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Abstract
The uncertainty principle is regarded as one of basics in quantum mechanics, which sets
up a strict lower bound to quantify the prediction on the outcome concerning a set of
incompatible measurements. In this paper, we investigate the dynamic behaviors of
quantum-memory-assisted entropic uncertainty relation (EUR), and quantum coherence
in structured reservoir. The results shown that the EUR is smallest in the vanishing limit
of noise regardless of the forms of the initial sate we considered, while the coherence
keeps the maximal value. During the time-evolution process, the uncertainty bound is
lifted and the coherence damps monotonously. Subsequently, the EUR converges to an
asymptotic nonzero constant in the long-time limit, yet the coherence asymptotically
decays to zero. Moreover, the initial state purity plays a deterministic role in the initial
amounts of EUR and coherence, i.e. the larger purity the less EUR and larger coherence.
As an application, we employ the EUR to witness the coherence, and prove that the
corresponding witnessing efficiencies are only depended on the version of coherence,
while are insensitive to the reservoir.

Keywords Entropic uncertainty relation . Quantum coherence . Structured reservoir

1 Introduction

Uncertainty principle, originally observed by Heisenberg [1], is one of the fundamental
concepts in quantum theory, which able to clearly illustrate the divergence between the
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classical mechanics and quantum one [2, 3]. It sets a limit on the precise prediction of the
outcomes concerning a set of incompatible quantum measurements. The first uncertainty
relation was formulated for the case of position and momentum. Further, Robertson [4] and
Schrödinger [5] generalized the uncertainty relation for an arbitrary pair of incompatible
observables R and S. Based on the standard deviations, the Robertson uncertainty relation is
formed as:ΔR⋅ΔS≥ 1

2 R; S½ �h ij j. However, this Robertson uncertainty bound is state dependent
and also trivial for finite-valued observables [6]. Hence, it is important to find an appropriate
criterion to quantify the uncertainty relation.

In recent years, researchers have recast with the EUR because of its operational application
for privacy issues in future quantum information processing tasks [7–18]. The original version
was conjectured and put forth by Kraus [11], and then proved by Maassen and Uffink [12],
which reads as

H Rð Þ þ H Sð Þ≥2log2
1

c
: ≡qUM ; ð1Þ

where H(R) is the Shannon entropy of probability distribution of the outcomes when R is
measured, and likewise for H(S). The term c ≡maxr, s|〈ψr|φs〉| is the complementarity between
observables R and S with |ψr〉 and |φs〉 being their eigenvectors, respectively. The relation (1)
bounds the uncertainty in the case that there is no quantum memory, i.e. the observer can only
access the classical information. If there is quantum entanglement, the bound qUM may be
violated. In this case, the quantum-memory-assisted entropic uncertainty principle was
conjectured by Renes [13], and then strictly derived by Berta [14]. Mathematically, the
quantum-memory-assisted EUR is

S RjBð Þ þ S SjBð Þ≥2log2
1

c
þ S AjBð Þ : ≡qB: ð2Þ

On the left-hand side (LHS) of eq. (2), S(X| B) is the conditional von Neumann entropy of the
post-measurement state ρXB ¼ ∑

r
ψrj i ψrh j⊗Ið ÞρAB ψrj i ψrh j⊗Ið Þ after that subsystem A is

measured by operators X with X ∈ (R, S), herein, {|ψr〉} are the eigenstates of X, and I is an
identity operator. Moreover, we will pay attention to the extra term S(A| B) on the right-hand
side (RHS) of eq. (2). The reason is that it can be used to witness whether quantum
entanglement exists between the particle and memory [19–21]. This witness is based on a fact
that if S PjBð Þ þ S SjBð Þ < 2log2 1=cð Þ, then S(A| B) < 0, and hence ρAB is entangled [22, 23]. In
the remainder of our work, we take Pauli observables σx and σz as the incompatible quantum
measurements.

Actually, quantum system is inevitably suffered from surrounding environment, which will
exponentially dampen its quantum traits, such as quantum entanglement and quantum coher-
ence [24–26]. Quantum coherence, arising from the quantum state superposition principle, is a
fundamental concept of quantum theory. Similar to the quantum entanglement, it is also
regarded as an important physical resource for the astonishing quantum tasks. Hence, we here
investigate the dynamics of EUR and quantum coherence under structured reservoir [27–31].
The results show that when the initial state is the Bell pure sate, LHS = RHS = 0 satisfies the
EUR in the vanishing limit of noise, and the coherence keeps the maximal value 1. Then, the
uncertainty bound is lifted and LHS > RHS is satisfied in the finite time limit. In the long-time
limit, the EUR converges to an asymptotic nonzero constant, while the coherence asymptot-
ically decays to zero. As an application, we utilize the EUR to witness the coherence, and
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prove that the witnessing efficiencies are only determined by the version of coherence, while
are insensitive to the structured reservoir.

