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Abstract
Morse oscillator coherent states are employed to derive an analytical expression of its off-
diagonal propagator. An exact expression for the Morse oscillator propagator is provided.
Additionally, an approximately good expression is also derived. A closed-form expres-
sion of the Morse oscillator diagonal propagator is given as well. This expression seems
to be relatively easier and numerically much more stable than those in the literature. The
stability issue is critical when dealing with Morse oscillator arising dynamics and
integrals as divergence becomes a lingering problem. For this reason, the presented
closed-form expression of the Morse oscillator diagonal propagator herein should be
useful, especially numerically.

Keywords Approximate form ofMorse oscillator propagator . Morse oscillator coherent states .

Numerical stability of the anharmonic system propagator

1 Introduction

Many important time-dependent phenomena in physics, chemistry, and biology are
modeled by employing harmonic oscillators. However, some of those phenomena tend
to exhibit anharmonic behavior and treating them harmonically would yield erroneous
results and hence wrong conclusions. Therefore, having the right tool to probe quantum
dynamics of anharmonic oscillators is of paramount importance. The most commonly
utilized anharmonic oscillator is that of Morse, for which the reason it will be the central
component of this paper. [1, 2] One way to handle time dependent quantities is to apply
the relevant propagator, which is typically derived, or calculated, using path integral
techniques. [2–6]. The remarkable work of Duru [4] was the first to derive an expression
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for the Feynman propagator of Morse oscillator using path integral techniques. His work,
however, leads to a double-integral expression of which the integrand is a product of
Bessel functional and exponential functional. The complexity of the integrand poses a
challenge for the traditional integration routines, causing numerical difficulties and
uncertainties. [7, 8]

In light of the above, this paper is to find an expression of the off-diagonal propagator of
Morse oscillator using its coherent states relying on previous work. [9–14] These anharmonic
coherent states are less straightforward and more difficult to deal with than their harmonic
counterparts and as a result they pose some challenges: Morse oscillator bound states
(comprising a subspace of bound states) are incomplete due to the presence of continuum
states; Morse oscillator coherent states have a harder integration measure [12]; the arising
commutators are hard to handle; and, finally, they have harder inner product to deal with
mathematically as opposed to that of harmonic oscillator. For this reason, utmost care must be
practiced when employing Morse oscillator coherent states to solving problems. However, one
may circumvent the incompleteness issue physically by assuming that the vibrating system of
interest does not undergo dissociation and therefore the continuum subspace (spanned by
unbound states of Morse potential) would be of no significance to completeness and thus the
error is negligible, if any at all. For example, consider a molecule whose anharmonic vibration
may be described by a Morse oscillator; if this molecule escapes dissociation upon vibration,
the unbound states would not be of essence or material. [15–17]

In this paper, the Morse oscillator propagator is recast in terms of its coherent states,
assuming the system of interest escapes dissociation (continuum states are of no significance).
The motivation for this work is to find a relatively easier form of the propagator of Morse
oscillator, whereby it may more readily be utilized analytically and numerically than what has
already been reported in the literature. [16–19] Numerical stability is of paramount importance
when dealing with Morse oscillator dynamics that involve integrals. Several studies [18–21]
have discussed the divergent dynamics, as a consequence of the divergent integrals, that arise
in the wake of probing Morse oscillator spectral and dynamical properties. As such, seeking
simpler and more manageable numerical uncertainty results should be valuable in that respect.

2 Theoretical Background and Morse Oscillator Coherent States

Consider a system experiencing anharmonic vibrations that may be modeled byMorse oscillator of
which Hamiltonian is

H ¼ P2

2μ
þ De 1−exp −axð Þ½ �2; ð1Þ

defined over −∞ < x<∞. While P and x are the momentum and position, De and a (often called
Morse parameter) are the depth and width of Morse potential well, respectively, and μ is the

oscillator mass. The eigenfunctions of Ĥ are expressed in terms of the generalized Laguerre

polynomials, L2ε−2m−1m yð Þ,

Φm yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ mþ 1ð Þ2s
Γ 2ε−mð Þ

s
yε−m−

1
2 e−

y
2 L2ε−2m−1m yð Þ; ð2Þ
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where Γ(.) is Gamma function and ε ¼ ffiffiffiffiffiffiffiffiffiffiffi
2μDe

p
=aℏ is the number of Morse potential

bound states. (It should be noted the constraint condition for this system is
2s ¼ 2E−2m−1 as dictated by Landau and Lifshitz. [16] To simplify notation and the
forthcoming mathematical operations, we set y = 2εe−ax (often called Morse coordinate)

Φm yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ mþ 1ð Þ2s
Γ 2ε−mð Þ

s
ys e−

y
2 L2sm yð Þ; ð3Þ

of which the normalization condition with respect to Morse coordinate becomes [14].

