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Abstract
Injecting a Fock state and an ancillary squeezed vacuum state into a beam-splitter (BS)
device and then employing continuous-variable postselection detection in one output port,
a postselected quantum state is generated in another output port. We derive the detailed
analytical expressions of the density operator for the output state. Then we study the success
probability analytically and numerically. In what follows, we study some properties for the
generated state, including photon-number representation, Mandel Q parameter and Wigner
function. Expressions for every property are given and numerical analyses are employed by
changing different interaction parameters. The results show the nonclassical properties will
be displayed in proper interaction parameters.

Keywords Beam splitter · Conditional preparation · Continuous-variable postselection ·
Wigner function

1 Introduction

Quantum state engineering has also been extensively studied with the general aim of the
preparation of a variety of in traveling fields [1, 2]. These states exhibit strong non-classical
features, and could be of great interest for many applications such as quantum metrology [3,
4], quantum teleportation [5] and quantum key distribution [6]. It is necessary to prepare
different quantum states to require the need of quantum technology. Therefore an important
topic in the fields of quantum optics and quantum information is to generate various states
of light and to study their nonclassicality.

Conditional preparation is a well-established technique for the preparation of highly non-
classical states [7, 8]. Throught measuring one of the modes of a bipartite correlated state,
the desired state can be projected in other mode for certain results of the measurement.
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It turned out that a bipartite correlated state can be obtained by using the basic instru-
ments such as beam splitter (BS) and parametric amplifier (PA) [9, 10]. Dakna’s group used
conditional measurement on the BS to generate cat-like state [11] and photon-added state
[12]. A typical scheme of conditional measurement is the quantum-optical catalysis. The
quantum-optical catalysis is simply mixing one photon at the beam splitter and post-select
the beam-splitter (BS) output based on detection of one photon, first proposed by Lvovsky
and Mlynek [13]. For exampe, by using quantum-optical catalysis, the coherent state is
transformed to a non-Gaussian quantum state with abundance nonclassical character [14].
Another typical scheme of conditional measurement is the quantum-scissor [15]. By using
quantum-scissor scheme, quantum state with infinite components can be transformed to
another quantum state with only finite components [16]. More recently, Quesada et al.[17]
considered conditional photonic non-Gaussian state preparation using multimode Gaussian
states and photon-number-resolving detectors. Gagatsos and Guha proposed a method to
prepare a two-mode coherent-cat-basis Bell state with fidelity close to unity and higher suc-
cess probability [18]. Su et al. [19] presented a detailed analytic framework for studying
multimode non-Gaussian states that are conditionally generated when few modes of a mul-
timode Gaussian state are subject to photon number-resolving detectors. Magana-Loaiza et
al.[20] engineered the excitation mode of the field through the simultaneous subtraction of
photons from two-mode squeezed vacuum states. All these works are regarding quantum
state engineering through conditional measurement.

In recent several years, Xu’s group has several works on the preparation of quantum
states by using conditional measurement. A two-mode squeezed vacuum state (TMSVS) is
injected in the input channels of a beam splitter and the photon number of the mode in one
of the output channels is measured, then a Hermite polynomial excited squeezed state is
conditionaly generated in the other output channel [21]. Injecting two separate single-mode
squeezed vacuum states into a beam splitter and counting the photons in one of the output
channels (conditional measurement or post-detection), another Hermite polynomial excited
squeezed state is conditionaly generated in the other channel [22]. Injecting a coherent state
in signal mode and two single-photon sources in other two auxiliary modes of SU(3) inter-
ferometry, a broad class of useful nonclassical states are obtained in the output signal port
after making two single-photon-counting measurements in the two output auxiliary modes
[23]. By operating quantum-optical catalysis on each mode of the TMSVS, an entangled
non-Gaussian state is obtained with enhanced entanglement properties [24]. By applying
the quantum-scissors operations to both modes of the TMSVS, a resulting state with only
the twin vacuum and the twin one-photon components has been obtained [25].

