcd(s, n − 1) = 1. Then we have D

(r,n)

j,β = {βrk+j =
αsrk+sj | 0 ≤ k < f }. For any b = βrk+j = αsrk+sj ∈ D

(r,n)

j,β . If 0 ≤ sj < r , let i = sj ,

then b ∈ D
(r,n)
i,α . If sj ≥ r , by the division algorithm, there exist integers 0 ≤ b < f and

0 ≤ c < r such that sj = br + c. Let i = c, then b ∈ D
(r,n)
i,α . Then we have D

(r,n)

j,β ⊆ D
(r,n)
i,α .

Note that |D(r,n)
i,α | = |D(r,n)

j,β |. Then we have the desired conclusion immediately.

From Proposition 2.1, we always let D
(r,n)
i denote D

(r,n)
i,α for any α, which is a generator

of F∗
n. In the sequel, we always let n ≡ r + 1 (mod 2r) and q ∈ D

(r,n)
0 . We define s =

ordn(q) and ξ = β(qs−1)/n, where β is a generator of F∗
qs . Thus, ξ is a n-th primitive root
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of unity in Fqs . Next we define di(x) = ∏
i∈D

(r,n)
i

(x − ξ i). Note that Di are unions of

q-cyclotomic cosets for q ∈ D
(r,n)
0 , then di(x) ∈ Fq [x]. In fact, we have

xn − 1 = (x − 1)

r−1∏

i=0

di(x). (1)

Keep the notations as above, we can obtain the following useful lemma immediately.

Lemma 2.2 Let symbols be the same as before. We have

D
(r,n)
i = −D

(r,n)

i+ r
2
, i = 0, 1, · · · ,

r − 2

2
.

Proof Since n = r + 1 (mod 2r), put n = 2rk + r + 1, we have −1 ≡ α(n−1)/2 ≡
αrk+r/2 (mod n), where α is a generator of F∗

n. For any element d ∈ D
(r,n)

i+ r
2

, d = αrk0+i+r/2

for some integer k0, where 0 ≤ k0 ≤ f − 1. Note that −d = α(k+k0+1)r+i ∈ D
(r,n)
i . Then

we have −D
(r,n)

i+ r
2

⊆ D
(r,n)
i . What’s more, we know that | − D

(r,n)

i+ r
2
| = f = |D(r,n)

i |. This

completes the proof.

From Lemma 2.2, we assume that Zr = {0, 1, · · · , r − 1} and A ⊆ Zr , define

−A = {a + r

2
(mod r)| a ∈ A}.

Remark 1 From the range of values of length n in this paper, the length n ≡ 5 (mod 8) in
[18] is a special case when r = 4. However, we can obtain more general lengths.

3 Construction of Cyclic Codes

In this section, we utilize the cyclotomic classes of order r to construct dual-containing
cyclic codes, where r is a positive even integer. Suppose Z(i,r) = {i, i + 1, · · · , i + r/2 −
1} (mod r) for any 0 ≤ i ≤ r − 1. Let C(i,S) be the cyclic code with generator poly-
nomial giS(x) = ∏

j∈S dj (x), where S ⊆ Z(i,r). From the definition of C(i,S), we have

that C(i,S1) ⊆ C(i,S2) if S2 ⊆ S1. Let C(i,S) be the cyclic codes with generator polynomial
giS(x) = ∏

j∈Zr\(−S) dj (x).

Lemma 3.1 Let the symbols be the same as before, C(i,S) and C(i,S) be defined above. Then
we have

(1) C⊥
(i,S) = C(i,S); (2) C⊥

(i,S) ⊂ C(i,S).

Proof By Lemma 2.2, we know that di(x)∗ = di+ r
2
(x) for any 0 ≤ i ≤ r − 1. Since

C(i,S) = 〈giS(x)〉 = 〈∏j∈S dj (x)〉, where S ⊆ Z(i,r). It is clear that C⊥
(i,S) = 〈h(x)∗〉 =

〈∏j∈Zr\(−S) dj (x)〉, where h(x) = (xn − 1)/giS(x). We have the desired conclusions
immediately.