∫þ∞
0

Φm yð Þj j2
ay

dy ¼ 1: ð4Þ

Morse oscillator coherent states may be written as a linear combination of the Morse
oscillator eigenstates |m〉 as [9–11].

jαi ¼ ∑N=2
m¼0

αmffiffiffiffiffiffiffiffiffiffi
ρ mð Þp jmi ð5Þ

where ρ(m) will be obtained by using the other definition of Klauder-Perelomov coherent
states, un-normalized, namely

jαi ¼ exp zA†
� �j0i; ð6Þ

where A† is the creation operator and | 0〉 is the ground state of Morse oscillator.
Expanding the above exponential in Taylor series and carrying out the A† operation
yields [11].

ρ mð Þ ¼ NmΓ mþ 1ð ÞΓ N−mþ 1ð Þ
Γ N þ 1ð Þ ð7Þ

Assuming that Morse potential will have N/2 finite bound states, the inner product of two
coherent states is [9].

αjβh i ¼ ∑N=2
m¼0

α*βð Þm
ρ mð Þ : ð8Þ

The closure relation of Morse coherent oscillator coherent states is

∫dσjαi αh j ¼ I ; ð9Þ
where the integration measure dσ has been evaluated by several groups, [9, 10, 20, 21]
but the form I use herein is written quite differently since I have chosen my coherent
states to be un-normalized, as Popov has established in [9].

dσ ¼ N þ 1ð Þ
πN 1þ αj j2

N

� �Nþ2 d
2α: ð10Þ
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3 Morse Oscillator Propagator in Terms of its Coherent States

The off-diagonal Propagator of Morse oscillator is given by

F x1; x2; tð Þ ¼ x1je−
iHtc
ℏ jx2

� �
ð11Þ

This propagator may also be defined as

F x1; x2; tð Þ ¼ ∑N
m¼0 e−

iEmt
ℏ Φ*

m x1ð ÞΦm x2ð Þ þ ∫∞0 dE e−
iEt
ℏ Φ*

E x1ð ÞΦE x2ð Þ: ð12Þ

The first term in Eq. (12) represents the bound states of Morse oscillator, whereas the second
term signifies its continuum (unbound) states. Physically, while the bound states of Morse
oscillator represent the quantized vibrations of the molecule at hand, the unbound states
represent its dissociation. Assuming that the molecule will escape dissociation (scattering
state) and therefore will remain fully quantized, thereby the unbound states in the continuum
will have no contribution to its vibrational motion. For this reason, the second expansion term
will be dropped in the treatment hereafter.

Morse oscillator coherent states may be utilized to cast F x1; x2; tð Þ as

F x1; x2; tð Þ ¼ ∬dσαdσβ x1jαh i βjx2h i αje− iHtc
ℏ jβ

� �
ð13Þ

where the integral measures are given by

dσα ¼ 1

π
N þ 1ð Þd2α

N 1þ αj j2=N
� �Nþ2 ð13aÞ

and

dσβ ¼ 1

π

N þ 1ð Þd2β
N 1þ βj j2=N
� �Nþ2 ð13bÞ

with N being related to the number of Morse oscillator bound states m, where ⟨x1|α⟩
and ⟨β| x2⟩ are projecting coherent states α and β along x1and x2. Using the definition of a
coherent state in Eq. (5) and eigenfunctions of Morse oscillator in Eq. (3) leads to

x1jαh i ¼ Ψα x1ð Þ ¼ ∑
N
2½ �

m¼0

αmffiffiffiffiffiffiffiffiffiffi
ρ mð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ mþ 1ð Þ2s
Γ 2ε−mð Þ

s
xs1 e

−x1
2 L2sm x1ð Þ; ð14Þ

and

x2jβh i ¼ Ψβ x2ð Þ ¼ ∑
N
2½ �

n¼0

β*nffiffiffiffiffiffiffiffiffi
ρ nð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ nþ 1ð Þ2s
Γ 2ε−nð Þ

s
xs2 e

−x2
2 L2sn x2ð Þ ð15Þ
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Note that s will remain the same along both projections. Further simplification of Eqs. (14) and
(15) yields