However, the conditional measurements in Xu’s above schemes adopte photon-number
detection, which is a discrete-variable measurement. Fortuately, there has been an increased
interest in condition preparation quantum states based on continuous-variable measurement.
Etesse et.al reported the experimental generation of a squeezed cat state from two single
photon Fock states. In this protocal, two single Fock states are sent on a symmetrical beam
splitter, and a homodyne measurement was performed on one of the two output arms. If
the measurement is equal to zero, the other arm is projected on a generated state [26]. In
another work, they also demonstrated that different kinds of mesoscopic quantum states of
light can be efficiently generated from a simple iterative scheme [27]. Molnar et al. pro-
pose two experimental schemes with homodyne measurements for producing coherent-state
superpositions which approximate different nonclassical states conditionally in traveling
optical fields [28]. Based on the measurement of x quadratures around x = 0, two ideal
Schrodinger cat states mixed by a balanced beam splitter were amplified into a larger even
cat state [29]. Lance and Jeong et al. presented several schemes to conditionally engineer
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interesting continuous-variable non-Gaussian quantum states based on a beam-splitter inter-
action, using an ancilla squeezed vacuum state and conditioning homodyne detection [30,
31].

In this work, inspired by these ideas, we give a theoretical scheme of conditionally
generating quantum states by a continuous-variable conditioning scheme, based on a beam-
splitter interaction, homodyne detection, and an ancilla squeezed vacuum state. Some
quantum properties for the generated quantum state, including density operator, success
probability, photon-number representation, Mandel Q parameter and Wigner function, have
derived analytically in detail. The paper is organized as follows: In Section 2, we introduce
the theoretical scheme of generating quantum state. In Section 3, photon number represen-
taion of the output postselected state are analyzed. Here the fidelity between the input and
the output state is also discussed. In Section 4, the sub-Poissonian distribution of the gen-
erated state is characterized by the Mandel-Q parameter. In Section 5, we study the Wigner
function of the generated state. Conclusions are summarized in the last section.

2 Generating Quantum State

In this section, we introduce our considered theroretical scheme and give the density
operator for the generated quantum state.

2.1 Theoretic Scheme

Our setup scheme is depicted in Fig. 1. An input Fock state |m〉a (in input port with mode
a) and an ancilla state S (r) |0〉b (in input port with mode b ) are sent on a variable beam
splitter, the output state will be a bipartite correlated state

|ψcor 〉 = B (|m〉a ⊗ S (r) |0〉b) . (1)

Here the beam splitter is also called a breeding beam splitter, whose operator B acting on
modes a and b is represented as

B = exp
(
θ

(
a†b − ab†

))
, (2)

where the transmissivity is defined as T = cos2 θ and the reflectivity R = 1 − T . The
ancilla state S (r) |0〉b is the squeezed vacuum state with the squeezing operator

S (r) = exp
( r

2
(b†2 − b2)

)
, (3)

Fig. 1 (Color online) Schematic
of the post-selection protocol: an
input Fock state |m〉a and an
ancilla state S (r) |0〉b are mixed
on a variable beamsplitter, and
the desired output state ρ (x0) is
generated owing to a heralding
event based on a quadrature
measurement

x measurement

m � �
0
x�

S� � 0r
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(r is the real squeezing parameter). Then, performed a measurement along the quadrature x

on one output port with mode b, which is described by the operator

�̂b =
∫ x0

−x0

|x〉 〈x| dx, (4)

the other output port with mode a is projected on the postselected state

ρ (x0) = 1

P (x0)
trb

(
�̂b |ψcor 〉 〈ψcor |

)
, (5)

The required output state is postselected for the threshold x0. It should be noted that: (1) the
state vector

|x〉 = π−1/4 exp

(
−x2

2
+ √

2xb† − b†2

2

)
|0〉b , (6)

is the eigenvalue of the quadrature operator Xb = (
b + b†

)
/
√
2 (satisfying Xb |xb〉 =

xb |xb〉); (2) the output measurement falls in the heralding range with [−x0, x0] with the
postselection threshold x0; (3) the normalization factor

P (x0) = trab

(
�̂b |ψcor 〉 〈ψcor |

)
(7)

is just the corresponding success probability of detection.

2.2 Density Operator

In order to derive the analytical expressions for the density operator ρ (x0) in (5) and the
success probability P (x0) in (7), we list some relations beforehand.