Theorem 3.2 Let diS denote the minimum distance of the cyclic code C(i,S) and n be the
length of C(i,S). Then we have following conclusions
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(1) If |S| = r
2 , d

2
iS − diS + 1 ≥ n;

(2) Otherwise, d2
iS − diS + 1 ≥ dS .

where dS is the minimum distance of cyclic code with generator polynomial∏
j∈S∪(−S) dj (x).

Proof (1) Let |S| = r
2 and a(x) be a codeword of C(i,S) with weight diS . From

Lemma 2.2, we have a(x−1) is a codeword of C(i+ r
2 ,S). It is clear that a(x)a(x−1) is

a codeword of C(i,S)

⋂
C(i+ r

2 ,S) with generator polynomial

∏

j∈S∪(−S)

dj (x) =
∏

j∈Zr

dj (x) = xn − 1

x − 1
=

n−1∑

k=0

xk .

Then we have that the weight of a(x)a(x−1) is n. From above all, we have d2
iS −diS +

1 ≥ n.
(2) Let |S| 
= r

2 and b(x) be a codeword of C(i,S) with weight diS . Similar to (1), we
obtain that b(x)b(x−1) is a codeword of C(i,S)

⋂
C(i+ r

2 ,S) with generator polynomial

∏

j∈S∪(−S)

dj (x).

Then we have that the weight of b(x)b(x−1) is at least dS . For the above reasons, we
have d2

iS − diS + 1 ≥ dS . This completes the proof.

Example 3.3 We let (r, n, q) = (2, 7, 2) and S = {i}. Clearly, q ∈ D
(r,n)
0 . For any 0 ≤ i ≤

1, The cyclic code C(i,S) has parameters [7, 4, 3] and C⊥
(i,S) has parameters [7, 3, 4], which

are both optimal and satisfy the bound of Theorem 3.2.

Example 3.4 We let (r, n, q) = (6, 19, 7) and S = {i, i + 1}. Clearly, q ∈ D
(r,n)
0 . For any

0 ≤ i ≤ 5, The cyclic code C(i,S) has parameters [19, 13, 5] and C⊥
(i,S) has parameters

[19, 6, 12], which are both optimal and satisfy the bound of Theorem 3.2 .

Next we give more good dual-containing cyclic codes C(i,S) in Table 1. The all results of
Table 1 are obtained by the algebra system Magma.

It is well known that linear complementary pairs (LCP) of codes are good candidates
against side-channel attacks (SCA) and fault injection attacks (FIA). The reader can refer
to [2, 3, 11] for more information. From Theorems II.1 and II.4 of [2], we have following
lemma immediately.

Lemma 3.5 Let gcd(n, q)=1, for cyclic codes C = 〈g(x)〉 and D = 〈u(x)〉 with length n

over Fq , we have following sentences hold.

1). The (C, D) is LCP if and only if u(x) = (xn − 1)/g(x).
2). D and C⊥ are equivalent if (C, D) is LCP.

From Table 1, many cyclic codes and their dual codes are both optimal or almost optimal.
Then we can construct many optimal or almost optimal LCP of codes by Lemma 3.5.
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Table 1 Dual-containing cyclic codes C(i,S)

r S C(i,S) C⊥
(i,S) Optimal or almost optimal

2 {i} [7, 4, 3]∗2 [7, 3, 4]∗2 Both optimal

[11, 6, 5]∗3 [11, 5, 6]∗3 Both optimal

6 {i} [19, 16, 3]∗7 [19, 3, 15]∗7 Both optimal

{i, i + 1} [19, 13, 5]∗7 [19, 6, 12]∗7 Both optimal

{i, i + 1, i + 2} [19, 10, 7]7 [19, 9, 8]7 Both almost optimal

{i, i + 2} [19, 13, 4]7 [19, 6, 11]7 Both almost optimal

8 {i} [73, 64, 3]2 [73, 9, 28]2 C(i,S) almost optimal

{i, i + 1} [73, 55, 6]∗2 [73, 18, 24]∗2 Both optimal

{i, i + 1, i + 2} [73, 46, 9]2 [73, 27, 16]2 C(i,S) almost optimal

{i, i + 2} [73, 55, 6]∗2 [73, 18, 24]∗2 Both optimal

{i, i + 3} [73, 55, 6]∗2 [73, 18, 24]∗2 Both optimal

... ... ... ... ...