Ψα x1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ N þ 1ð Þ

p
∑

N
2½ �

m¼0α
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−2m−1

Γ N−mð ÞNm

s
x
N−2m−1

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ N−mþ 1ð Þp e−
x1
2 L N−2m−1ð Þ

m x1ð Þ; ð16Þ

and

Ψβ x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ N þ 1ð Þ

p
∑

N
2½ �

n¼0β
*n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−2m−1
Γ N−nð ÞNm

s
x
N−2n−1

2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ N−nþ 1ð Þp e−
x2
2 L N−2n−1ð Þ

n x2ð Þ: ð17Þ

Utilizing the results in [7], one may write

αje− iHtc
ℏ jβ

� �
¼ e−ℊffiffiffi

π
p ∫∞−∞db e

−b2 1þ α*βe−2b
ffiffi
v

p
−u

N

 !N

; ð18Þ

where

ℊ ¼ iω0t 1−χ=2ð Þ=2; ð18aÞ

u ¼ −iω0t 1−χð Þ; v ¼ iω0χt ð18bÞ
where ω0 is the oscillator fundamental frequency and χ is the anharmonicity constant.
Evaluating the integral in Eq. (18) yields

αje− iHtc
ℏ jβ

� �
¼ e−ℊ∑N

k¼0

N
k

	 

α*β
N

	 
k

evk
2−ku; ð19Þ

Inserting the quantities in Eqs. (17)—(19) in Eq. (13) yields

F x1; x2; tð Þ ¼ e−ℊ∬dσαdσβΨ
α x1ð ÞΨβ x2ð Þ ∑N

k¼0

N
k

	 

α*β
N

	 
k

evk
2−ku

 !
: ð20Þ

The above integral in Eq. (20) is considerably simpler to evaluate than that reported in [4].
Additionally, and more importantly, it is a more stable integral to evaluate numerically. This is
because the work of Duru [4] leads to a double-integral expression of which the integrand is a
product of Bessel functional and exponential functional, of which complexity poses a challenge for
traditional numerical integration routines, causing numerical difficulties and uncertainties. [7, 8]

4 Calculations and Discussion

The integral in Eq. (20) shows the exact Morse oscillator propagator expressed in its coherent
states representation for all kinds of anharmonic molecules, in the sense that the more
anharmonic character a molecule has the less vibrational bound states it supports in its Morse
potential well, and the converse is true. The number of Morse oscillator vibrational bound

states is given by ε ¼
ffiffiffiffiffiffiffiffi
2μDe

p
aℏ ¼ N

2

� �
, guided by Popov’s notation, [11, 12], which may also be
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recast as N
2

� � ¼ 1
2χ−1: This section will introduce some assumptions which will lead to further

simplification of Eq. (20).
Assuming intermediate to weak anahamonicity, χ ≪ 1, exhibited by molecules, for they will

yield a considerable number of vibrational bound states. It turns out that this assumption will
simplify the above propagator tremendously as will be shown below. Our numerical calcula-
tions indicate that as the anahamonicity constant χ gets smaller (giving rise to many vibra-
tional bound states as is normally the case in diatomic molecules), allowing us to drop the
quantum number m (n) without affecting Morse oscillator eigenfunctions or coherent states,
which is especially true in the low temperature limit. [9] Fig. 1 reaffirms this conclusion. In
light of this claim, one may assume that within the range of weak to intermediate
anharmonicity, whereby N − 2m~N and N − 2n~N, noting that N gives twice the actual number
of vibrational bound states. As a result, Eq. (3), after renormalization, may be approximated as

Φm yð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Γ mþ 1ð Þ
Γ N þ mð Þ

s
y
N−1
2 e−

y
2 LN−1

m yð Þ; ð21Þ

The panels in Fig. 1 compare the exact Morse oscillator eigenfunctions in Eq. (3) to the
approximate ones in Eq. (21) as χ gets smaller. Fig. 1 shows as χ gets smaller, the approximate
functions start to approach the exact Morse oscillator eigenfucntions. (Note all of the used values of
χ arewithin the range of those of diatomicmolecules.) This should ratify the legitimacy of the herein
made approximation. Therefore, one may recast the above sums in Eqs. (16) and (17) as