(I) Relations for Fock state are

|m〉 = 1√
m!

dm

dsm
1

es1a
† |0〉 |s1=0, (8)

〈m| = 1√
m!

dm

dsm
2

〈0| es2a |s2=0. (9)

(II) Relations for S (r) |0〉 are

S (r) |0〉 =
(
1 − λ2

)1/4
e

λ
2 b†2 |0〉b , (10)

〈0| S† (r) =
(
1 − λ2

)1/4 〈0|b e
λ
2 b2 , (11)

with λ = tanh r .
(III) transformation relations for the beam splitter are

BaB† = √
T a − √

1 − T b, (12)

BbB† = √
1 − T a + √

T b. (13)
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Using above relations and some other techniques, we finally obtain

trb
(
�̂b |ψcor 〉 〈ψcor |

)

= π−1/2
(
1 − λ2

)1/2
(1 + λT ) m!

d2m

dsm
1 dsm

2
e− 1

2
R

1+λT

(
s21+s22

)

∫ x0

−x0

e− 1−λT
1+λT

x2−
√
2
√

R
1+λT

x(s1+s2)

e
1
2

λR
1+λT

a†2+ s1
√

T (λ+1)+√
2λ

√
R

√
T x

1+λT
a† |0〉a

〈0|a e
1
2

λR
1+λT

a2+ s2
√

T (λ+1)+√
2λ

√
R

√
T x

1+λT
a

dx|s1=s2=0, (14)

and

P (x0) = π−1/2

√
1 − λ

2T λ − λ + 1

1

m!
d2m

dsm
1 dsm

2
e− 1

2
(1−λ)R

2T λ−λ+1

(
s21+s22

)+ λ+1
2T λ−λ+1 T s1s2

∫ x0

−x0

e− 1−λ
2T λ−λ+1 x2−

√
2(1−λ)

√
R

2T λ−λ+1 x(s1+s2)dx|s1=s2=0. (15)

In our above expressions, we still retain derivatives and integrals due to the complexity of
our interaction model.

Knowing (14) and (15), the density operator of the output postselected state is obtained
analytically. Obviously, the postselected state is dependent on the interaction parameters,
including the number m of the input Fock state, the squeezing parameter r of the anicilla
state, the transmissivity T of the beam splitter and the postselection threshold parame-
ter x0. Therefore, one can obtain desirable quantum states by choosing these appropriate
parameters.

By using the scientific software Mathematica, we plot the success probability P (x0) as
a function of the threshold parameter x0 with different parameters in Fig. 2. Figure 2a is
plotted with the same m, r but different T . Figure 2b is plotted with the same m, T but
different r . Figure 2c is plotted with the same r , T but different m. From Fig. 2, one can
see clearly that the exact meaurement x0 = 0 will lead to a zero success probability. So
the output postselected state can be obtained only for x0 > 0. Moreover, the greater the x0
value, the greater the success probability.

3 Photon-number Representation and Fidelity

In this section, we describe the photon-number representation of the density operator for
the output postselected state. Any quantum state with density operator ρ can be expanded
as the density matrix [32]

ρ =
∞∑

n1,n2

pn1n2 |n2〉 〈n1| , (16)
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Fig. 2 (Color online) Success
probability P (x0) as a function
of the threshold parameter x0 for
some different interaction
parameters (m, r, T ).
a (1, 0.15, T ) with T = 0.2, 0.5,
0.6, 0.8; b (1, r, 0.25) with
r = 0, 0.35, 0.69, 1.03;
c (m, 0.35, 0.25) with m = 1, 2,
5, 8. Each variables in above
graphs are corresponding to the
solid, dotted, dashed, and
dotdashed line, respectively
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where pn1n2 = 〈n1| ρ |n2〉. For the generated state ρ (x0), we can obtain the following
expression

pn1n2 = π−1/2
(
1 − λ2

)1/2
m! (1 + λT )

√
n1!n2!P (x0)

d2m+n1+n2

dsm
1 dsm

2 dμn1dνn2
e

√
T (λ+1)
1+λT (s1μ+s2ν)

e− 1
2

R
1+λT

(
s21+s22

)+ 1
2

λR
1+λT

(
μ2+ν2

)
∫ x0

−x0

e− 1−λT
1+λT

x2−
√
2
√

R
1+λT

x(s1+s2)+
√
2λ

√
R

√
T

1+λT
x(μ+ν)dx

|s1=s2=μ=ν=0, (17)
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where the following relations

〈n1| = 1√
n1!

