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Abstract
In this article, we have deigned a new mechanism for the construction of confusion component
which is one of the most important and integral part of any confidential scheme in secure
communication. The privacy of digital information is one of the most vital issues of the digitally
advancedworld. The proposed nonlinear component which is usually termed as substitution box (S-
box) is constructed by utilizing quantummap. Moreover, we have performed the robust analysis for
our anticipated nonlinear component and compared it with already existing standards.
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1 Introduction

Substitution boxes (S-boxes) are the only nonlinear component in any symmetric encryption
system. They follow the confusion principle presented by Claude Shannon in 1949. The
confusion architecture is very effective in achieving secrecy if used correctly. Therefore, the S-
boxes need to be robust and efficient to tackle any sort of differential attack or attacks made on
the bases of linear content of S-box. That is why it is vital to keep the nonlinearity in mind
when designing an S-box. For over two decades, much research has been dedicated to the use
of chaos to generate nonlinear S-boxes. But, mostly the nonlinearity achieved by them has not
been so impressive. In order to achieve good nonlinearity, Khan et al. [1] applied a fractional
linear transformation along with multiple chaotic systems to obtain an S-box. It is an easy and
simple way but the nonlinearity content was not satisfactory enough. Later, in 2015, Ahmed
et al. [2] proposed a new technique, in which the input elements of the S-box were generated
using piecewise linear chaotic map, then rastor and zigzag pattern scanning is applied to the
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initial S-box to obtain the final S-box. Özkaynak et al. [3] also presented a new S-box using the
fractional order chaotic Chen system. Wang et al. [4] used a new three dimensional continuous
chaotic map with infinite equilibrium points to design an S-box, but its nonlinearity was also
not good enough. Liu et al. [5] proposed employing spatiotemporal chaos to generate random
S-boxes. He used the non-adjacent coupled map lattices and Arnold’s cat map to extract the
spatiotemporal chaotic behavior of the system. Lambic et al. [6] used existing chaos based S-
boxes [7, 8] to derive a new S-box by defining a new composition approach. Similarly, Tian
et al. [9] proposed a novel approach to constructing S-boxes. He proposed to use a compar-
atively new version of the logistic map, named as intertwined logistic map. He combined the
intertwined logistic map [10] with the Bacterial foraging algorithm [11] to derive a new S-box.
Zaibi et al. [12] proposed an approach to use one dimensional chaotic maps like the one
dimensional logistic map and the piecewise linear chaotic map to generate a new S-box. The
nonlinearity is not mentioned in the paper. Ahmad et al. [13] proposed to chaotically modify
the trajectory of the piecewise linear chaotic map and logistic map to eliminate the gently
decreasing peaks to obtain sharp peaks of the modified chaotic map. Then later, the modified
map is scanned in a zigzag fashion to obtain better results to generate a random S-box. Belazi
et al. [14] proposed to employ the chaotic sine map to derive a new S-box with nonlinearity
greater than 105. Recently, Khan et al. [15–20] proposed significant contributions in the
construction of confusion component of block ciphers [21, 22]. In more recent works
[23–26], many schemes have been proposed for the use of chaos to construct S-boxes, but
they all suffer for a nonlinearity of 106 or less. In this paper we have proposed novel unique S-
boxes with improved nonlinearity greater than 106. Moreover, chaos based encryption
schemes were also proposed in literature due to its close association with cryptographic
applications [27–58]. In this article, our primary aim is to explore the quantum logistic map
to generate many S-boxes, optimized its parameters to select the best S-box. The selected S-
boxes are then tested to check their strength against cryptographic attacks. The tests carried out
are nonlinearity test, strict avalanche criteria, bit independence test, differential approximation
probability, linear approximation probability, algebraic degree, algebraic immunity, correlation
immunity, sum of square indicator, absolute indicator, transparency order, propagation crite-
rion, fixed points, composite algebraic immunity, robustness to differential cryptanalysis,
signal to noise ratio-differential power analysis and NIST randomness suit.

The rest of the paper is organized as follows. In section 2, we have discussed basic terms
which will be quite helpful to understand the quantum chaos. We have added cryptographic
characteristics of nonlinear confusion component in section 3. The idea of utilizing quantum
chaotic maps for the construction of nonlinear component is discussed in section 4. The results
and discussions of obtained nonlinear component are given in detailed in section 5. Finally, we
added conclusion in section 6.

2 Basic Preliminaries

In this section some preliminary work related to the quantum logistic map is discussed.

2.1 Quantum Logistic Map

In early 1980s and 90s, vast amount of research effort was being put in to study the effect of
noise and quantum fluctuations on the classical chaotic systems [48]. The results were mostly
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bended towards the favor of quantum chaotic systems as they exhibit regular, non-chaotic
behavior when exposed to quantum fluctuations [49]. In 1990, Goggin et al. [50] wrote a paper
in which he described the effect of quantum fluctuations on the much studied, famous logistic
map. He reached to a conclusion, much different from Elgin’s [49], when he applied quantum
fluctuations on the Lorenz strange attractor. In Elgin’s work, the Lorenz attractor disappeared
after applying the quantum fluctuations to the three dimensional chaotic system, and were
replaced by stable fixed points. But Goggin discovered that when quantum fluctuations were
applied on the logistic map, it followed a period doubling cascade to chaos. The quantum
chaotic system he proposed is the quantum logistic map (QLM), which we will study
qualitatively in this paper. The equation for the QLM is given below:

xiþ1 ¼ r xi− xij j2−ryi
� �

;

yiþ1 ¼ −yie
−2β þ 2re−β −xi yi þ zið Þ þ yi½ �;

ziþ1 ¼ −zie−2β þ 2re−β −xi yi þ zið Þ þ zi½ �;
ð1Þ

where, r is the same controlling parameter as in the classical logistic map and β is the
dissipation parameter, i.e. the controlling parameter in the QLM. Moreover, x0 ∈ [0.1, 0.9],
y0 ∈ [0, 0.2],and z0 ∈ [0, 1].The range of r most suitable for QLM is [3.68, 3.73], [3.75, 3.82]
and [3.88, 3.99]. As r is varied, Eq. (1) shows the same behavior as the classic logistic map. In
his paper, Goggin discovered that by increasing β, Eq. (1) exhibits a period doubling route to
the classical logistic map. In what follows, we give a qualitative analysis of the QLM and
conclude that it achieves the universal delta, known as the feigenbaum delta. We also note that
the QLM follows the converse of Sharkovsky’s theorem.

2.2 Fixed Point, Periodic Point, Orbit

We would start with the elementary definition of a fixed point. The function f maps a plane
onto itself, that is, f :ℝ→ℝ. A discrete dynamical system is of the form:

xnþ1 ¼ f xnð Þ; ð2Þ

where, fn(x) is the nth iteration of Eq. (2). x0 is a fixed point of f if f(x0) = x0. This means that for any
initial condition provided to a discrete dynamical system, if the input is always equal to the output,
then the discrete map is mapping on a fixed point. x0 is a periodic point of f if fn(x0) = x0. This means
that the function is mapping on values with a period n. An orbit of x is given by the series: x, f1(x),
f2(x),…, fn(x),where n is the total number of iterations made. The iterations computed for the same
β, r and initial conditions amount for a single orbit. There is only one value in an orbit of period 1
because all the iterations give a single value, and that is the fixed point.

