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Abstract
Under the assumption that the parties do not change their private inputs during the whole
protocol execution, we present a probabilistic quantum protocol for secure two-party
scalar product without the help of any third party, which can ensure the security of the
strong privacy of two parties. Especially, the communication complexity of this protocol
achieves O(1), and thus it is more suitable for applications with big data.

Keywords QuantumCryptography . Privacy-Preserving .Multi-party Secure Computation .

Scalar Product

1 Introduction

With the advent of fast quantum algorithms [1, 2], quantum computations and quantum
communications have received extensive attention and gained lots of promising
achievements, such as quantum cryptography [3], quantum teleportation [4] and quan-
tum secret sharing [5]. However, in 1997, Lo [6] pointed unconditional secure one-
sided two-party computation is impossible. Later in 2007, Colbeck [7] further showed
that unconditional secure two-sided two-party computation is impossible yet. Recently,
Buhrman et al. [8] systematically proved that unconditional secure classical two-party
computation is impossible.

Furthermore, the research results show that quantum protocols still can provide a higher
security than the corresponding classical protocols, e.g., quantum protocols for Oblivious Set-
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member Decision [9] and Private Set Intersection Cardinality [10]. Therefore, how to construct
and implement quantum protocols for special two-party classical computations has always
been the research focus in recent years.

Secure scalar product is an important primitive of secure multi-party computation, which
can usually be used as a building block for many complicated cryptographic protocols, such as
private comparison, secret sharing, secure function evaluation, privacy-preserving computa-
tional geometry, etc. Let Alice has a vector X = (x1, x2,…, xm) and Bob has a vector Y = (y1, y2,
…, ym), where all components belong to the set ZN. The scalar product protocol is to securely
compute the scalar (dot) product of X and Y, given by X � Y ¼ ∑m

i¼1xiyimod N.
He et al. [11] proposed the first quantum protocol for the secure scalar product via

quantum entanglements and quantum measurements. Their protocol needs a non-
colluding third party. Recently, Wang et al. [12] presented a new quantum approach to
compute secure scalar product between two parties with continuous-variable clusters.
Wang’s protocol does not need any third party. However, both He’s protocol and Wang’s
protocol need to cost too many redundant qubits and perform lots of measurements to
ensure the security. In this paper, we present a novel quantum protocol for secure two-
party scalar product without the help of any third party. Compared with the previously
proposed quantum protocols, our protocol obtains the lower communication complexity
and the lower measurement complexity.

In addition, since unconditionally secure (or perfect) two-party quantum computations
are impossible in theory, some researchers further consider the honest-but-curious model
in two-party quantum computations [13–15], which is similar to the semi-honesty model
in the classical settings. That is, the parties honestly execute the protocol, but they try to
find out as much as possible about the other inputs despite following the protocol. In this
paper, we consider a stronger model than the honest-but-curious model, that is, we only
assume that the parties do not change their private inputs during the whole protocol
execution, but they can perform any other malicious actions, including dishonestly
executing the protocol, in order to steal the other’s private information.

2 Quantum scalar product protocol

Under the assumption that two parties do not change their respective private inputs during the
whole protocol execution, we give a definition of a one-sided two-party scalar product
protocol with strong (not perfect) privacy protections, later called strong privacy-preserving
two-party scalar product protocol.

Definition 1 Strong privacy-preserving two-party scalar product (SP2P-SP) protocol -
There are two parties, usually called Alice and Bob. Alice inputs a private vector
X = (x1, x2,…, xm) and Bob inputs a private vector Y = (y1, y2,…, ym). After running a
SP2P-SP protocol, Bob outputs the scalar product of X and Y, i.e., ∑m

i¼1xiyimod N , but
Alice gets nothing. In addition, SP2P-SP protocol should meet the following strong
privacy requirements:

Alice’s Privacy. The information about Alice’s private vector X obtained by a dishonest
Bob is less than or equal to the possible information inferred from his private vector Y and
the final scalar product, ∑m

i¼1xiyimod N (strong privacy).
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Bob’s Privacy. Alice cannot get any secret information about Bob’s private vector Y
(perfect privacy).

In the following protocol, suppose that two parties’ private vectors are X = (x0, x1,…, xN − 1)
and =(y0, y1,…, yN − 1) , respectively, and all components belong to the set ZN, where N = 2n.
This assumption is reasonable, because we can let xm = xm + 1… = xN − 1 = 0 and ym = ym + 1… =
yN − 1 = 0, if m <N. In addition, we further assume that two private vectors cannot be altered
during the whole protocol execution.