Ψα x1ð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ N þ 1ð Þ

p
∑

N
2½ �

m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−mα2m

Γ N−mþ 1ð ÞΓ N þ mð Þ

s
x N−1ð Þ=2
1 e−

x1
2 LN−1

m x1ð Þ ð22Þ

and

Ψβ x2ð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ N þ 1ð Þ

p
∑

N
2½ �

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−n β*2n

Γ N−nþ 1ð ÞΓ N þ nð Þ

s
x
N−1
2

2 e−
x2
2 LN−1

n x2ð Þ: ð23Þ

Additionally, another observation, as a result of the above approximation, was made when
doing the above numerical calculations. As a result of the assumed weak anharmonicity
(typical in most diatomic molecules), hence large N, upon expanding the finite series only a
few terms survive and the rest of the terms vanish. Employment of Gamma function series
expansion and its properties [24] in the denominator of Eqs. (22) and (23) leads to

Ψα x1ð Þ≈x N−1ð Þ=2
1 e−

x1
2 ∑

N
2½ �

m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−mα2m

Γ Nð Þ

s
LN−1
m x1ð Þ ð24Þ

and

Ψβ x2ð Þ≈ x N−1ð Þ=2
2 e−

x2
2 ∑

N
2½ �

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−n β*2n

Γ Nð Þ

s
LN−1
n x2ð Þ: ð25Þ

Using the definition of associated Laguerre’s polynomials [24] in this exact finite series [25].

∑N
k¼0

sk

N−kð Þ! Lσ−kk zð Þ ¼ sN Lσ−NN z−
1

s

	 

; ð26Þ

International Journal of Theoretical Physics (2020) 59:474–483 479



one can make the following approximation

∑
N
2½ �

m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−mα2m

Γ Nð Þ

s
LN−1
m x1ð Þ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Γ Nð Þ

s
αffiffiffiffi
N

p
	 
N

2

LN−1
N
2

x1–

ffiffiffiffi
N

p

α

	 

; ð27Þ

provided that αffiffiffi
N

p



 


≫1: I have run several calculations using the approximation in Eq. (27), the

results are very good; hence it is reliable provided that αffiffiffi
N

p



 


≫1. The inequality condition is

legitimate in case of coherent states (be it harmonic or anharmonic) classically or quasi-classically
since α~x1 + i p, where x1and p are the coordinate and momentum, respectively. Therefore, |α| is
much larger than

ffiffiffiffi
N

p
by orders of magnitude, hence the above assumption is justified.

Inserting Eq. (27) in Eqs. (24) and (25) leads to these approximate coherent states of Morse
oscillator

Ψα x1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x N−1ð Þ
1 e−x1

Γ Nð Þ

s
αffiffiffiffi
N

p
	 
N=2

LN−1
N
2

x1−
ffiffiffiffi
N

p

α

	 

ð28Þ

and

Ψβ x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x N−1ð Þ
2 e−x2

Γ Nð Þ

s
β⋆ffiffiffiffi
N

p
	 
N=2

LN−1
N
2

x2−
ffiffiffiffi
N

p

β⋆

	 

: ð29Þ

Substituting Eqs. (28) and (29) in Eq. (20) yields a much simpler expression of the propagator
of the Morse oscillator than both Eq.(20) and that reported in Ref [4].

To this end, attention will be focused on the diagonal propagator for compactness purpose
and to explicitly underscore the main point of this work: simpler and more manageable
expression of the propagator of the Morse oscillator. As such, the propagator of interest reads

F x1; tð Þ ¼ e−ℊ

Γ Nð Þ �∬dσαdσβ x
N−1ð Þ
1 e−x1

L

N−1

N
2

x1−
ffiffiffiffi
N

p

β⋆

	 

L

N−1

N
2

x1−
ffiffiffiffi
N

p

α

	 

β⋆α

N

	 
N
2

αje− iHtc
ℏ jβ

� �
: ð30Þ

Additionally, further approximation may be made to the argument of Laguerre functions. By

looking at both arguments of Laguerre functions, one can infer that
ffiffiffi
N

p
α and

ffiffiffi
N

p
β⋆ would be too

small to affect the value of Morse coordinate x1 since αj j≫ ffiffiffiffi
N

p
and β⋆j j≫ ffiffiffiffi

N
p

. For this reason,
their values contribute negligibly to x1, leading to

F x1; tð Þ ¼ e−ℊ

Γ Nð Þ ∑
N
k¼0

N
k

	 

vk2−ku∬dσαdσβ x N−1ð Þ

1 e−x1 LN−1
N
2

x1ð Þ
� �2 β⋆α

N

	 
N=2 α*β
N

	 
k

ð31Þ

Mathematically, both Eqs. (30) and (31) are simple, functionally well-behaved, and void of
numerical uncertainty. The numerical stability is intuitively clear by direct inspection of both
Eqs. (30) and (31) as will be ratified below by deriving a well-behaved expression in that respect.