There are two values in an orbit of period two because all the iterations exhibit two values
periodically, which are the period two periodic points, and so on. It takes the first iterations for
the discrete map to actually settle down on the actual values. We say that the map is exhibiting
a transient effect. So that’s why the first iterations are always discarded when plotting the maps
for some calculations. The transient effect is shown in Fig. 1, where the plot of the first
iterations is transitioning and then settling down on a fixed pattern. Figure 1 gives a look into
the periods formed by iterating the QLM and changing the value of the dissipation
parameter β.
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2.3 Period Doubling Route to Chaos

The QLM starts from the orbit of a fixed point (period 1) (Fig. 1a), and as β is increased, it
settles down on orbits of period 2, then 4, then 8, 16, 32,… 2n. This means that the increase in
the periods of the preceding orbits follow the pattern in powers of 2. This is denoted by the
term period doubling. Figure 1 only shows the period doubling orbits till period 8, because
after period 8, the sequence becomes chaotic (Fig. 1e). This means that the sequence of the
orbit never repeats. This also states that the period doubling has gone so far that the period of
the orbit is no longer recognizable. This phenomenon is termed as the period doubling route to
chaos. The sequence of period doublings is known as the period doubling cascade, in which
many periods are doubling together simultaneously and, eventually, unrecognizable.

2.4 Bifurcations

The term bifurcation means the division of something into two. The bifurcation of any system
represents how the system changes with each orbit, with the same initial conditions, but increasing
bifurcation parameter. It can depict the asymptotic long term behavior of any dynamic system. The
period doubling is also a form of bifurcation where one period is split into two periods, then from
them, into four, and so on. The period doubling bifurcation of the discrete dynamical systems is
represented by the orbit diagram, or more commonly known as the bifurcation diagram. The
bifurcation diagram of QLM is shown in Fig. 2. There are different types of bifurcations in the
study of dynamical systems. The most common is the period doubling or pitchfork bifurcation, as
opposed to the saddle node bifurcation. The QLM follows the pitchfork bifurcation, as is shown in
Fig. 2. As can be seen in the figure, the visible period 2n branches of a bifurcation are called tines, as
in the tines of a fork, with the period 2n−1 acting as the handle of the fork.

(a) (b) (c)

(d) (e)

Fig. 1 Periods 1 to 2n, for different values of β, with r = 3.8, x0 = 0.4, y0 = 0, z0 = 0. a Period 1 orbit with β=2.5,
(b) Period 2 orbit with β=3, (c) Period 4 orbit with β=3.132, (d) Period 8 orbit with β=3.199, (e) ∞ period orbit
with β = 6
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Figure 2 is plotted with respect to x. Figure 2a shows the period bifurcation of the parameter
r with the orbits of x of QLM, known as the r-bifurcation, as r is increased to 4. The r-
bifurcation of QLM is similar to the r-bifurcation of the classical map. That means after
applying quantum fluctuations on the classical map, the r-bifurcation has not been modified.
So we need to look at the behavior from the point of view of β-bifurcation.

2.5 β-Bifurcation of Quantum Logistic Map

In Fig. 2b, r = 3.8. The bifurcation diagrams do not include the transient effect, but the later
settled down iterations. As β is increased from 2.5, the first few orbits experience a stable fixed
point till β < 2.842. These are the stable period one orbits and the fixed point is an attractor. Up
till here is the stationary regime or equilibrium point. Beyond β = 2.842 the period one orbits
become unstable and their state is changed from being an attractor to repeller. At this point the
period one cycles are bifurcated and give birth to the period two cycles, then as β is increased,
the process repeats to 2n cycles. For the values, 2.843 < β < 3.035, the x converges to and
oscillates between four periodic points and thus a period 4 orbit is born. In the β-bifurcation
diagram periods until 24 are visible (if zoomed in). But beyond that x becomes chaotic and no
periods are visible anymore. This sequence of successive (and eventually, simultaneous)
pitchfork bifurcations give rise to the infinite cascade of period doublings. Figure 2b shows
that, just like the classical map, the QLM also follows the period doubling route to chaos. The
unstable cycles are still present but are not shown in the bifurcation diagram. Note that the
periods shown for different values of β in Fig. 1 also fall in line with the Fig. 2b. A visual
comparison of the bifurcation diagram of both the classical and quantized logistic map (Fig. 2)
seems that the range of values for which β is chaotic is larger than the range of r. The r is most
chaotic in the range [3.86, 4], while β is evenly chaotic in the range [4.07,∞). Moreover, the x
of QLM covers more of the unit interval than in its classical counterpart.

2.6 Feigenbaum Delta

The point beyond which the period doublings cannot be further told apart is the point of
accumulation, where the period of x has become infinite and this is the start of the chaotic
realm. If the value of β where the period two starts is denoted by β2, and the value where the

(a) (b)

Fig. 2 Bifurcation diagrams of quantum logistic map: (a): r-bifurcation, (b) β-bifurcation
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period p starts is denoted by βp, then the accumulation point in β-bifurcation diagram is
denoted by β∞ (infinite period). The accumulation point or β∞ for QLM is at 3.219, which
occurs after the period 16 orbits. Beyond the period 16 orbits the period of x becomes infinite
because of the successive period doubling cascades. These continual pitchfork bifurcations
don’t just happen after some random value of β. In fact, if the discrete dynamical system
under study is universal, then the values of β at which the bifurcation will occur can be
substantially approximately calculated. This precisely is the notion of the feigenbaum delta.
The feigenbaum delta is a universal constant which is fixed for most discrete maps with
similar dynamics like the logistic map. This delta approximately gives the points at which the
next pitchfork bifurcation will occur and also the point of accumulation. It is calculated by
the following ratio:

δ ¼ lim
n→∞

λn−1−λn−2

λn−λn−1
≈4:669; ð3Þ

where, λn is the value of the control parameter at which the nth bifurcation takes place. If the
value of δ of the map under study is approximately equal to 4.669 with some admissible
error, then the map is said to be universal. The n→∞ depicts that the period is approaching
∞. For the QLM, the n→∞ occurs at n = 16, because after this the period becomes infinite.
Table 1 gives the values of β at which the bifurcations occur.

We calculate the ratio by using Eq. (3) by considering the λ3, λ4,and λ5. So plugging these
notations in Eq. (3) gives the ratio 4.4474 with 4.7% error, which is permissible. This is
approximately equal to the universal Feigenbaum delta. So we conclude that the QLM
achieves the Feigenbaum delta and therefore it is also universal as its classical map.

2.7 Order in Chaos

After the chaotic regime begins at the accumulation point, for the values β > β∞, not all
intervals of the control parameter are equally chaotic. There are slight ranges of
periodic orbits embedded right between the chaotic aperiodic ranges, called windows
of periodicity. However slight they may be, they are still present. For the classical map,
the largest such window is the famous period three orbit embedded after r~3.8. There
may be many such similar windows of periodicity right between the aperiodic orbits
where the behavior of the dynamical system might become stable again. This phenom-
enon is called order in chaos. Likewise, in the QLM (Fig. 2b) the most prominent
window of stability is the period five orbit which occurs right after β~4. If we increase
the resolution of the plot and zoom into the neighborhood of one of these five stable
points in the period five window, more successive period doubling bifurcations can be
seen. Each point in the period five orbit is further bifurcated to give 5→ 2 × 5→ 22 ×
5→ 2n × 5→ β5, ∞, where β5, ∞ is the accumulation point where the period five period

Table 1 Values of β on which the successive bifurcations occur

Period-2n (λn)→ Period-2 (λ1) Period-4 (λ2) Period-8 (λ3) Period-16 (λ4) Period-32 (λ5)

β → 2.8421 3.0376 3.1767 3.2105 3.2181
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doubling cascade becomes chaotic. This means that each point inside a periodic
window has a miniature bifurcation diagram of its own, and thus has infinite many
bifurcation points inside it. Figure 3b shows the zoomed in portion of the neighborhood
of red circle marked in the β-bifurcation plot shown in Fig. 3a of QLM. The red circle
in Fig. 3b is zoomed in Fig. 3c, while the red circle in Fig. 3c is zoomed in Fig. 3d,
and it goes on and on and on. Thus, an infinite pitchfork bifurcation cascade is found
inside each of the bifurcations. All the secondary zoomed-in plots have classical
logistic map like bifurcations. Figure 3d shows the zoomed in version of a similar
bifurcation. It shows that this bifurcation (triple zoomed-in) has a period five orbit.
These miniature infinite bifurcations show the existence of a fractal structure of the
QLM.