The outline of this paper is as follows. In Sect. 2, we give the definitions of two quantum
coherence measures, i.e. geometric coherence and entropic coherence. In Sect. 3, we investi-
gate the dynamics of EUR and coherence in structured reservoir within Markovian regime and
non-Markovian regime, respectively. The application of EUR on witnessing coherence is
discussed in Sect. 4, and the conclusion is given in Sect. 5.

2 Quantum Coherence Measures

Coherence properties of a quantum state are usually attributed to the off-diagonal
elements of its density matrix with respect to a selected reference basis. Mathematically,
the reasonable coherence quantification can be defined by measuring the distance
between quantum state and its nearest incoherent state. In this vein, Baumgratz [24]
presented two bona fide measures of quantum coherence from the geometric and entropy

viewpoints, respectively. For a quantum state ρ in the fixed reference basis ij if gdi¼1, the
geometric coherence, i.e. l1 norm of coherence Cl1 ρð Þ, is

Cl1 ρð Þ ¼ ∑
i; j;i≠ j

ρi; j
�� ��; ð3Þ

and the entropy coherence, i.e. relative entropy of coherence CRE(ρ) is

CRE ρð Þ ¼ S ρdiag
� �

−S ρð Þ; ð4Þ

where S(ρ) = − tr(ρ log ρ) is the von Neumann entropy, and ρdiag is the diagonal state by
deleting all off-diagonal elements from the state ρ.

3 The Dynamics of EUR and Quantum Coherence in Structured Reservoir

We consider a bipartite quantum state formed by two noninteracting qubits A and B with
each one locally interacted with its own reservoir labeled as a and b. The physical model
and interaction Hamiltonian of the qubit+reservoir composite system are detailed in the

Appendix. Concretely, the reservoir is initially in the vacuum state 0 0
�� �

ab, and the qubits

are prepared in the extended Werner-like (EWL) state [30].

ρAB 0ð Þ ¼ 1−p
4

I þ p ϕj i ϕh j; ð5Þ

where I is the identical identity matrix, α and β are state parameters specifying the Bell-
like state |ϕ〉 = α|00〉 + β|11〉 with |α|2 + |β|2 = 1, and p indicates the purity of EWL state.
When p = 0, the EWL state becomes completely mixed, while it reduces to the Bell-like
pure state when p = 1. Besides, the EWL state is separable when p ≤ 1/(4αβ + 1). For the
sake of simplicity, the time-evolution of qubit+reservoir composite system and the
explicit forms of density matrixes ρABab(t) as well as ρAB(t) are also detailed in the
Appendix.

International Journal of Theoretical Physics (2020) 59:763–771 765



3.1 Markovian Dynamics

First, we focus on the dynamics of EUR and quantum coherence when the initial state is

interacted with the Markovian reservoir Γ = 5R. We choose the state parameter as α ¼ 1=
ffiffiffi
2

p
,

and plot their dynamic behaviors under different cases, i.e. Bell pure sate p = 1 in panel (a),
mixed state p = 0.8 in panel (b), and separable state p = 0.3 in panel (c), as functions of
dimensionless time Rt in Fig. 1.

When the initial state is prepared in the Bell pure sate (p = 1), we depict the dynamic
behaviors of EUR and quantum coherence in Fig. 1(a). At the begin, LHS = RHS = 0 satisfy the
EUR implying that the measuring outcomes can be accurately predicted. In the meantime, both
quantum coherences keep their maximal values, Cl1 ¼ CRE ¼ 1, meaning that two qubits A
and B are initially entangled maximally. During the evolution process, the uncertainty bound is
lifted and the inequality LHS > RHS is satisfied in the finite time limit. Soon afterwards, it
converges to an asymptotic nonzero value in the long-time limit (Rt→∞). However, both
quantum coherences asymptotically decay to zero. In a word, when focusing on the qubit
subsystem the variation of uncertainty is not fully synchronous with that of the quantum
coherence. Physically, the intrinsic reasons behind this inconsistency can be presented as
follows. If the qubit subsystem is interacted with the noisy environment, the information
encoded in the qubit will flow into the reservoir, which inevitably increase the system
mixedness [32–34]. At the same time, the enhancing mixedness do increase the uncertainty
yet decrease the quantum coherence of the qubit system. When consider the mixed state (p =
0.8) and the separable state (p = 0.3), their dynamic behaviors are similar to the case of the Bell
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(a) pure state p=1
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(c) separable state p=0.3
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Fig. 1 EUR and quantum coherence versus dimensionless time Rtwithin the Markovian regime Γ = 5Rwhen the
state parameter is α ¼ 1=