There is a pair of cyclic codes (C, C′) with containing property C ⊂ C′. We call cyclic
code C′ the augmented cyclic code of C. It is equivalent to g′(x)|g(x) if C = 〈g(x)〉 and
C = 〈g′(x)〉.

Theorem 3.6 Let n be an odd prime and n ≡ r + 1 (mod 2r). Let xn − 1 be factored as (1)
over Fq and the cardinality of C1 be �. Then we have the each factor di(x) of xn − 1 can be
factored into e = n−1

r�
irreducible polynomials of the same degree � as follows

di(x) =
∏

j∈Ti

mj (x),

where Ti is some proper subset of Zn and |Ti | = e for 0 ≤ i ≤ r − 1.

Proof Since |C1| = � and n is an odd prime, we have |Cj | = � for any j ∈ Z
∗
n, which

implies that each polynomial mj(x) has degree � for any j ∈ Z
∗
n. Furthermore, q ∈ D

(r,n)
0 ,

we have that D
(r,n)
i = ⋃

j∈Ti
Cj , where Ti is some proper subset of Zn and |Ti | = e =

n−1
r�

.

Let C be an augmented cyclic code of C(i,S). From the proof of Lemma 3.1 and Theo-
rem 3.6, we suppose that the generator polynomial g(x) of C is a factor of giS(x). Note that
C is a dual-containing cyclic code. Then we have following lemma immediately.

Lemma 3.7 Let the symbols be the same as before, C(i,S) and Ti be defined above. For any
0 ≤ i ≤ r − 1 and S ⊆ Z(i,r), then we have C(i,S) ⊂ C if g(x) has following form

g(x) = giS(x)/
∏

k∈B

mk(x),

where B is some proper subset of
⋃

k∈S Tk .

Obviously, the cyclic codes C are also dual-containing, i.e., C⊥ ⊆ C.
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4 QECCs and QSCs from Cyclotomic Codes

In this section, utilizing the optimal or almost optimal dual-containing cyclotomic codes
obtained in Section 3, we construct some new QECCs and some QSCs with good
parameters.

4.1 NewQECCs from Cyclotomic Codes

In this subsection, firstly, we introduce the basic concept and results of QECCs. Secondly,
we construct some new QECCs with the dual-containing cyclic codes obtained in Section 3.

A q-ary QECC Q of length n is a K-dimensional subspace of the qn-dimensional Hilbert
space (Cq)⊗n, where ⊗n denotes the tensor product of vector spaces. If K = qk , a q-
ary QECC of length n and minimum distance d denote by [[n, k, d]]q . For a QECC with
parameter [[n, k, d]]q , the Quantum Singleton Bound (QSB) asserts that k + 2d ≤ n + 2. If
the equality holds then the code is called a maximum distance separable (MDS) code. For
more details on QECCs, the reader can refer to [13–15, 20]. The following lemma give the
classical construction method of QECCs in [1, 17].

Lemma 4.1 1). (Calderbank-Shor-Steane (CSS) Construction) If there exists a classical
linear [n, k, d]q code C such that C⊥ ⊆ C, then there exists an [[n, 2k − n, ≥ d]]q
stabilizer quantum code that is pure to d .

2). (Steane’s Construction) If there exists a classical linear [n, k, d]q code C which con-
tains its Euclidean dual C⊥ and which can be enlarged to an linear code C′ =
[n, k′, d ′]q , where k′−k ≥ 2, then there exists an [[n, k+k′−n, ≥ min {d,

⌈ q+1
q

d ′⌉}]]q
stabilizer quantum code.

Clearly, our main goal is to obtain optimal or the almost optimal codes C such that C⊥ ⊆
C. From Section 3, we know that the cyclic codes C(i,S) are always dual-containing. Then
they are good source to construct QECCs by 1) of Lemma 4.1. Furthermore, we have that
C(i,S1) ⊆ C(i,S2) if S2 ⊆ S1. Then we also can construct many QECCs by 2) of Lemma 4.1.
Next we give some examples to illustrate the QECCs are new.