2.8 Period 3 Implies Chaos

In discrete dynamical systems there are even periodic orbits in powers of 2, as seen
earlier. But there also exist the odd periods greater than 1. As encountered before in
Fig. 3a and d, which have visible period five orbits embedded between the chaotic
regions. In 1964 a Ukrainian mathematician, Alexander Sharkovsky [4], made a

(a) (b)

(c) (d)

Fig. 3 Zoomed in versions of the β-bifurcation of quantum logistic map. a un-zoomed plot of bifurcation
diagram, (b) zoomed in bifurcation diagram of the red circle in (a), (c) zoomed in bifurcation diagram of the red
circle in (b), (d) zoomed in bifurcation diagram of the red circle in (c)
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remarkable discovery and proposed the famous Sharkovsky’s ordering [51] of natural
numbers given in Eq. (4).

3⊲5⊲7⊲⋯ ð4aÞ

⊲2 � 3⊲2 � 5⊲2 � 7⊲⋯ ð4bÞ

⊲22 � 3⊲22 � 5⊲22 � 7⊲⋯ ð4cÞ

⊲23⊲22⊲2⊲1: ð4dÞ

Equation (4) is an ordering of natural odd numbers. The notation o ⊲ p signifies that o comes
before p in the Sharkovsky’s ordering. Eq. (4a) is an ordering of odd numbers greater than 1, in
an increasing order. Eq. (4b) is an order of odd numbers as multiples of 2. Eq. (4c) gives an
ordering of odd numbers as multiples of 22. The ordering eventually extends to ordering of odd
numbers greater than 1, as multiples of 2n, for all n. The last list Eq. (4d) is an ordering of
powers of 2 in decreasing order. This is a very important list in the sense that it tells the
existence of the period of an orbit based on the existence of a given periodic orbit already
present in a map. The Sharkovsky’s theorem explains the Sharkovsky’s ordering as given in
Theorem 1 [51].

Theorem 1 (Sharkovsky [51]). Let f: ℝ→ℝ be a continuous map which maps the real line
onto itself. If o ⊲ p and f has a point of period o, then f must have a point of period p.

Theorem 1 states that if a continuous map has an orbit of period o in the Sharkovsky’s
ordering, then it must have an orbit of period p. This implies that if an orbit of period o exists
then orbits of all the natural numbers following o in the Sharkovsky’s ordering are also present
in the map. And thus the famous case of period three orbit, period three implies chaos, comes
into action. In his paper [51], Sharkovsky claimed if an orbit of period three is found in a map
that means periods of all numbers following o in Sharkovsky’s order will also be present in the
map, which leads to chaos. Numerous proofs have been given of this famous theorem since
[5:8]. Now, suppose that if o = 7 then that means that the map f has orbits of all the following
periods: 7, 9, 11,13,15, …14,18,22,26,30…28,36,44, 52, 60…56,72,88,104,120…
112,144,176,208,240…16, 8, 4, 2, 1. The question arises that if o = 7, then would the orbits
of periods 3 and 5 exist? The answer is no. This is explained in the converse of Sharkovsky’s
theorem, presented by Elaydi [52], which states that the converse of Sharkovsky’s theorem is
not true.

Theorem 2 (Elaydi [52]). For any positive integer o there exists a continuous map f: ℝ→ℝ,
such that f has points of period o but no points of period n for all positive integers n that
precede o in the Sharkovsky ordering, i.e., n ⊲ o.

Theorem 2 is a converse on Sharkovsky’s Theorem which states if in a map an
orbit of period o exists then the orbits of period n and other orbits of natural numbers
that come before o in the Sharkovsky’s ordering do not exist in the map. This is
precisely the case for the QLM in which a period five orbit exists (which is the
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largest periodic window embedded in the chaotic region marked with purple block),
but no period three orbit exists in the QLM β-bifurcation, following the converse of
Sharkovsky’s theorem. For the QLM we can say that period 5 implies chaos. Because
even though period 3 orbit does not exist according to [52], but the orbits of periods
following five in the Sharkovsky’s ordering still exist in the QLM [51]. Figure 4
shows the x, y and z sequences of the QLM for the first 200 iterations, in the chaotic
region. This sums up the qualitative analysis of the QLM. In the next section we
introduce a native coupling scheme for the QLM to generate our substitution boxes.

2.9 Coupling Scheme

The proposed coupling scheme is inspired by the coupled cap lattices (CML) [53], but still is
quite different in application from them. Eq. (5) gives the proposed coupling strategy to couple
the x, y and z sequences of QLM.

xiþ1 ¼ 1−ϵð Þxi þ ϵyi;
yiþ1 ¼ 1−ϵð Þyi þ ϵzi;
ziþ1 ¼ 1−ϵð Þzi þ ϵxi;

ð5Þ

where, ϵ ∈ [0, 1]. The following section gives the proposed strategy to construct the desired S-
boxes.

3 Security Analysis of Substitution Boxes

A good nonlinear component satisfies some of the strong cryptographic properties which
includes, bijectivity, nonlinearity, strict avalanche criterion, bit independent criterion, linear
and differential approximation probabilities, and also some advanced cryptographic properties
like delta uniformity, transparency order, algebraic and correlation immunity, propagation

Fig. 4 Sequences x, y and z generated by the quantum logistic map in one plot against the number of iteration
n = 200, with r = 3.8, β=6, x0 = 0.4, y0 = 0.15, z0 = 0.2
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criteria, fixed and opposite fixed points and some others. In this section, we will define these
cryptographic characteristics. We have also presented the randomness tests applied on the
selected S-boxes in this section.

3.1 Bijective Property

A mapping function is said to be bijective if each of the element in one set maps to exactly one
element of another set, and all the elements are paired. A bijective mapping is both injective
and surjective. A substitution box is a bijective mapping of m binary input bits to n binary
output bits where m= n. In this paper we are designing an 8 bits input to 8-bit output, square
substitution box (8 × 8 S-box). In order for a Boolean function to be bijective, it has to fulfill
the bijectivity criteria given by Eq. (6), which means that each output (0–255) should be
generated exactly once.

wt ∑n
i¼1ai f i

� � ¼ 2n−1; ð6Þ

where, wt(.) is the hamming weight and ai ∈ {0, 1}, (a1, a2, a3,…an) ≠ (0, 0, 0,…0). Every
function fi needs to be balanced in the sense that there must be equal number of zeros to ones.
A bijective S-box is just a permutation of the input vectors.

3.2 Nonlinearity

Nonlinearity is defined as the distance between the principal Boolean function and the set of all
affine Boolean functions. The distance between the set of all affine functions and the Boolean
function under study is measured and then the bits in the truth table are altered to obtain the
nearest affine function. The number of changes needed to get the final affine function is the
measure of the nonlinearity of the Boolean function. The nonlinearity Nf of a function f is given
by Eq. (7).