dn1

dμn1
〈0| eμa |μ=0, (18)

|n2〉 = 1√
n2!

dn2

dνn2
eνa† |0〉 |ν=0 (19)

have been used.
Obviously, the density operator matrix of the input state |m〉 only include the sole ele-

ment |m〉 〈m|. However, the output postselected state ρ (x0) include other kinds of diagonal
and off-diagonal elements |n2〉 〈n1|. For the diagonal elements (i.e. n1 = n2 = n,), their
probabilities is just the photon number distribution pnn = P (n). In Fig. 3, we plot the
density operator matrices and the photon number distributions in two different cases with
x0 = 0.025, T = 0.02, r = 0.7, and different m . It is interesting to see that the output
postselected state has only odd (even) components if m is odd (even).

On the other hand, the fidelity between the output postselected state ρ (x0) and the input
state |m〉, can be expressed as

F = Tr (|m〉 〈m| ρ (x0)) = 〈m| ρ (x0) |m〉 = pmm. (20)

Thus if we take n1 = n2 = m in (17), the fidelity can be obtained. Figure 4 shows the
fidelity as a function of the threshold parameter x0 with different parameters. From these
figures, we find that the fidelity decreases with the value x0 increases.

1 2
n np

1 2
n np

1
n

2
n

1
n

2
n

� �P n� �P n

nn

(a) (b)

(d)(c)

Fig. 3 (Color online) Photon-number matrix/ Photon number distribution for ρ (x0) with parameters
(x0, T , r,m). (a/c) (0.025, 0.02, 0.7, 1); (b/d) (0.025, 0.02, 0.7, 2)
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Fig. 4 (Color online) The fidelity
F between the input and the
generated state, or the probability
of component |m〉 〈m| in the
generated state, as a function of
the threshold parameter x0 for
some different interaction
parameters (m, r, T ).
a (1, 0.15, T ) with T = 0.2, 0.5,
0.6, 0.8; b (1, r, 0.25) with
r = 0, 0.35, 0.69, 1.03 ;
c (2, 0.15, T ) with T = 0.2, 0.5,
0.6, 0.8. are corresponding to the
solid, dotted, dashed, and
dotdashed line, respectively
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4 Mandel Q Parameter

As a typical property of quantum state, the Mandel Q parameter [33]

QM =
〈
a†2a2

〉
〈
a†a

〉 −
〈
a†a

〉
, (21)

is a good indication to exhibit the sub-Poissionian character. The distribution is Poissonian
when Q = 0, and super- (sub-) Poissonian if Q > 0 (Q < 0). For example, a coherent state
corresponds to Q = 0 (Poissonian statistics). In order to obtain Mandel Q parameter for
the generated state, we firstly the general expression of the expectation value

〈
a†kal

〉
with

arbitrary k and l. Noting 〈
a†kal

〉
= Tr

(
a†kalρ (x0)

)
, (22)
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and making length calculation, we finally obtain

〈
a†kal

〉

= π−1/2

P (x0)

√
1 − λ

2T λ − λ + 1

1

m!
d2m+k+l

dsm
1 dsm

2 dμkdνl
e− 1

2
(1−λ)R

2T λ−λ+1

(
s21+s22

)+ (λ+1)T
2T λ−λ+1 s2s1

e
1
2

λR
λ+1

T λ+1
2T λ−λ+1

(
μ2+ν2

)+ 1
λ+1

λ2R2
2T λ−λ+1μν

e
T λ+1

2T λ−λ+1

√
T (νs1+μs2)+ λR

√
T

2T λ−λ+1 (νs2+μs1)∫ x0

−x0

e− 1−λ
2T λ−λ+1 x2−

√
2(1−λ)

√
R

2T λ−λ+1 x(s1+s2)+
√
2λ

√
R

√
T

2T λ−λ+1 x(ν+μ)dx

|s1=s2=μ=ν=0, (23)