2.1 Quantum SP2P-SP protocol

Step 1. Alice first hides her private vector X = (x0, x1,…, xN − 1) by secret splitting ideas as
follows: Alice generates two auxiliary vectors X1 = (x1, 0, xj,i,…, x1,N − 1) and X2 = (x2, 0, x2,

1,…, x2, N − 1) over ZN randomly, such that X = (X1 + X2)modN, i.e., xi = (xj,i + x2, i)modN

for any i. Then Alice prepares two quantum states, which are initially in 1ffiffiffi
N

p ∑
N−1

i¼0
ji〉.

Furthermore, Alice applies two oracle operators UX 1 and UX 2 to two initial states,
respectively, where the oracle operator UX j (j = 1, 2) is defined by

UX j :
1ffiffiffiffi
N

p ∑N−1
i¼0 ji〉⨂j0〉→ 1ffiffiffiffi

N
p ∑N−1

i¼0 ij ij0⨂x j;i〉 ð1Þ

Let jψA j
〉 ¼ 1ffiffiffi

N
p ∑N−1

i¼0 ij ijx j;i〉 for j = 1, 2. Finally Alice sends jψA1
〉 and jψA2

〉 to Bob though the

quantum channel.

Step 2. After receiving two quantum states sent by Alice, Bob first applies a similar oracle
operator UY to each quantum state jψA j

〉 (j = 1, 2), where UY is defined by,

UY :
1ffiffiffiffi
N

p ∑N−1
i¼0 ij ijx j;i〉⨂ 0j i →

1ffiffiffiffi
N

p ∑N−1
i¼0 ij i x j;i

�� �j0⨂yi〉: ð2Þ

Let jψB j
〉 ¼ 1ffiffiffi

N
p ∑N−1

i¼0 ij i x j;i
�� �jyi〉 for j = 1, 2. Then Bob performs another oracle operator Uf to

each quantum state jψB j
〉 (j = 1, 2), where Uf is defined by,

U f :
1ffiffiffiffi
N

p ∑N−1
i¼0 ij i x j;i

�� �jyi〉⨂ 0j i →
1ffiffiffiffi
N

p ∑N−1
i¼0 ij i x j;i

�� �jyi〉j0⨂ f x j;i; yi
� �

〉; ð3Þ

with f(xj, i, yi) = xj,i · yi. That is,

U f jψB j
〉⨂j0〉 ¼ 1ffiffiffiffi

N
p ∑N−1

i¼0 ij i x j;i
�� �jyi〉jx j;i:yi〉: ð4Þ

Let jϕB j
〉 ¼ 1ffiffiffi

N
p ∑N−1

i¼0 ij i x j;i
�� �jyi〉jx j;i : yi〉 for j = 1, 2.

Step 3. For each jϕB j
〉, Bob further prepares two auxiliary quantum states, which are

initially in 1ffiffiffiffi
N

0p ∑N
0−1

k¼0 jk〉 and ∣0〉. Here, we assume that N′ >N2, n′ = logN′ and n = logN.
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Furthermore, Bob performs an oracle quantum operator U f * on each quantum system j

ϕB j
〉⨂ 1ffiffiffiffi

N
0

p ∑N
0−1

k¼0 jk〉⨂j0〉 (j = 1, 2), where U f * is defined by,

U f * ϕB j

��� E
⨂

1ffiffiffiffiffi
N

0p ∑
N

0−1

k¼0
kj i⨂ 0j i ¼ U f *

1ffiffiffiffi
N

p ∑
N−1

i¼0
ij i x j;i
�� �jyi〉jx j;i : yi〉⨂ 1ffiffiffiffiffi

N
0p ∑
N

0−1

k¼0
kj i⨂ 0j i

¼ 1ffiffiffiffiffiffiffiffiffi
NN

0p ∑
N−1

i¼0
ij i x j;i
�� �jyi〉jx j;i : yi〉 ∑

N
0−1

k¼0
kj ij0⨂ f * i; x j;i : yi; k

� �
〉

¼ 1ffiffiffiffiffiffiffiffiffi
NN

0p ∑N−1
i¼0 ∑

N
0−1

k¼0 ij i x j;i
�� �jyi〉jx j;i : yi〉 kj ij f * i; x j;i : yi; k

� �
〉

n o
;