N f ¼ min
l∈Ln

dH f ; lð Þ; ð7Þ

where, l is an affine function that belongs to Ln, the set of all affine functions, and dH is the

hamming distance between f and l, which is given by dH f ; lð Þ ¼ 2n−1− 1
2 ρ;μh i, where 〈ρ,

μ〉 = (Number of cases where f = l) − (Number of cases where f ≠ l). The nonlinearity is
calculated by using the walsh-hadamard transform stated in Eq. (8):

N f ¼ 2n−1 1−2−nmax F ̂ wð Þ�� ��� �
; ð8Þ

where, F ̂ wð Þ is the Walsh spectrum, which is given by, F ̂ wð Þ ¼ ∑x∈GF 2nð Þ−1 f xð Þ⨁Lw xð Þ and Lw(x) is a
linear function given by: w1x1⨁w1x1…⨁wnxn. Each S-box consists of 8 Boolean functions,
hence nonlinearity is calculated for each Boolean function and so the final nonlinearity is
obtained by averaging over 8 nonlinearities.
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3.3 Strict Avalanche Criteria (SAC)

A strict avalanche criterion (SAC) is an S-box analysis test in which a single input bit is
changed and the resulting change in the output bits is noted. In order to fulfill the SAC test,
with a single input changed bit, the output bits of the entire S-box should change with a
probability of half, meaning almost half of the S-box should change. This change in single bit
affecting more than half the output bits is called the Avalanche Effect. The SAC is usually
calculated with the help of a dependence matrix [54]. To satisfy the SAC, them × n elements of
an (n,m) S-box and the mean of the dependence matrix should lie round about 0.5. The ideal
value is 0.5.

3.4 Output Bit Independence Criteria (BIC)

The output bit independence criteria (BIC) is found by toggling an independent bit at
the input side and observing the entire change in the output bits and avalanche
vectors triggered by that change. In Ref. [54] it is shown that if an S-box satisfies
the nonlinearity and SAC criteria then it should also satisfy the BIC. That is, if an S-
box consists of 8 Boolean functions f1, f2, …f8, then in order to fulfill BIC the

No

Ini�alize parameters 

Ini�alize op�miza�on parameter 

Perform XOR on the obtained sequences

Iterate QLM 100,000 �mes and apply coupling

Are the elements of sequences finite? 

Are there 256 unique values

Fill the 16x16 S-box 

Calculate the average Nonlinearity

Is nonlinearity > Some fixed threshold

Have all the values in the range of the 
op�miza�on parameter been used?

X=Store
Yes

Select the best S-boxes 

Calculate the average nonlinearity, SAC, BIC-
SAC, BIC, DP and LP of X

No

Discard

No

Fig. 5 Flow chart of the optimization procedure
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function fi⨁ fj, where the range of (i, j) is between 1 and 8, and i is not equal to j,
must fulfill the SAC and nonlinearity criteria. So BIC can also be calculated by
finding out the nonlinearity and SAC of fi⨁ fj.

3.5 Equiprobable Input / Output XOR Distribution

Equiprobable input/output XOR distribution or differential approximation probability (DP) is
the measure of differential uniformity between input and output bits (input and output must be
equiprobable). So that it could be made sure that the input bits are uniformly mapped onto the
output bits, a distinct input differential △x should uniquely map to a distinct output differential
△y. The DP can be measured as in Eq. (9).

DP ¼ max
△x≠0;△y

# x∈X j f xð Þ⨁ f xþ △xð Þ ¼ △yf g
2n

� �
; ð9Þ

where, X is the set of input values and n is the number of elements in it.

3.6 Linear Approximation Probability

The linear approximation probability (LP) is the measure f how much an S-box is robust
against a linear attack. It is measure as in Eq. (10).

LP ¼ max
ψx;ψy≠0

# x∈X jx � ψx ¼ f xð Þ � ψxf g
2n

� �
; ð10Þ

where ψx and ψy are the input and output masks.

Table 2 Acceptable ranges of all the parameters of QLM

β r ϵ x0 y0 z0

[6,∞) [3.6,3.9] [0,1] [0,1] [0,0.2] [0,1)

((a) (b) (c)c)

Fig. 6 Properties of S-boxes generated by optimizing β, (a) nonlinearity, (b) average BIC-SAC, (c) average SAC
with r = 3.99, ϵ = 0.85, x0 = 0.01, y0 = 0, z0 = 0, β = 6 : 10
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3.7 Annihilator Immunity

Let f and g be two Boolean functions which map from {0, 1}n→ {0, 1}, then any function g
for which the product f. g becomes 0 is called the annihilator of f [32]. The algebraic immunity
or AI(f) is the lowest degree of all annihilating functions g for which their product becomes 0.

3.8 Algebraic Degree

The algebraic degree of an S-box is the maximum numbers terms in its truth table. Eq. (11)
gives the algebraic degree of an (n,m) S-box, with n inputs and m outputs.

deg Sn;m
� � ¼ min deg Lj

� �	 

; j ¼ 1;…; 2m−1
� �

; ð11Þ
where, Lj is the set of all linear combinations of the m Boolean functions of the S-box.

3.9 Correlation Immunity

To measure the amount of correlation between the linear combinations of input and output bits
of an S-box, a measure called correlation immunity is used. Correlation immunity tells how
much correlation immune an S-box is. There should be less correlation between the input and
output bits of an S-box. An S-box is said to be mth order correlation immune if its constitutient
Boolean functions follow Eq. (12).

1≤wt wð Þ≤m;
F ̂ wð Þ ¼ 0;

ð12Þ

(a) (b) (c)

Fig. 7 Properties of S-boxes generated by optimizing ϵ, (a) nonlinearity, (b) average BIC-SAC, (c) average SAC
with r = 3.99, β = 6, x0 = 0.01, y0 = 0, z0=0, ϵ=0:1

(a) (b) (c)

Fig. 8 Properties of S-boxes generated by optimizing r, (a) nonlinearity, (b) average BIC-SAC, (c) average SAC
with ϵ = 0.85, β = 8.3, x0 = 0.01, y0 = 0, z0 = 0, r = 3 : 3.99
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where, wt(.) as the hamming weight of the inputs of an n-variable Boolean function and

F ̂ wð Þ as the walsh-hadamard transform of those inputs.

3.10 Sum of Square and Absolute Indicator

The autocorrelation of an n variable Boolean function f defined for all w∈Fn
2 is given by Eq.

(13).

Δ f wð Þ ¼ ∑
x∈Fn

2

−1 f xð Þ⨁ f x⨁wð Þ; ð13Þ

where, (x⨁w) = {1,…, 2n − 1}.The absolute indicator of a Boolean function f is the maximum
absolute Δf calculated for all w ∈ {1,…, 2n − 1}, denoted by ACf.Likewise, the absolute indica-
tor of an (n,m)-S-box, denoted by AC(n,m). Let the Absolute Indicator of a linear combination

of the output Boolean function of an (n,m) S-box be denoted by ACli ; i ¼ 1;…; 2n−1
� �

,
then AC n;mð Þ ¼ max AClij jð Þ. The sum of square indicator for f, denoted by σf,is given

by ∑w(Δ(w))2.

3.11 Propagation Criteria

Preneel et al. generalized the concept of SAC, so that SAC became one special case in the
propagation characteristics of a Boolean function [33]. Let g∈Fn

2;then a Boolean function f is
said to satisfy the propagation criterion of degree k (PC(k)), such that 1 ≤ hw(g) ≤ k,if f(x)⨁
f(x⨁ g) is balanced. A propagation criterion of degree 1, PC(1) implies SAC. Any Boolean
function is said to satisfy the propagation criterion if for any t flipped inputs bits, every output
vector changes with a probability of half. The SAC is equivalent to PC(1) because when a

(a) (b) (c)

Fig. 9 Properties of S-boxes generated by optimizing x, (a) nonlinearity, (b) average BIC-SAC, (c) average SAC
with r = 3.99, β = 8.3, ϵ = 0.85, y0 = 0, z0 = 0, x0 = 0.1 : 0.2

(a) (b) (c)

Fig. 10 Properties of S-boxes generated by optimizing y, (a) nonlinearity, (b) average BIC-SAC, (c) average
SAC with r = 3.99, β = 8.3, ϵ = 0.85, x0 = 0.4, z0 = 0, y0 = 0 : 0.2
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Boolean function satisfies SAC it means that when 1 input bit is changed, the output bits
change with a probability of half. An (n,m) S-box is said to satisfy PC(k), if all its Li satisfy the
PC(k).