Example 4.2 Let (r, n, q) = (2, 11, 5) and S = {i}, we have that q ∈ D
(2,11)
0 . Let C(i,S) =

〈di(x)〉 with parameters [11, 6, 5]∗. We get a QECC with parameters [[11, 1,≥ 5]]5. This
QECC has the same length and dimension [[11, 1,≥ 4]]5 appeared in [15].

Example 4.3 Let (r, n, q) = (12, 61, 9), S1 = {i, i + 1} and S2 = {i}, we have that q ∈
D

(12,61)
0 . Let C(i,S1) = 〈di(x)di+1(x)〉 with parameters [61, 56, 4]∗ and C(i,S2) = 〈di(x)〉

with parameters [61, 51, 6]∗. We get a QECC with parameters [[61, 46,≥ 5]]9. This QECC
has the same minimum distance [[64, 48,≥ 5]]5 appeared in [19]. However, our QECC has
larger code rate.

Next we give more new QECCs in Table 2. Our QECCs have the larger minimum dis-
tance with the same code rate or the larger code rate with the same minimum distance than
know ones.

Note that some QECCs have parameters satisfying n + 2 − 2d − k ≤ 2 in Table 2.
The QECCs with parameters [[11, 1,≥ 5]]3 and [[73, 52,≥ 7]]8 in Table 2 have same
parameters in recent literature, but we use different classical codes.
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Table 2 New QECCs

r New QECCs Known QECCs

2 [[11, 1,≥ 5]]5 from 1) of Lemma 4.1 [[11, 1,≥ 4]]5 in [15]

2 [[11, 1,≥ 5]]3 from 1) of Lemma 4.1 [[11, 1,≥ 5]]3 in [10]

6 [[19, 13,≥ 3]]11 from 1) of Lemma 4.1 [[24, 16,≥ 3]]11 in [9]

12 [[61, 46,≥ 5]]9 from 2) of Lemma 4.1 [[64, 48,≥ 5]]9 in [19]

12 [[61, 51,≥ 4]]9 from 1) of Lemma 4.1 [[61, 51,≥ 3]]9 in [15]

12 [[61, 51,≥ 4]]9 from 1) of Lemma 4.1 [[64, 52,≥ 4]]9 in [19]

14 [[71, 51,≥ 5]]5 from 1) of Lemma 4.1 [[71, 51,≥ 4]]5 in [14]

24 [[73, 64,≥ 4]]5 from 2) of Lemma 4.1 [[73, 61,≥ 4]]5 in [15]

24 [[73, 52,≥ 7]]8 from 2) of Lemma 4.1 [[73, 52,≥ 7]]8 in [8]

10 [[151, 106,≥ 8]]2 from 2) of Lemma 4.1 [[151, 106,≥ 6]]2 in [4]

· · · · · · · · ·

4.2 QSCs from Cyclotomic Codes

In this subsection, we give the basic concept and results of QSCs. Furthermore, from the
cyclic codes obtained in Section 3 and their augmented cyclic codes, we get a class of QSCs
.

A (cl, cr )-[[n, k]] is a quantum stabilizer code that corrects not only bit errors and phase
errors but also misalignment to the left by cl qubits and to the right by cr qubits for non-
negative integers cl and cr . The desired QSCs not only seamlessly achieve quantum error
correction and synchronization recovery, but also correct linear combinations of I, X, Z,
and Y that act on physical qubits. As we all know, the QSCs have been proved to be well
apply in the quantum domain. They allow to extract the information about the magnitude
and direction of misalignment and simultaneously correcting the Pauli errors on qubits, with
nondisturbing measurement involved. For more details of QSCs, we can refer to articles
[5, 16, 23].

The general method of constructing QSCs directly exploits classical codes with special
containing properties over finite fields. We give the following lemma that can be found in
[16].

Lemma 4.4 Let D1 = 〈g1(x)〉 be a dual-containing [n, k1, d1]q cyclic code and D2 =
〈g2(x)〉 be a D1-containing [n, k2, d2]q cyclic code with k2 > k1 i.e., D⊥

1 ⊆ D1 ⊆ D2.
Define the polynomial f (x) of degree k2 − k1 to be the quotient of g1(x) divided by g2(x).
Then for any pair of non-negative integers (cl, cr ) such that cl + cr < ord(f (x)), there
exists an (cl, cr )-[[n+ cl + cr , 2k1 − n]]q QSC that corrects at least up to � d1−1

2 � bit errors
and at least up to � d2−1

2 � phase errors.