ð5Þ

with

f * i; x j;i � yi; k
� � ¼ 1 if x j;i � yi > k

0 otherwise

�
: ð6Þ

Step 4. For j = 1, 2, by using quantum counting algorithm [16–18], Bob counts the
number tj of the components satisfying f∗(i, xj, i · yi, k) = 1 of the quantum state in Eq. 5,
respectively. That is, Bob executing the following procedures:

For j = 1 to 2
{ Prepare two registers in the initial state jR0〉 ¼ 1ffiffiffi

M
p ∑M−1

t¼0 jt〉⨂jφ j〉, where the state ∣φj〉 is
in,

jφ j〉 ¼
1ffiffiffiffiffiffiffiffiffi
NN

0p ∑N−1
i¼0 ∑

N
0−1

k¼0 ij i x j;i
�� �jyi〉jx j;i : yi〉 kj ij f * i; x j;i : yi; k

� �
〉: ð7Þ

Apply CF on ∣R0〉, which implements ∣t〉⨂ ∣φj〉→ ∣ t〉⨂Gt ∣φj〉, where G is the Grover
iteration [18] defined by (Fig. 1)

G ¼ Uφ j
U f ω ; ð8Þ

ωj i ¼ ij ijx j;i〉jyi〉jx j;i:yi〉 kj i f * i; x j;i � yi; k
� ��� � ð9Þ

U f ω ωj i ¼ −jω〉 if f * i; x j;i : yi; k
� � ¼ 1

jω〉 if f * i; x j;i : yi; k
� � ¼ 0

(
; ð10Þ

Uφ j
¼ 2jφ j〉〈φ jj−I : ð11Þ

Similarly, call the resultant state ∣R1〉.
Apply QFT−1 on the first register of ∣R1〉. Call the resultant state ∣R2〉.
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Measure the first register of ∣R2〉 to obtain ∣Tj〉 and compute t j ¼ NN
0
sin2 T j

Mπ
� 	

. }

Finally, Bob outputs t = (t1 + t2)modN, i.e., an estimator of the scalar product of X and
Y (Fig. 1).

3 Analysis

Correctness Given from Step 1 of the proposed protocol, X = X1 + X2( i.e., xi = xj,i + x2, i
for any i), so ∑N−1

i¼0 x1;iyimod N þ ∑N−1
i¼0 x2;iyimod N ¼ ∑N−1

i¼0 xiyimod N , obviously. By
Eq.(7) (or Eq.(5)), there are NN′ components in the quantum state ∣φj〉, where xj,iyi <
N2 < N′. Furthermore, by the definition of f∗ in Eq.(6), we can see that for each i, there
are just xj,iyi ks (i.e, k from 0 to xj,iyi − 1) among all N′ ks (i.e, k from 0 to N′ − 1)

satisfying f∗(i, xj,i · yi, k) = 1. So, there are ∑N−1
i¼0 x j;iyimod N components in the quantum

state ∣φj〉 in total, such that f∗(i, xj,i · yi, k) = 1, and further the number of the components
satisfying f∗(i, xj,i · yi, k) = 1 will be estimated by Bob using quantum counting algorithm
in Step 4. Accordingly, the final output, t (i.e., t1 + t2), is a right estimator of the scalar
product of X and Y.

Therefore, two parties honestly executing the protocol can ensure its correctness.

Alice’s Privacy. In the proposed quantum SP2P-SP protocol, Alice only sends out two

quantum states: jψA1
〉 and jψA2

〉 without any classical message, where jψA j
〉 ¼ 1ffiffiffi

N
p ∑N−1

i¼0 ij ij
x j;i〉 for j= 1, 2. Although all classical information about her private vectors is embedded into
the two states, no one can extract all this information by the basic principles of quantum
mechanics. For a dishonest Bob, he can try to extract Alice’s partial private information from
the received states by the following possible attacks.