3.12 Fixed Points and Opposite Fixed Points

A fixed point of an S-box is an entry in the S-box look up table where the input equals the
output [34]. It can be illustrated mathematically by stating that for an (n,m) S-box, Sn,m(a) = a.
An opposite fixed point is a point in an S-box for which the output is the complement of the
input, or mathematically, Sn;m að Þ ¼ a. It is a good design criterion that there should be a
complete absence of fixed and opposite fixed points in a cryptographically secure S-box.

3.13 Delta Uniformity

An (n,m) S-box is said to be differentially δ-uniform if for every v∈Fn
2 and u∈Fm

2 , the equation
Sn, m(x)⨁ Sn, m(x⨁ v) = u gives δ solutions [34]. We say that the δ-uniformity (or differential
uniformity) of an S-box is δ. In order to be robust against the differential cryptanalysis the δ-
uniformity must be low.

(a) (b) (c)

Fig. 11 Properties of S-boxes generated by optimizing z, (a) nonlinearity, (b) average BIC-SAC, (c) average
SAC with r = 3.99, β = 8.3, ϵ = 0.85, x0 = 0.4, y0 = 0, z0 = 0.1 : 0.2

Table 3 Substitution box parameter values: r = 3.99, β = 8.3, ϵ = 0.85, x0 = 0.01, z0 = 0, y0 = 0

232 240 123 14 48 207 1 70 86 59 145 185 62 103 76 201

192 230 228 68 175 197 162 92 150 34 37 142 132 133 36 221
242 109 217 82 153 4 200 216 245 174 147 51 208 211 111 3
74 63 163 210 33 214 124 118 179 104 222 7 233 255 176 15
138 227 8 239 235 69 119 24 27 213 226 117 137 89 196 177
203 243 61 156 182 72 85 135 79 154 71 21 159 60 183 46
225 39 164 212 99 180 155 116 41 246 244 26 93 77 97 158
88 32 100 125 105 28 43 188 108 55 110 102 83 47 64 45
94 120 19 84 9 130 160 238 87 220 178 90 91 241 73 231
101 249 31 204 143 75 80 106 58 148 0 250 20 170 53 129
2 141 157 140 169 98 224 13 146 171 115 126 10 35 139 172
236 56 81 67 23 251 193 191 121 189 22 181 38 127 205 152
202 96 54 131 144 30 95 52 252 223 229 173 57 5 167 206
44 16 29 234 128 151 194 199 49 78 107 114 218 17 25 113
161 190 149 65 18 166 136 50 215 247 184 40 12 186 253 209
66 6 198 42 134 237 168 219 195 112 11 254 122 248 187 165
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3.14 Differential Cryptanalysis

The differential cryptanalysis [35] exploits the high entries in the difference distribution table.
Let L denote the largest value in the difference distribution table of an S-box and R denote the
number of non-zero entries in the first column of the difference distribution table. The
robustness to the differential cryptanalysis is small if L or R are small. Therefore, the
robustness to differential cryptanalysis should be as high as possible, between 0 and 1.

3.15 Differential Power Analysis

The differential power analysis (DPA) is a type of side channel attack. DPA techniques exploit
the varying power characteristics consumed by different types of circuits used to implement
the cryptographic algorithms. In this paper we have used the varying signal to noise ratio

Table 4 Substitution box parameter values: r = 3.99, β = 8.3, ϵ = 0.85, x0 = 0.01, z0 = 0, y0 = 0

232 87 67 116 9 200 3 143 72 109 126 160 110 129 74 93

22 224 238 228 27 246 108 24 0 26 254 202 199 236 120 34
70 212 210 82 4 179 61 7 23 148 155 243 21 84 186 167
111 245 37 98 18 226 241 149 64 2 136 158 83 166 213 134
174 69 13 19 77 205 54 185 125 121 165 91 248 151 137 219
10 85 203 47 198 255 214 183 168 88 8 220 112 49 68 132
94 209 184 175 180 12 163 63 192 5 230 59 244 159 95 215
99 31 35 73 154 195 234 251 240 60 161 250 28 249 235 206
15 119 117 128 20 44 196 45 233 177 145 92 123 170 207 32
58 229 29 113 218 197 75 90 172 157 56 130 66 65 38 80
156 124 217 39 101 188 51 11 216 16 62 253 14 173 187 102
106 178 142 122 104 96 114 50 138 97 89 211 247 181 144 46
81 147 152 41 52 79 169 40 76 57 103 153 6 78 190 193
140 33 25 86 239 1 176 242 131 237 127 133 194 222 227 208
225 252 141 53 42 115 107 43 71 146 100 189 17 171 30 191
223 139 36 204 55 150 48 105 162 182 221 118 231 201 135 164

Table 5 Substitution box parameter values: r = 3.99, β = 6, ϵ = 0.25, x0 = 0.01, z0 = 0, y0 = 0

136 216 145 112 34 72 150 113 101 7 144 78 231 127 118 30

185 29 208 40 197 54 77 237 193 89 204 110 179 67 213 75
11 252 132 162 1 13 154 201 224 232 33 180 90 24 227 131
73 128 207 12 4 205 85 194 199 170 196 244 242 133 245 95
91 62 65 5 215 182 103 146 152 188 189 88 165 226 211 167
161 108 19 160 143 42 210 122 164 192 55 74 120 38 156 14
202 84 39 141 157 171 250 61 69 158 66 190 107 134 176 135
148 51 64 16 43 80 247 243 212 239 254 126 174 17 251 195
241 18 41 233 8 151 92 71 100 37 200 206 117 121 149 52
142 93 68 49 35 129 102 82 191 169 255 173 9 125 222 99
130 147 139 124 56 123 27 36 230 228 50 187 111 2 48 223
236 81 47 86 104 229 220 218 238 32 253 246 53 45 209 58
163 240 198 175 15 172 119 94 184 57 137 60 155 28 116 166
219 109 106 21 3 177 98 23 249 44 214 10 25 225 248 59
183 115 178 22 221 76 235 217 26 63 168 186 0 31 46 83
105 87 181 153 6 138 70 97 79 234 20 140 114 203 159 96
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(SNR) to measure the DPA of the proposed S-boxes. SNR (DPA) with a high value closer to
9.6 is desirable for S-boxes robust against the DPA attacks [36].

4 Proposed Substitution Box Construction

The proposed substitution boxes are constructed using the following strategy. There are six
control parameters in total given by Eqs. (1)–(2) combined: r, β, ϵ, x0, y0, and z0. The S-boxes
are constructed by looping through the Eqs. (1)–(2) to generate unique sequences which are
then shaped into 8 × 8 S-boxes, then selecting the best S-boxes from them. Starting from the
parameter β, every control parameter is optimized to give the best S-boxes. Figure 5 shows the
flow diagram of the proposed procedure.

The following steps describe the proposed procedure. The procedure is divided into three
sections for the ease of understanding.