ffiffiffi
2

p
. Three types of initial state are explored, i.e. the Bell pure sate p = 1 in panel (a), the

mixed state p = 0.8 in panel (b), and the separable state p = 0.3 in panel (c), respectively. The red dashing curve
denotes LHS, blue dashing curve RHS, green dashing curve Cl1 , and purple dashing curve CRE
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pure state. In addition, the state purity p plays a deterministic role in the initial values of EUR
and coherence, i.e. the larger purity the less EUR and larger coherence. By the way, we verify
that the geometric coherence is typically more robust against decoherence than the entropic
version.

3.2 Non-Markovian Dynamics

In Fig. 2, we plot the dynamic behaviors of EUR and quantum coherence versus the

dimensionless time Rt when the initial state (α ¼ 1=
ffiffiffi
2

p
) is coupled with the non-Markovian

reservoir Γ = 0.1R. These figures are plotted with the same parameters as chosen in the Fig. 1.
As shown in Fig. 2, the global evolution trends of both EUR and quantum coherence are
coincide with that of in the Markovian regime. However, compared with thier Markovian
dynamics the fundamental difference is that the non-Markovian dynamics exhibit quasi-
periodic damped oscillations in finite time. From the physical viewpoint, these oscillation
phenomena are induced by the memory effects of reservoir, which can induce the EUR and
quantum coherence revival after a dark period time.

4 Application: Quantum Coherence Witnessed by Uncertainty Relation

We continue by applying the EUR to witness the quantum coherence in structured reservoir. The
theoretical basis is based on the fact that if S PjBð Þ þ S SjBð Þ < 2log2 1=cð Þ, then S(A|B) < 0, and
hence ρAB is entangled. Moreover, from the hierarchical relationship of entanglement and
coherence, we know that entanglement is a sufficient condition for coherence. By illustrating
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(b) mixed state p=0.8
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(c) separable state p=0.3
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Fig. 2 EUR and quantum coherence versus the dimensionless time Rt under the non-Markovian regime Γ =
0.1R. These figures are plotted with the same parameters as chosen in the Fig. 1
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the EUR and the quantum coherence of the Bell state (α ¼ 1=
ffiffiffi
2

p
and p = 1) vs the dimensionless

time Rt, we in Fig. 3 show the efficiencies of EUR on witnessing the geometric coherence and
entropic coherence in the Markovian and non-Markovian reservoir, respectively. One can
readily find that when Rt is smaller than a critical value Rtc, no matter what versions of
coherence can be witnessed by the EUR. Moreover, the witnessed regions of coherence
do not explicitly depend on the reservoir, but the corresponding critical values Rtc are
different. As a consequence, we point out that the geometric coherence can be witnessed
in region [0.8268, 1] and entropy coherence in [0.7753, 1], where the critical value Rtc is
of about 0.6977 in the Markovian limit and about 0.4589 in the non-Markovian limit.
This means that, the coherence regions witnessed by the EUR are only determined by the
version of coherence, while are regardless of the structured reservoir.

5 Conclusion

In conclusion, we have investigated the dynamics of quantum-memory-assisted EUR, geo-
metric coherence and entropic coherence in the structured reservoir. The physical model we
focused on are consisting of two noninteracting qubits initially prepared in the EWL state and
each locally coupling with its surrounding reservoir. Concretely, when the initial state is the
Bell pure sate, the uncertainty satisfies LHS = RHS = 0 in the vanishing noise limit, and both
coherences keep their maximal values, i.e. Cl1 =CRE = 1. Subsequently, the uncertainty bound
is lifted and the inequation LHS > RHS is satisfied in the finite time limit, and it converges to an
asymptotic nonzero value in the long-time limit. However, both coherences asymptotically
decay to zero with the growing dimensionless time. Moreover, the state purity plays a
deterministic role in the initial values of EUR and coherence, i.e. the larger purity the less
EUR and larger coherence. Furthermore, we have verified that the geometric coherence is
typically more robust against decoherence than the entropic version. Compared with the
Markovian dynamics, the non-Markovian dynamics exhibit quasi-periodic damped oscillations
in the finite time. When the initial state is a mixed state or separable state, the dynamics
evolutions of uncertainty and coherence are similar to that of the Bell pure state. In addition,
we examined the efficiency of uncertainty relation on witnessing coherence. It turns out that if
the dimensionless time is smaller than the critical Rtc, both coherences can always be witnessed
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Fig. 3 Coherence witnessing by the EUR when the Bell state (α ¼ 1=
ffiffiffi
2