The first attack is to directly make a projective measurement on the received states |ψA j
〉s to

steal Alice’s private information.
On the one hand, if the dishonest Bob makes a projective measurement on one of the received

states, e.g., jψA1
〉, where jψA1

〉 ¼ 1ffiffiffi
N

p ∑N−1
i¼0 ij ijxj;i〉. Accordingly, he will get |i〉∣ x1, i〉 for any i with

the probability of 1
N. Then the systemA sent byAlice can be characterized by the quantum ensemble,

ℇ≡ {pi, ρA(i)}, where pi (i.e., pi ¼ 1
N) is the probability of getting the measured result (i, x1, i), and

ρA ið Þ ¼ ji; x1;i〉⟨i; x1;ij: ð12Þ

Fig. 1 Circuit for the iteration G in Step 4
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Holevo’s theorem [19] tells us that the accessible information available to the outsider by any
measurement on ρA is bounded by the entropy

I ≤X εð Þ ¼ S ρAð Þ− 1

N
∑
N−1

i¼0
S ρA ið Þð Þ

≤
1

N
∑
N−1

i¼0
S ρA ið Þð Þ þ H Pð Þ
¼ H Pð Þ;

ð13Þ

where ρA ¼ ∑N−1
i¼0 ρA ið Þ=N is the average state of A. So I ≤ n. That is, Bob can extract at most n

bits classical information from the received state by any possible local measurement.
On the other hand, if Bob makes a projective measurement on the state |ψA j

〉 (i.e.,
1ffiffiffi
N

p ∑N−1
i¼0 ij ijx j;i〉). Accordingly, he will get xj, i (n bits) for any i with the probability of 1

N.

However, he cannot get the ith component of Alice’s private vector (i.e., xi), only from a single
measured result x1, i or x2, i, not x1, i and x2, i, due to xi = x1, i + x2, i. Even if Bob measures both
two received states jψA1

〉 and jψA2
〉, he will randomly get x1, i and x2;i* , respectively. By the

randomness of the measurements, i and i∗ are two random numbers, where the probability of
satisfying i = i∗ is only 1

N. Accordingly, the probability that Bob successfully gets a right

component xi by this attack is also 1
N, which is equal to that of randomly guessing it. In

addition, if Bob performs this attack, he will lose the chance to further compute the final scalar
product, due to No-cloning Theorem which forbids the creation of identical copies of an
arbitrary unknown quantum state.

The second attack is to count the number of xj, i ∈ (xj, 0, xj,i,…, xj, N − 1) on jψA j
〉 by

quantum counting algorithm, such that xj, i satisfies certain feature, e.g., it is equal to a
specific number. That is, it is to analyze certain statistics feature of Alice’s auxiliary
private vector. However, Bob cannot further get any secret information about Alice’s
original private vector from these statistics features because two auxiliary vectors are
randomly generated by Alice.

In addition, the dishonest Bob still can perform a more complicated attack that he tries to
compute the summation of both received quantum states by the help of a powerful oracle
operator, since he knows that Alice uses the classical secret splitting technology to hide her
private vector. Suppose that there is an oracle operator O, which is defined by,

O : jl1〉⨂jl2〉⨂j0〉→jl1〉⨂jl2〉⨂jl1 þ l2〉; ð14Þ
for any lj ∈ ZN. Then, after applying the oracle operator O on both received quantum states, the
dishonest Bob will get,

O
1ffiffiffiffi
N

p ∑
N−1

i¼0
ij i x1;i
�� �

⨂
1ffiffiffiffi
N

p ∑
N−1

i¼0
ij i x2;i
�� �

⨂j0〉

 �

¼ 1

N
∑i1;i2 i1j i i2j i x1;i1

�� �jx2;i2 〉jx1;i1 þ x2;i2 〉:

ð15Þ

In Eq. 14, if i1 = i2 = i, then x1;i1 þ x2;i2 ¼ xi. However, due to the randomness of the mea-
surement, the probability of extracting a private component of Alice’s private vector (i.e., xi)
from the final quantum state in Eq.14 is also 1

N.
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What’s more, suppose that the dishonest Bob can perform the following more stronger
attack:

O0 1ffiffiffiffi
N

p ∑
N−1

i¼0
ij i x1;i
�� �

⨂
1ffiffiffiffi
N

p ∑
N−1

i¼0
ij i x2;i
�� �

⨂j0〉

 �

¼ 1

N
∑
i1;i2

i1j i i2j i x1;i1
�� �

x2;i2
�� �

f i1; i2ð Þ x1;i1 þ x2;i2
� ��� �

;

ð16Þ

with

f i1; i2ð Þ ¼ 1 if i1 ¼ i2
0 otherwise

�
: ð17Þ

Furthermore, if Bob measures the final register (i.e., j f i1; i2ð Þ x1;i1 þ x2;i2
� �

〉) on the computa-
tional basis, then he will get one component xi of Alice’s private vector with the same
probability of 1/N (i.e., i = i1 = i2 and accordingly xi = x1, i + x2, i) and get nothing with the
probability of 1 − 1/N.