Table 6 Substitution box parameter values: r = 3.99, β = 8.3, ϵ = 0.85, x0 = 0.159, z0 = 0, y0 = 0

196 214 1 46 202 24 220 225 51 253 62 235 204 201 5 246

156 9 212 188 94 61 88 39 243 23 82 247 125 127 216 34
234 116 117 15 48 252 17 118 92 133 163 251 7 75 29 148
218 145 109 166 167 73 170 30 176 229 169 53 65 43 60 3
193 224 189 173 124 233 135 192 67 113 153 33 181 110 141 100
45 37 50 79 140 164 89 58 77 190 22 184 76 128 10 40
54 207 205 115 221 6 25 13 72 93 112 139 64 157 66 123
70 84 74 26 162 47 85 68 19 160 186 14 18 161 90 63
151 209 213 245 238 16 215 142 147 78 222 12 97 71 42 217
241 106 55 171 99 81 32 248 177 195 91 86 237 114 132 197
203 178 149 57 126 228 155 172 255 146 31 96 101 200 185 27
4 11 98 236 206 152 182 165 134 249 95 250 80 59 2 137
219 232 254 0 208 8 87 56 242 226 49 143 20 231 108 211
130 180 102 210 179 239 105 144 227 121 122 175 38 83 104 44
244 174 111 168 35 199 119 198 120 240 21 230 136 183 107 159
158 154 36 131 52 138 103 129 150 191 223 194 69 187 41 28

Table 7 Substitution box parameter values: r = 3.93, β = 8.3, ϵ = 0.85, x0 = 0.01, z0 = 0, y0 = 0

232 87 67 116 9 200 3 143 72 109 126 160 110 129 74 93

22 224 238 228 27 246 108 24 0 26 254 202 199 236 120 34
70 212 210 82 4 179 61 7 23 148 155 243 21 84 186 167
111 245 37 98 18 226 241 149 64 2 136 158 83 166 213 134
174 69 13 19 77 205 54 185 125 121 165 91 248 151 137 219
10 85 203 47 198 255 214 183 168 88 8 220 112 49 68 132
94 209 184 175 180 12 163 63 192 5 230 59 244 159 95 215
99 31 35 73 154 195 234 251 240 60 161 250 28 249 235 206
15 119 117 128 20 44 196 45 233 177 145 92 123 170 207 32
58 229 29 113 218 197 75 90 172 157 56 130 66 65 38 80
156 124 217 39 101 188 51 11 216 16 62 253 14 173 187 102
106 178 142 122 104 96 114 50 138 97 89 211 247 181 144 46
81 147 152 41 52 79 169 40 76 57 103 153 6 78 190 193
140 33 25 86 239 1 176 242 131 237 127 133 194 222 227 208
225 252 141 53 42 115 107 43 71 146 100 189 17 171 30 191
223 139 36 204 55 150 48 105 162 182 221 118 231 201 135 164
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I. Parameter selection and values initialization:

1. Select the parameter for optimization. (e.g. β)
2. Keeping the limitations on the values of parameters (e.g. 0 < ϵ < 1) in mind, select the

values for the remaining control parameters and initial conditions.
3. Select a fresh value of the optimization parameter from the range given in Table 2.

II. Optimization:

4. Iterate Eq. (1) then Eq. (2), 100,000 times to generate the three random sequences

X ; Y ; Z.
5. Multiply the three sequences with 1000,000, take their modulo 256, then floor of the

resulting three sequences to obtain XX, YY and ZZ.
6. Check if the sequences XX, YY and ZZ consist of real, finite integers. If the condition

turns out true, then proceed to next step. Otherwise go to step 3.
7. Apply the XOR operation between the sequences XX and YY, and store the resulting

sequence in the vector xor1.
8. Apply the XOR operation between the sequences xor1 and ZZ and store the new

sequence in the vector xor2.
9. Select all the unique values as they first appear (from left to right) in the sequence xor2.
10. Check if there are 256 unique values in the range 0–255. If yes, then proceed to next step,

otherwise go to Step 3.
11. Store the 256 unique values in a 16 × 16 matrix to obtain the S-box.
12. Calculate and store the average nonlinearity, SAC and BIC-SAC of the constructed S-

box.
13. If the average nonlinearity of the obtained S-box is above 106, store the S-box.
14. Repeat steps 3–14 until the desired limit for the optimization parameter (given in Table 2

has reached)

Table 8 SAC and BIC-SAC of S-boxes from step 15

S-box No Min. SAC Max. SAC Avg. SAC Min. BIC-SAC Avg. BIC-SAC

1 0.421875 0.609375 0.506836 0.46680 0.49993
2 0.421875 0.593750 0.496582 0.46484 0.49637
3 0.406250 0.625000 0.494141 0.44336 0.50056
4 0.406250 0.609375 0.501465 0.47461 0.49770
5 0.406250 0.625000 0.504883 0.46680 0.50098

Table 9 BIC, Nonlinearity, DP and LP of proposed S-boxes

S-box No Min. BIC Avg. BIC Avg. Nf Max. DP Max. Count LP Max. Value LP

1 96 103.21 106.5 12 162 0.132
2 98 104.35 106.25 10 158 0.117
3 96 103.35 106.25 12 160 0.125
4 92 103.50 106.25 10 164 0.140
5 92 103.42 106.50 12 164 0.140
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III. S-box evaluation and final selection:

15. Check if there are two or more similar S-boxes from step 13. If yes, keeping the unique
ones, discard all the repeating S-boxes.

16. Evaluate the properties given in section 2, of the remaining S-boxes from step 15.
17. Select the S-boxes with best possible results.

The optimization parameters are r, β, ϵ, x0, y0, and z0. The above mentioned steps are
performed on these six parameters one by one. Now suppose if the parameter r is being
optimized, then all other parameters will remain constant till the end of the above mentioned
procedure. The range of varying the optimization parameters are given in Table 2. It is most
suitable to start the above optimization procedure (Step 2) by taking the initial value of the
optimization parameter somewhere around the starting range mentioned in Table 2, and end
the optimization procedure (Step 10) with the ending range. The nonlinearity is the most
important property of any S-box, so the S-boxes are first evaluated according to their
nonlinearity. If the nonlinearity is below 106, the S-box is totally rejected (Step 9). As
mentioned before, the S-boxes obtained entirely from chaos mostly do not achieve average
non-linearity value more than 105. Therefore, our algorithm is designed to check if QLM is
capable of achieving greater nonlinearity than 106. If the results favor more nonlinearity, then
the QLM might become a suitable candidate to be used as a tool in fast and easy S-box
generation for sensitive and secret communications.

The results of parameter optimization are given and discussed in the following section.

5 Results and Discussions

We have plotted the graphs of the average nonlinearity, SAC and BIC-SAC of the generated S-
boxes obtained in step 12, against the varying optimization parameters, one by one. Figure 6

Table 10 Nonlinearity of the final selected S-boxes

S-box N1 N2 N3 N4 N5 N6 N7 N8 Min Nf Max Nf Avg. Nf

1 108 108 106 104 106 108 104 108 104 108 106.5
2 110 106 102 108 106 104 108 106 102 110 106.25

Table 11 Dependence matrix of proposed S-box 1

0.531 0.484 0.516 0.484 0.547 0.547 0.563 0.453

0.563 0.531 0.531 0.484 0.594 0.500 0.469 0.469
0.500 0.469 0.469 0.500 0.484 0.438 0.484 0.516
0.516 0.516 0.500 0.547 0.500 0.500 0.578 0.563
0.500 0.531 0.484 0.438 0.469 0.469 0.469 0.531
0.438 0.516 0.516 0.469 0.531 0.469 0.469 0.563
0.406 0.516 0.453 0.484 0.516 0.625 0.453 0.500
0.547 0.484 0.563 0.500 0.500 0.500 0.547 0.516
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shows the graphs of nonlinearity, SAC and BIC-SAC against the parameter β, while in Fig. 7
these evaluation tools are plot against the parameter ϵ, and so on.