p
and p = 1) is interacted with the

Markovian regime Γ = 5R (left panel) and the non-Markovian regime Γ = 0.1R (right panel). The red, green, blue,
cyan, and black lines from top to bottom represent the left-hand of EUR (2), the l1 norm of coherence, the relative
entropy of coherence, and the complementarity between two observers, respectively
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by the uncertainty relation no matter what regimes of the structured reservoir. As the quantum-
memory-assisted EUR has been experimentally realized in decoherent environment, we expect
that the results observed in this work may be certified in future experiments with currently
available technologies.
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Appendix

Here, we revisit the physical model with the interaction of single qubit+reservoir system and
the global evolution of composite system. The physical model is that the single qubit is locally
interacted with a multimode reservoir, and the corresponding Hamiltonian is (ℏ = 1) [27, 28].

HXx ¼ ω0σ
X
þσ

X
− þ ∑

j
ω jx

†
j x j þ ∑

j
g jσ

X
þx j þ g*jσ

X
− x

†
j

� �
; ð6Þ

where gj is coupling constant between the qubit and reservoir mode j, x†(x) is the creation
(annihilation) operator of the reservoir with frequency ωj, σX

þ ¼ 1j i 0h j and σX
− ¼ 0j i 1h j are the

qubit rising operator and lowering operator acting on the Xth qubit with transition frequency ω0

in the orthogonal computational basis {|0〉, |1〉}. The evolution of single qubit+reservoir
subsystem depends on the choice of Lorentzian spectral density of the reservoir. To do it,
the Lorentzian spectral distribution we taken is of the following form

J ωð Þ ¼ R2

π
Γ

ω−ωcð Þ2 þ Γ 2
: ð7Þ

The parameter R is connected to the qubit+cavity coupling strength and Γ denotes the half-
width at half-maximum of the intracavity field spectrum profile. Moreover, their relative
magnitudes determine the Markovian (Γ > 2R) and the non-Markovian (Γ < 2R) regimes,
respectively.

In terms of the reservoir Hamiltonian (6) and Lorentzian spectral distribution (7), the
interaction of single qubit+reservoir can be computationally formulated, which are

0j iX 0
���
E
x
→ 0j iX 0

���
E
x
; ð8Þ

1j iX 0
���
E
x
→ξ tð Þ 1j iX 0

���
E
x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ξ tð Þ2

q
0j iX 1

���
E
x
; ð9Þ

where ξ tð Þ ¼ e−Γt=2 cosh dt
2

� �þ Γ
d sinh

dt
2

� �	 

with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ 2−4R2

p
. Here, we point out that form

the independent qubit+reservoir system the analytical solutions of quantum states can be
derived for arbitrary initial states.
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When qubits A and B are initially prepared in the EWL state and reservoirs a and b are

initially in the vacuum states 0 0
�� �

ab, the initial density matrix of the total qubit+reservoir

system thus reads

ρABab 0ð Þ ¼ ρAB 0ð Þ⊗ 0 0
���

E
ab

0 0
D ���; ð10Þ

which will evolve to

ρABab tð Þ ¼ 1−p
16

IABab þ p ϕ tð Þj iABab ϕ tð Þh j; ð11Þ

with

ϕ tð Þj iABab ¼ α 000 0
���

E
þ β ξ0 tð Þj j2 110 0

���
E
þ ξ0 tð Þj j ξ1 tð Þj j 100 1

���
Eh i

þ β ξ0 tð Þj j ξ1 tð Þj j 011 0
���

E
110 0
���

E
þ ξ1 tð Þj j2 001 1

���
Eh i ð12Þ

where ξ0(t) = ξ(t) and ξ1 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ξ tð Þ2

q
. By tracing over the reservoir freedom, we can obtain

the reduced density matrix for the qubit subsystem ρAB(t), yielding

ρAB tð Þ ¼ 1−p
4

IAB þ p α2 þ β2 ξ1 tð Þj j4
� �

00j i 00h j
þ pβ2 ξ0 tð Þj j2 ξ1 tð Þj j2 01j i 01h j þ 10j i 10h jð Þ
þ pβ2 ξ0 tð Þj j4 11j i 11h j þ pαβ ξ0 tð Þj j2 00j i 11h j þ 11j i 00h jð Þ

ð13Þ
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