In fact, if let yi = 1 and yj = 0 for all other js (j ≠ i), then the dishonest Bob can always get the
component xi from the final computation result, since ∑m

i¼1xiyimod N ¼ xi. Therefore, the
information about Alice’s private vector X obtained by a dishonest Bob is less than or equal to
the possible information inferred from his private vector Y and the final scalar product, ∑m

i¼1

xiyimod N (strong privacy).
In a word, Bob or an outside attacker can get at most one component (e.g., xi) of Alice’s

private vector at the probability of 1/N. If Alice splits her private vector X into m vectors,
instead of two vectors, such that X =X1 +X2 +…Xm, the probability of getting one component
by Bob or any attacker will be reduced to 1/Nm − 1.That is, secret splitting (or sharing) can
ensure Alice’s privacy well.

Bob’s Privacy. A dishonest Alice may try to learn about Bob’s private vector by an

entanglement-type of attack. i.e., she prepares an entangled state 1ffiffiffi
N

p ∑N−1
i¼0 ξA ið Þ�� �

ij ijx j;i〉
instead of the initial state 1ffiffiffi

N
p ∑N−1

i¼0 ij ijx j;i〉, where she holds the first subsystem |ξA(i)〉 and

sends the other subsystems to Bob. After Step 2, the whole quantum system will be in the
following state,

1ffiffiffiffi
N

p ∑N−1
i¼0 ξA ið Þ�� �

ij ijx j;i〉 yij i: ð18Þ

However, for different yis, the reduced density matrixes of the subsystem held by Alice are

same. e.g., suppose that the whole quantum system is in the state ψ1j i ¼ 0A000j iþ 1A111j iffiffi
2

p or

ψ2j i ¼ 0A001j iþ 1A110j iffiffi
2

p . Accordingly, the reduced density matrix of Alice is ρA1 ¼ TrBjψ1⟩

⟨ψ1j ¼ 1
2 j0⟩⟨0j þ j1⟩⟨1jð Þ ¼ I

2 or ρA2 ¼ TrBjψ2⟩⟨ψ2j ¼ 1
2 j0⟩⟨0j þ j1⟩⟨1jð Þ ¼ I

2. i.e.,

ρA1 ¼ ρA2 . Therefore, even if the dishonest Alice performs this attack, she still cannot distin-
guish or get any Bob’s private information by measuring the subsystem held by herself
because the reduced density matrix of the subsystem held by Alice is the completely (or
maximally) mixed state.

In addition, Bob does not send out any quantum or classical message to Alice. So Alice
cannot get any private information about Bob’s private vector Y by no-signaling principle.
That is, Bob’s Privacy is unconditionally secure.
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Performance. In our protocol, it only needs Alice to transmit two quantum messages jψA1

〉 ¼ 1ffiffiffi
N

p ∑N−1
i¼0 ij ijx1;i〉 and jψA2

〉 ¼ 1ffiffiffi
N

p ∑N−1
i¼0 ij ijx2;i〉 to Bob without any classical message. So the

communication complexity of our protocol is O(1), which achieves an exponential reduction,
compared with corresponding classical protocols. In Step 4 of our protocol, it only needs to
perform quantum measurements twice. That is, the measurement complexity of our protocol is
also O(1). Therefore, our protocol obtains lower communication and measurement complex-
ities, compared with the related quantum protocols [11, 12].

Finally, to make our protocol work, the key step is to construct the efficient circuits
implementing the oracle operators. In our protocol, we define four kinds of oracle operators.
Similarly, using the techniques of reversible computation [20], we can construct a classical
reversible circuit which takes (x, y) - representing an input register initially set to x and a one bit
output register initially set to y - to (x, y⨂ f(x)), by modifying the usual (irreversible) classical
circuit for doing the classical function f(x).

4 Conclusion

In this paper, we present a strong privacy-preserving quantum protocol for secure two-party
scalar product. The proposed protocol shows that although unconditionally secure two-party
quantum computations are impossible in theory, probabilistic two-party quantum computation
with strong privacy protections is possible, which is similar to the probabilistic clone of
unknown quantum state. Furthermore, the proposed protocol achieves the communication
(measurement) complexity of O(1), and thus it is more suitable for applications with big data.
In addition, our approach can be generalized theoretically to compute secure multiparty
summation, so we hope that it can provide some new ideas to solve more secure multi-party
computations in future.
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