Fig. 5 (Color online) Mandel Q
parameter QM as a function of
the threshold parameter x0 for
some different interaction
parameters (m, r, T ).
a (1, 0.15, T ) with T = 0.2, 0.5,
0.6, 0.8; b (1, r, 0.25) with
r = 0, 0.35, 0.69, 1.03 ;
c (m, 0.35, 0.25) with m = 1, 2,
5, 8. are corresponding to the
solid, dotted, dashed, and
dotdashed line, respectively
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where the following relations

a†k = dk

dμk
eμa† |μ=0, (24)

al = dl

dνl
eνa |ν=0, (25)

have been used.
The numerical results show that the output postselected state may exhibit sub-Poissonian

distribution as long as the interaction parameters is chosen properly. In Fig. 5, we plot the
Mandel Q parameter QM as a function x0 with different interaction parameters. In Fig. 6,
the feasibility regions of super-Poisson and sub-Poisson distribution are shown in (x0, λ)

space with m = 1 and different T . There is a strong possibility that the sub-Poisson region
is located for small parameters λ and x0.

5 Wigner Function

The Wigner function [34] is defined by

W (β) = 2

π

〈
D (β) (−1)a

†a D† (β)
〉
, (26)
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Fig. 6 (Color online) Mandel Q parameter QM in space (x0, λ) showing feasible region for sub-Poissonian
(blue) or super-Poissonian (yellow) with a m = 1, T = 0.5; b m = 1, T = 0.02
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(a) (b)

(c) (d)

Fig. 7 (Color online) Wigner function of the generated states with some different interaction parameters
(x0, T , r,m) a (0.025, 0.02, 0.7, 1); b (0.025, 0.02, 0.7, 2); c (0.025, 0.9, 0.7, 1); d (0.025, 0.9, 0.7, 2)

where (−1)a
†a is the photon number parity operator, D (β) = eβa†−β∗a is the displacement

operator with β = (x + ip) /
√
2. The analytical expressions of the Wigner function of our

generated quantum state can be given

W (β) = 2

π

π−1/2

P (x0)

√
1 − λ

2T λ − λ + 1

1

m!
e
−2|β|2

(
1+ 2

λ+1
R2λ2

2T λ−λ+1

)
+2 λR

λ+1
T λ+1

2T λ−λ+1

(
β2+β∗2)

dm

dsm
1

dm

dsm
2

e− 1
2

R(1−λ)
2T λ−λ+1

(
s21+s22

)− (1+λ)T
2T λ−λ+1 s1s2

×e2
1+T λ

2T λ−λ+1

√
T (s1β∗+s2β)− 2λR

√
T

2T λ−λ+1 (s1β+s2β
∗)

∫ x0

−x0

e
2T λ−λ−1

λ+1 x2−√
2
√

Rx(s1+s2)+ 2
√
2λ

√
R

√
T

λ+1 x(β+β∗)

dx|s1=s2=0. (27)
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In Fig. 7, we plot the Wigner functions of the postselected output state for different cases
with x0 = 0.025, r = 0.7 and diferent T , m. One can notice that (1) the figure (a) is similar
to the Wigner function of a squeezed single-photon state; (2) the figure (b) is similar to that
of a squeezed vacuum state; (3) the figure (c) is similar to the Wigner function of single-
photon state; (4) the figure (d) is similar to the Wigner function of two-photon Fock state. It
is interesting to note that (1) the output state is more like the character of the input squeezed
state for low transmissivity and (2) the output state is more like the character of the input
Fock state for high transmissivity.

6 Conclusion

To summarize, based on the input Fock state, an ancillary squeezed vacuum state, a beam-
splitter interaction, and homodyne detection, we generate a postselected quantum state
by using a continuous-variable conditional measurement scheme. We derive the analytical
expression of the density operator for the output postselected state and discuss the success
probability.Some quantum properties, including the photon-number representation, Mandel
Q parameter and Wigner function, are investigated in detail. For every property, we give it
analytical expression, where the differential and integration forms are remained because of
the complexity of the model. By changing the interaction parameters, including the number
of the input Fock state, the ancilla squeezing parameter, the beam-splitter transmissivity,
and the postselection threshold, we make numerical analysis for all.

Numerical results show that: (1) the success probability is a monotonic increasing func-
tion of the threshold x0; (2) The generated have only odd (even) components if the input is
odd (even)-Fock state; (3) The sub-Poissionian character of the generated state may exhibit
for the small squeezing and small threshold, the sub-Poisson characteristic is more easily
displayed; (4) When the transmissivity is high, the output state is more like the input Fock
state; While the transmissivity is low, the output state is more like the ancillary squeezed
vacuum state.
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