Now I will find an analytical expression of the diagonal propagator by evaluation the
integral in Eq. (31). I start by expressing α and β in polar coordinates as α = reiθ and
β = δeiφ, and the integral measures in polar coordinates are given by

dσα ¼ 1

π
N þ 1ð Þ rdrdθ

N 1þ r2=Nð ÞNþ2 ð32aÞ
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and

dσβ ¼ 1

π
N þ 1ð Þ δdδdφ

N 1þ δ2=N
� �Nþ2 ð32bÞ

Utilizing this integral relationship [24].

∫∞0
xμ−1dx

pþ qxνð Þnþ1 ¼ 1

νpnþ1

p
q

	 
μ=ν Γ μ=νð ÞΓ 1þ n−μ=νð Þ
Γ 1þ nð Þ ; 0 <

μ
ν
< nþ 1 ð33Þ

to evaluate this integral

∫∞0
r
N
2þkþ1 ⅆr

1þ r2
N

� �Nþ2 ¼ N
k
2þN

4þ1ð Þ
2Γ N þ 2ð Þ Γ

2k þ N þ 4

4

	 

Γ

3N þ 4−2k
4

	 

; ð34Þ

which comes up while evaluating the integration in Eq. (31). Finally, inserting Eqs. (32
a, b–34) in Eq. (31) yields the final expression for the diagonal propagator

F x1; tð Þ ¼ N
N
4ð Þ N þ 1ð Þ

πΓ N þ 2ð Þ
� �2 e−ℊ

Γ Nð Þ
x N−1ð Þ
1

ex1
LN−1

N
2

x1ð Þ
� �2

∑N
k¼0

N
k

	 

k− N

2

� �2 evk
2−ku

N
N
2þkð Þ

� Nk Γ
2k þ N þ 4

4

	 

Γ

3N þ 4−2k
4

	 
� �2
: ð35Þ

5 Concluding Remarks

The propagator tool is vitally important in time dependent systems, most of which are
anharmonic. Having the propagator at our disposal allows us to probe the time evolution of
the system of interest. In this article, a simple form of the propagator of Morse oscillator has
been derived using Morse oscillator coherent states. As pointed out earlier, evaluating time
dependent properties through employing Morse oscillator leads to divergent dynamics, hence
strong numerical errors and uncertainties. [7, 8, 16–21] For this reason, numerical stability of
Morse oscillator emerging integrals is of paramount importance in this case.

Thus far, an exact result of Morse oscillator propagator has been reported using Morse
oscillator coherent states. Since the exact result of the propagator is complicated, and
unappealing, an easier form has been derived through approximating the Morse oscillator
eigenfunctions. The reliability and accuracy of the herein approximation has been tested,
and seems to approach the exact eigenfunctions of Morse oscillator as the number of the
Morse potential finite bound states increases, due to weak anharmonicity. Although this

Fig. 1 Comparing the exact Morse oscillator third vibrational (m = 3) eigenfunctions (blue curve) to the
approximate eigenfunctions (dashed red curve), which was calculated using Eq. (21) with different values of
χ, as labelled in each panel of the Figure. Note the key premise of the validity of this approximation is weak
anharmonicity as lucidly stated in the text. The bottom panel shows a wavefunction with χ = 0.0003, for it this
approximation shows that the red curve is getting much closer to the exact third eigenfunctions of Morse
oscillator (blue curve)

R
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neat approximation has led to a more manageable expression of the propagator with better
numerical stability, a simpler expression was also obtained using additional approximation
to further simplify the argument of Laguerre’s polynomials, leading to a closed-form
expression of Morse oscillator propagator, which features both simplicity and high nu-
merical stability.

In closing, a noteworthy issue is doing quantum dynamics in the low temperature limit
where kT ≪ ℏω0, calculations may be simplified considerably by taking the upper limit of the
finite series to approach infinity, leading to a closed-form expression in the definition of the
coherent states of Morse oscillator. This may be well justified as follows from statistical
mechanics standpoint. The molecules composing the system are only very populated mostly in
the lowest vibrational level and only very few molecules would occupy the next higher two
vibrational levels, if any. This implies all the Morse potential bound states except the ground
state are vacant and thereby diminishing all the subsequent finite series terms including those
above and beyond N

2 th vibrational level, justifying extending the upper series term to infinity.
As such, this approximation is as good as exact. This should be part of future work.
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