These figures show the sensitivity of varying the optimization parameter. As the optimiza-
tion parameter is increased slightly, there is a drastic change in the nonlinearity, SAC and BIC-
SAC values obtained for the next generated S-box. Therefore, these six input parameters can
serve as security keys for the generation of any S-box in order to perform secure communi-
cation and data encryption. Only the individual with the knowledge of the secret keys will be
able to reconstruct the S-box applied to encrypt any data. Furthermore, the QLM has proven
itself as a useful tool for robust, easy, secure and fast S-box construction as the values of the
security parameters for the chosen S-boxes are quite good, and better than many chaos based
S-box generation algorithms [1–6]. In Figs. 6, 7, 8, 9, 10 and 11, nonlinearity values greater
than 105 and, SAC and BIC-SAC values greater than 0.5005 are marked in green to make
them distinguishable. As can be seen from Figs. 6, 7, 8, 9, 10 and 11a, there are six S-boxes in
total that have an average nonlinearity greater than 106. But out of these, two are the same;
therefore, we are left with five S-boxes to select from. In the next section, we analyze the
remaining 5 S-boxes and perform steps 16 and 17. The resulting 5 S-boxes of Step 15 are
given above (Tables 3, 4, 5, 6 and 7). These S-boxes are the result of obtaining all S-boxes of
nonlinearity greater than 106 and deleting the duplicate S-boxes. In Step 16, the S-boxes are
analyzed to obtain the best possible S-boxes. In steps 16 the 5 remaining S-boxes are analyzed
by computing all of their cryptographic security properties and comparing them together and
then the S-box with the best properties are selected. Tables 8 and 9 give the summary of all the
S-box evaluation tests performed on the 5 S-boxes. Nf represents the final nonlinearity of the
given S-box.

It can be seen from Tables 8 and 9, that the best nonlinearity component is that of S-box 1
and 5, but the maximum LP count is also a very important factor when it comes to the
differential security of the S-boxes, whose value is best for S-box 1 and 2. The value best for

Table 12 Dependence matrix of proposed S-box 2

0.531 0.469 0.453 0.469 0.531 0.531 0.484 0.500

0.453 0.453 0.438 0.531 0.484 0.563 0.531 0.578
0.469 0.484 0.531 0.500 0.484 0.453 0.531 0.484
0.453 0.469 0.516 0.516 0.516 0.531 0.516 0.531
0.438 0.453 0.453 0.531 0.469 0.547 0.438 0.547
0.563 0.594 0.531 0.516 0.500 0.500 0.547 0.453
0.500 0.469 0.422 0.469 0.500 0.422 0.531 0.453
0.531 0.484 0.484 0.547 0.484 0.438 0.484 0.500

Table 13 BIC nonlinearity of proposed S-box 1

– 104 102 104 106 98 106 106

104 – 96 104 102 98 104 108
102 96 – 106 104 100 106 108
104 104 106 – 108 106 106 104
106 102 104 108 – 92 104 98
98 98 100 106 92 – 104 108
106 104 106 106 104 104 – 104
106 108 108 104 98 108 104 –
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maximum DP is best of S-box 2 and 4, but S-box 4 does not exhibit good LP property. The
best value of BIC-nonlinearity is that of S-box 2. Furthermore, it can also be said that there is
not much difference between the nonlinearity values 106.5 and 106.25, and more votes are
bended towards S-box 2, except for the lower nonlinearity, i.e. 106.25. So, if not considering
the low nonlinearity, the best S-box is S-box 2. But we suggest that for those applications in
which the value of nonlinearity is of great importance, they should use the S-box 1, while those
applications which are sensitive to differential attacks must use the S-box 2. Therefore, we
propose two final S-boxes, i.e. S-box1 and S-box 2. The detailed analysis of the two final
proposed S-boxes is given in the next section.

5.1 Detailed Analysis of the Proposed S-Boxes

The final proposed S-boxes are S-box 1 and 2, given in Tables 3 and 4, respectively. This
section details the results and discussion of the proposed S-boxes.

5.1.1 Nonlinearity

The nonlinearity of most chaos based good S-boxes is more than 105 on average, with 112
being the highest average nonlinearity achieved till date. The more the nonlinearity, the better
is the nonlinear content in the S-box. The optimization of QLM has proven to generate S-
boxes of nonlinearity more than 106. Table 10 shows that the minimum nonlinearity of both
the proposed S-boxes is no less than 102, while the maximum nonlinearity is 108 and 110 for
S-box1 and 2, respectively, while the average of S-box 1 and 2 is 106.5 and 106.25,
respectively. It can also be seen from the comparison given in Table 19 that the proposed S-
boxes are better than some already proposed S-boxes in literature.

Table 14 BIC nonlinearity of proposed S-box 2

– 104 104 106 104 98 104 106

104 – 100 104 104 106 104 106
104 100 – 106 104 108 106 108
106 104 106 – 102 104 106 106
104 104 104 102 – 106 100 108
98 106 108 104 106 – 100 106
104 104 106 106 100 100 – 102
106 106 108 106 108 106 102 –

Table 15 BIC of SAC of Proposed S-box 1

– 0.508 0.502 0.498 0.529 0.492 0.510 0.477

0.508 – 0.496 0.512 0.498 0.473 0.475 0.500
0.502 0.496 – 0.535 0.496 0.500 0.506 0.498
0.498 0.512 0.535 – 0.514 0.486 0.467 0.498
0.529 0.498 0.496 0.514 – 0.492 0.535 0.488
0.492 0.473 0.500 0.486 0.492 – 0.506 0.510
0.510 0.475 0.506 0.467 0.535 0.506 – 0.527
0.477 0.500 0.498 0.498 0.488 0.510 0.527 –
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5.1.2 Strict Avalanche Criteria

The ideal value of SAC is 0.5 which can be obtained by averaging over all the elements of the
dependence table. The less the difference between the SAC and 0.5, the better is the S-box.
Tables 11 and 12 give the dependence tables of the proposed S-boxes. It can be seen from the
tables that all the elements of the dependence table are very much near to 0.4 and 0.5. Table 19
gives a summary of the minimum, maximum and average value of SAC for both the proposed
S-boxes, obtained from their dependence tables. The minimum value of SAC is 0.42 for both
the S-boxes, while the maximum is 0.61 and 0.59, respectively. The average values for both S-
boxes are 0.506 and 0.597, which are very much close to 0.5, making the S-boxes fulfill the
SAC test.

5.1.3 Bit Independence Criteria

As mentioned before, if an S-box fulfills the non-linearity and SAC criteria then it must also
fulfill the BIC test. So both our S-boxes do pass the BIC test as their nonlinearity is good and
the SAC is near to 0.5. But still for better evaluation we have drawn the BIC-nonlinearity
Tables 13 and 14 for both the proposed S-boxes. From the tables it can be seen the minimum
value of the BIC nonlinearity of both the S-boxes is 96 and 98, respectively. While the average
BIC-nonlinearity is 103.214 and 104.357, respectively, which is acceptable for a good S-box.

Table 16 BIC of SAC of Proposed S-box 2

– 0.492 0.494 0.523 0.508 0.500 0.504 0.516

0.492 – 0.502 0.506 0.465 0.496 0.502 0.504
0.494 0.502 – 0.510 0.482 0.475 0.514 0.473
0.523 0.506 0.510 – 0.486 0.479 0.482 0.498
0.508 0.465 0.482 0.486 – 0.527 0.498 0.496
0.500 0.496 0.475 0.479 0.527 – 0.490 0.486
0.504 0.502 0.514 0.482 0.498 0.490 – 0.490
0.516 0.504 0.473 0.498 0.496 0.486 0.490 –

Table 17 Differential approach table for the chosen S-box 1

0 6 6 6 6 6 6 6 6 6 6 8 6 6 8 10

6 8 6 6 6 6 8 10 6 6 8 8 10 4 6 8
10 6 8 8 4 8 6 6 6 8 8 4 6 4 6 6
6 6 6 6 6 6 6 6 6 6 8 6 6 6 6 6
6 6 10 8 6 6 6 6 6 8 8 6 8 8 8 8
10 6 8 8 6 6 6 6 8 6 6 6 6 6 6 8
6 6 6 8 8 8 6 8 6 8 8 6 6 8 12 8
6 8 6 6 8 8 8 6 8 8 6 6 8 8 6 6
6 6 10 6 6 8 8 6 8 6 8 6 8 6 6 6
6 4 8 6 6 6 6 6 6 8 6 8 6 8 6 6
6 6 8 8 8 6 8 6 8 8 8 8 6 6 6 6
8 8 6 8 8 6 8 8 6 8 6 6 6 6 6 6
6 6 6 6 8 8 6 10 8 6 8 6 8 8 8 10
6 8 6 8 8 6 6 8 6 8 6 6 8 6 6 6
8 6 8 6 6 6 6 6 6 6 8 6 6 8 6 6
6 8 6 6 6 6 6 6 10 6 6 6 6 6 10 6
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5.1.4 BIC of SAC

The value of BIC-SAC, like SAC, is ideally 0.5. Tables 15 and 16 show the dependence tables
for the proposed S-boxes. The lowest entry in the dependence table of both the S-boxes is 0.47
and the average of all the values is 0.45 and 0.5 for S-box1 and 2, respectively. These values
show that the proposed S-boxes fulfill the BIC-SAC test.

