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Abstract
We explicitly model entanglement in quantum processes by treating entanglement as a kind
of parallelism. We introduce a shadow constant quantum operation and a so-called entangle-
ment merge into quantum process algebra qACP. The transition rules of the shadow constant
quantum operation and entanglement merge are designed. We also do a sound and complete
axiomatization modulo the so-called quantum bisimilarity for the shadow constant quantum
operation and entanglement merge. Then, this new type entanglement merge is extended
into the full qACP. The new qACP has wide use in verification for quantum protocols, since
most quantum protocols have mixtures with classical and quantum information, and also
there are many quantum protocols adopting entanglement.

Keywords Quantum mechanics · Entanglement · Quantum processes · Process algebra

1 Introduction

To unify quantum computing and classical computing under the same process algebra
framework [1–5], is attractive and has an important significance, because most quantum
communication protocols involve quantum information and classical information, quantum
computing and classical computing. There are several so-called quantum process algebra,
such as CQP (Communicating Quantum Processes) [8, 9], QPAlg (Quantum Process Alge-
bra) [10–13], qCCS [7, 14, 15, 17, 18], qACP [19]. These works try to give quantum
protocols and quantum computing a process algebra foundation, some are for pure quantum
computing, and the other unify quantum computing and classical computing.

There is one core concept called entanglement which is unique in quantum protocols
and quantum computing. Unfortunately, this mechanism has not been modeled in quantum
process algebra until now, though there are a few theoretical works on entanglement, such
as types for quantum computing [20].

In this paper, we give entanglement a process algebra foundation by treating entan-
glement as a kind of parallelism. Based on our previous work qACP, we introduce a
shadow constant quantum operation � and a new kind of entanglement merge � to model
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entanglement in quantum protocols and quantum computing. We extend the new kind of
parallelism into the whole qACP to make that it can verify quantum protocols involving
quantum information with entanglement and classical information mixed.

This work uses some results of the previous works, especially qCCS [14] and qACP
[20], in the following ways. (1) We still use the concept of a quantum process configuration
〈p, �〉 [7, 7–11, 14, 15, 18, 20], which is usually consisted of a process term p and state
information � of all (public) quantum information variables. (2) Like qCCS [14] and qACP
[20], quantum operations are chosen to describe transformations of quantum states, and
behave as the atomic actions of a pure quantum process. Quantum measurements are treated
as quantum operations, so probabilistic bisimilarity are avoided.

This paper is organized as follows. We do not introduce some preliminaries, including
quantum mechanics, equational logic, structural operational semantics, please refer to [6]
and [7] for details. In Section 2, we introduce quantum process algebra qACP. We model
entanglement as a kind of parallelism in Section 3 and extend this new kind of parallelism
into the whole qACP in Section 4. In Section 5, we verify a quantum protocol which mixes
quantum information (with entanglement) and classical information. Finally, we conclude
this paper in Section 6.

2 Preliminaries

For convenience of the reader, we introduce quantum process algebra qACP [20] briefly.
ACP [5] is a kind of process algebra which focuses on the specification and manipulation

of process terms by use of a collection of operator symbols. In ACP, there are several kind of
operator symbols, such as basic operators to build finite processes (called BPA), communi-
cation operators to express concurrency (called PAP), deadlock constants and encapsulation
enable us to force actions into communications (called ACP), liner recursion to capture
infinite behaviors (called ACP with linear recursion), the special constant silent step and
abstraction operator (called ACPτ with guarded linear recursion) allows us to abstract away
from internal computations.

Bisimulation or rooted branching bisimulation based structural operational semantics is
used to formally provide each process term used the above operators and constants with a
process graph. The axiomatization of ACP (according the above classification of ACP, the
axiomatizations are EBPA, EPAP, EACP, EACP + RDP (Recursive Definition Principle) + RSP
(Recursive Specification Principle), EACPτ + RDP + RSP + CFAR (Cluster Fair Abstraction
Rule) respectively) imposes an equation logic on process terms, so two process terms can
be equated if and only if their process graphs are equivalent under the semantic model.