The resulting 2(n − k2) Pauli operators on n qubits form stabilizer generators SD2 of
the Pauli group on n qubits that fixes a subspace of dimension qk2 . Let SZ

D2
denote the

set of the Pauli operators on n qubits in SD2 , which include Zs and I s. Let SD2 be an
encoder CSS code with parameters [[n, 2k2 − n]]. Let R = {ri(x)|0 < i ≤ q2k2−n} be a
system of representatives of the cosets D2/D

⊥
2 . For any (2k2−n)-qubit state |ψ〉, we encode

the state |ψ〉 into n-qubit state |ψ〉enc = ∑
i αi |νi〉, where each νi is an n-dimensional

vector with the orthogonal basis being {|D⊥
2 + ri(x)|ri(x) ∈ R}. Let Ug denote the unitary
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operator that adds the coefficient vector g2 of the generator polynomial g2(x). Then we
have Ug|ψ〉enc = ∑

i αi |νi + g2〉.
Through a unitary transformation using SZ

D2
, we can obtain the error syndrome for the

window in the same way as when detecting errors with the CSS code defined by SD2 as
follows E|ψ〉enc|0〉⊗n−k2 → E|ψ〉enc|χ〉, where |χ〉 is the (n − k2)-qubit syndrome by
SZ

D2
and E is the n-fold tensor product of linear combinations of the Pauli matrices. If E

introduced at most � d2−1
2 � bit errors on qubits, these quantum errors are detected and then

corrected by applying the X operators accordingly. We can refer to [5, 6, 16] for more
information of encoding and decoding.

From Section 3, we obtain some cyclic codes C(i,S) and C in Lemma 3.7 with the same
length that satisfies C(i,S) ⊂ C. These cyclic codes is a good source to construct QSCs. Put
C(i,S) = D1 and C = D2, then we can get positive dimension QSCs if k2 > k1 > � n

2 � by
Lemma 4.4.

From Lemma 4.4, for a QSC, there are four important parameters ar , al , d1 and d2, which
determine the performance of a QSC. It is clear that the order of the polynomial f (x) is n for
f (x)|(xn − 1) and n is an odd prime, where the polynomial f (x) is defined in Lemma 4.4.
And we know that the upper bound of the tolerable magnitude of the QSCs are its length n.

From Table 1, It is known that the cyclic codes obtained are usually optimal or almost
optimal. Then we can construct many QSCs, which possess good error-correcting capability
toward bit error and phase error. What’s more, the synchronization capability of those QSCs
attain the upper bound. Next we give following theorems.

Theorem 4.5 Let n be an odd prime with n ≡ r + 1 (mod 2r), where r is a positive even
integer. We always assume that q ∈ D

(r,n)
0 , s = |S| and � is the order of q modulo n. Then

for any nonnagetive integer cr and cl such that cr +cl < n, the following sentences are hold.

(1) If s = 1 and e = n−1
r�

≥ 2, there exists a QSC with parameters (cr , cl) − [[n + cr +
cl,

(r−2)n+2
r

+ 2p�]]q , where 0 ≤ p ≤ e − 2 = n−2r�−1
r�

.

(2) If s > 1, there exists a QSC with parameters (cr , cl) − [[n + cr + cl,
(r−2s)n+2s

r
+

2p�]]q , where 0 ≤ p ≤ es − 2 = s(n−1)−2r�
r�

.

Proof (1) If s = 1, we have that the generator giS(x) of C(i,S) has more than one irre-
ducible factor if and only if e = n−1

r�
≥ 2. From Lemma 3.7, the C = 〈g(x)〉 and g(x) =

giS(x)/
∏

k∈B mk(x), where B is some proper subset of Ti . Let p be the cardinality of B,
where 0 ≤ p ≤ e−2 = n−2r�−1

r�
. Then the cyclic code C has parameters [n,

(r−1)n+1
r

+p�].
Let C′ = 〈g′(x)〉 and g′(x) = giS(x)/

∏
k∈B ′ mk(x), where B ⊂ B ′ ⊂ Ti . It is clear that

C ⊂ C′. By using the pair cyclic codes (C,C′) and Lemma 4.4, there exists a QSC with
parameters (cr , cl) − [[n + cr + cl,

(r−2)n+2
r

+ 2p�]], where 0 ≤ p ≤ e − 2 = n−2r�−1
r�

and
cr and cl are arbitrary integers such that cr + cl < n.