5.1.5 Differential Probability

For an S-box to be secure, the value of DP should be as low as possible. The values for DP for
the proposed S-boxes are tabulated in Tables 17 and 18. The maximum value is 12 for both S-
box 1 and 10 for S-box 2, which is better than the first S-box. That is why we have
recommended using the S-box 2 where there is more danger of differential cryptanalysis
attack.

5.1.6 Some Advanced Properties

Table 19 gives the summary of the properties of the proposed S-boxes. Table 20 gives the
advanced cryptographic properties of some of the recent S-boxes with nonlinearity almost
equal to 106. The table.

indicates comparison of the proposed S-boxes and these recently proposed S-boxes with
similar nonlinearities. The values of the given cryptographic properties show that our proposed

Table 18 Differential approach table for the chosen S-box 2

0 6 6 8 6 6 6 6 6 8 8 8 6 8 6 6

6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 8
8 8 6 6 6 6 6 8 10 8 8 8 6 8 6 8
8 6 10 8 8 6 6 6 4 6 4 8 6 6 8 6
6 6 6 6 8 8 6 8 8 8 6 8 6 6 8 6
6 8 8 6 6 8 6 6 6 8 6 6 6 6 6 8
6 6 6 6 8 6 8 6 8 8 8 6 8 6 6 6
8 6 6 6 6 6 6 6 6 6 6 6 6 6 8 6
6 6 6 6 6 6 6 8 6 6 8 6 8 8 6 6
8 6 6 10 8 6 8 6 8 6 6 6 4 8 6 6
8 8 8 8 6 6 6 8 8 6 6 8 6 8 8 6
6 8 8 6 8 8 8 6 8 6 8 10 6 6 8 6
8 6 6 6 6 8 6 6 6 10 6 6 6 6 6 6
6 8 8 8 8 6 8 6 6 6 6 8 6 6 8 8
6 6 6 6 6 6 6 6 6 8 6 6 6 8 8 6
6 6 6 6 6 8 6 6 8 6 8 6 8 6 6 6

Table 19 Summary of proposed S-box analysis

Nonlinearity SAC BIC BIC-SAC LP

S-box Min. Max. Avg. Min Max Avg. Min. Avg. Min. Avg. DP Count Value

1 104 108 106.5 0.421 0.609 0.506 96 103.2 0.466 0.499 12 162 0.132
2 102 110 106.25 0.421 0.593 0.496 98 104.4 0.464 0.496 10 158 0.117
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S-boxes possess similar or better properties than the S-boxes of comparisons proposed by
some famous researchers.

5.2 Randomness Testing

In order to test if the elements of an S-box follow a random order, the NIST statistical test suite
is applied on S-boxes. There are in total there are 188 NIST tests in the randomness testing
suite, but of out of them a few are not applicable to S-boxes. In total 159 tests are applicable to
S-boxes. These 159 tests are summarized under 10 headings in this paper. For the purpose of
running the tests the S-boxes are converted to a one dimensional string of 2048 binary bits.
This string is then input to perform the randomness testing. The tests applicable to S-boxes are
block frequency, cumulative sums, fast Fourier transform, frequency, longest runs, non-
overlapping template, overlapping template, rank, runs and serial tests. There is only one
sub-test in the block frequency, fast Fourier, frequency, longest runs, overlapping template,
rank and runs test. There are two sub-tests in the cumulative sums and serial tests, while the
non-overlapping template consists of 148 sub-tests, therefore making 159 randomness tests
applied to our S-boxes. The tests are designed in such a way that every test results in a p-value.
If the found p-value is equal to 0 or less than 0.01 it indicates a non-random sequence. If the p-
value is greater than or equal to 0.01 it indicates a random sequence. And if the p-value equals
1, the sequence provided is perfectly random. The results of NIST randomness testing on S-
box 1 and 2 are shown in Table 21. To summarize it all, the proposed S-box 1 passed 155 tests

Table 21 NIST tests of randomness

Proposed S-box 1 Proposed S-box 1

p-value Proportion Outcome p-value Proportion Outcome

Block frequency 0.598714 1/1 Pass 0.994364 1/1 Pass
Cumulative sums 0.989269 2/2 Pass 0.999477 2/2 Pass
Fast Fourier transform 0.330390 1/1 Pass 0.967650 1/1 Pass
Frequency 1.000000 1/1 Pass 1.000000 1/1 Pass
Longest runs 0.716298 1/1 Pass 0.767028 1/1 Pass
Non-overlapping template 0.563400 144/148 Pass 0.566500 145/148 Pass
Overlapping template 0.295708 1/1 Pass 0.886589 1/1 Pass
Rank 0.481248 1/1 Pass 0.741908 1/1 Pass
Runs 0.215925 1/1 Pass 0.859684 1/1 Pass
Serial 0.178011 2/2 Pass 0.471947 2/2 Pass

Table 22 Comparison with other S-boxes

S-box Nonlinearity SAC BIC BICSAC DP LP

Proposed 1 106.5 0.506 103.2 0.499 12 0.132
Proposed 2 106.25 0.496 104.3 0.496 10 0.117
Skipjack 105.75 0.503 104.1 0.499 12 0.109
Ref [1] 105.25 0.498 103.7 0.498 12 0.125
Ref [2] 104.70 0.578 103.1 0.494 12 –
Ref [4] 106.00 0.519 104.2 0.501 10 0.132
Ref [5] 104.50 0.498 104.6 0.507 12 0.125
Ref [24] 104.00 0.4999 – – 06 0.109
Ref [25] 106.00 0.529 100.0 – 10 0.071
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out of 159 while the proposed S-box 2 passed 157 tests out of 159 tests. This concludes that
the proposed substitution boxes are random as they pass almost all the NIST randomness tests
that are applicable to the S-boxes.

5.3 Comparison of the Proposed S-Boxes with Other Common Schemes

A comparison table is given in Table 22. The nonlinearity of the proposed S-boxes is not as
good as the AES S-box, but as compared to other chaos based schemes, it gives quite good
results. As mentioned earlier, the chaos based schemes do not exhibit nonlinearities much
more than 105. Considering this, the QLM exhibits good nonlinearity. The proposed S-box 2
can compete in the BIC-SAC as its value is higher than most chaos based algorithms. The
values for DP and LP are also good compared to the rest of the S-boxes mentioned here.

6 Conclusion and Future Scope

In this research article, we have utilized quantum logistic chaotic iterative map to design a new
mechanism for the confusion component immensely utilized in modern secure block ciphers.
The suggested confusion element has robust characteristics which fulfills the requirements of
resilient encryption mechanism in real time environment. The offered substitution boxes have
a vast amount of possible usage in systems which need fast S-box generation with optimal
security features. The projected mechanism can be utilized to generate similar S-boxes
dynamically as the generated S-boxes would all possess almost equal characteristics. The
optimization procedure can be applied to any chaotic iterative map to generate new S-boxes
with resistant cryptographic properties.
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