(2) If s > 1, we have that the generator giS(x) of C(i,S) always has more than one
irreducible factor. From Lemma 3.7, the C = 〈g(x)〉 and g(x) = giS(x)/

∏
k∈B mk(x),

where B is some proper subset of
⋃

k∈S Tk . Let p be the cardinality of B, where 0 ≤
p ≤ es − 2 = s(n−1)−2r�

r�
. Then the cyclic code C has parameters [n,

(r−s)n+s
r

+ p�]. Let
C′ = 〈g′(x)〉 and g′(x) = giS(x)/

∏
k∈B ′ mk(x), where B ⊂ B ′ ⊂ ⋃

k∈S Tk . It is clear that
C ⊂ C′. By using the pair cyclic codes (C,C′) and Lemma 4.4, there exists a QSC with
parameters (cr , cl)−[[n+ cr + cl,

(r−2s)n+2s
r

+2p�]], where 0 ≤ p ≤ es −2 = s(n−1)−2r�
r�

and cr and cl are arbitrary integers such that cr + cl < n. This completes the proof.
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Remark 2 The QSCs constructed in Theorem 4.5 provide the highest possible tolerance
against synchronization errors since ord(f (x)) = n.

Example 4.6 Let (r, n, q) = (2, 19, 7) and S = {i}, we have that q ∈ D
(2,19)
0 , e = � =

3, T0 = {1, 4, 5} and T1 = {2, 8, 10}. Let C = 〈di(x)〉 with parameters [19, 10, 8]∗ for
i ∈ {0, 1}. Let C′ = 〈di(x)/mj (x)〉 with parameters [19, 13, 4] for j ∈ Ti . Let C′′ =
〈di(x)/mj (x)mk(x)〉 with parameters [19, 16, 3] for j 
= k ∈ Ti . It is clear that C ⊂ C′ ⊂
C′′. By the (1) of Theorem 4.5, for (C,C′), we get a QSC with parameters (cr , cl) − [[19 +
cr+cl, 1]]7 that corrects at least up to 3 bit errors and at least up to 1 phase errors, where cr+
cl < 19. Similarly, for (C′, C′′), we get a QSC with parameters (cr , cl)−[[19+cr +cl, 7]]7
that corrects at least up to 1 bit errors and at least up to 1 phase errors, where cr + cl < 19.

Example 4.7 Let (r, n, q) = (6, 31, 2), s1 = |S1| > 0 and s2 = |S2| > 0, we have that
q ∈ D

(3,19)
0 and e = 1. We obtain the pair of cyclic codes C(i,S1) and C(i,S2) for S1 ⊆ S2.

It is clear that C(iS2) ⊂ C(iS1). By the (2) of Theorem 4.5, we get a QSC with parameters
(cr , cl)−[[31+cr +cl, 31−10s2+10p]]2, where cr +cl < 31, 0 ≤ p ≤ s2−2 and 2 ≤ s2 ≤
3. For example, let (s1, s2) = (1, 2), then C(iS1) and C(iS2) have parameters [31, 26, 3]∗ and
[31, 21, 5]∗, respectively. Then the QSC has parameters (cr , cl) − [[31 + cr + cl, 11]]2 that
corrects at least up to 2 bit errors and at least up to 1 phase errors, where cr + cl < 31.

5 Conclusion

In this paper, we obtained many optimal or almost optimal dual-containing cyclic codes
from the cyclotomic classes of order r . Numerical data showed that in general the parame-
ters of these codes seems good comparing with the Database. These cyclic codes is a great
source to construct QECCs and QSCs. Furthermore, we constructed some new QECCs.
And we obtained many QSCs with good error-correcting ability toward bit errors and phase
errors. It is interesting problem to construct more good QECCs and QSCs in future.
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