ACP can be used to formally reason about the behaviors, such as processes executed
sequentially and concurrently by use of its basic operator, communication mechanism, and
recursion, desired external behaviors by its abstraction mechanism, and so on.

ACP is organized by modules and can be extended with fresh operators to express more
properties of the specification for system behaviors. These extensions are required both the
equational logic and the structural operational semantics to be extended. Then the extension
can use the whole outcomes of ACP, such as its concurrency, recursion, abstraction, etc.

qACP [20] is the first axiomatization attempt for quantum processes. A weak bisimi-
larity (quantum branching bisimulation equivalence) is established for quantum processes.
This weak bisimilarity is in a non-probabilistic way that follows [14] and can be used to
model silent step and abstract internal actions. qACP still uses the framework of a quantum
process configuration 〈p, �〉, but treating it as two relative independent part: the structural
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part p and the quantum part �, because the establishment of a sound and complete theory
is dependent on the structural properties of the structural part p. Let the quantum part � be
the outcomes of execution of p to examine and observe the function of the basic theory of
quantum mechanics. qACP establishes the relationship between quantum bisimilarity and
classical bisimilarity, including strong bisimilarity and weak bisimilarity, which makes an
axiomatization of quantum processes possible. qACP establishes a series of axiomatizations
of quantum process algebra, including BQPA (Basic Quantum Process Algebra), QPAP
(Quantum Process Algebra with Parallelism), AQCP (Algebra of Quantum Communicating
Processes), AQCP with guarded linear recursion, and AQCPτ with guarded linear recur-
sion. Though these axiomatizations are based on classical axiomatizations of ACP which is
based on the structural analysis the process p, they are not trivial and ordinary, because it
is also necessary to examine if the outcomes � of execution of p obey the basic quantum
mechanics theory. qACP and classical ACP are unified under the framework of quantum
process configuration 〈p, �〉. This unifying means that quantum information and classical
information can be mixed in qACP and quantum computing and classical computing are uni-
fied in qACP. Thus, qACP can be used widely for verification of quantum communication
protocols, which involve not only quantum information, but also classical information.

3 Modeling Entanglement in qACP

In the following, the variables x, x′, y, y′, z, z′ range over the collection of process terms, the
variables υ, ω range over the set A of atomic quantum operations, α, β ∈ A, s, s′, t, t′ are
closed items, τ is the special constant silent step, δ is the special constant deadlock, and the
predicate

α−→ √
represents successful termination after execution of the quantum operation

α, the variables υ, ω range over the set A of atomic quantum operations, and the variable
ν, μ range over the set C of atomic communicating actions.

3.1 Entanglement in QuantumMechanics and Quantum Computing

Quantum information are carried by particles. The simplest non-trivial quantum system is
the quantum bit or qubit. A qubit’s state space is the 2-dimensional space which is denoted
as Q. The space Q is equipped with a standard basis composed with |0〉 and |1〉. The tensor
product of Q is Q ⊗ Q for the space of two qubits and its standard basis composed with the
four vectors |00〉, |01〉, |10〉 and |11〉. Another important basis for Q⊗Q is called Bell states
or EPR states, which contains the four vectors:

β1 = 1√
2
(|00〉 + |11〉),

β2 = 1√
2
(|00〉 − |11〉),

β3 = 1√
2
(|01〉 + |10〉),

β4 = 1√
2
(|01〉 − |10〉).

The elements of Bell states are entangled states, which represent systems which are cor-
related with each other. And many quantum protocols and quantum computation can derive
extra power of entanglement, since it is unique for quantum computing.
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3.2 Modeling Entanglement as a Kind of Parallelism – Entanglement Merge

We consider entanglement as a kind of parallelism, i.e., information formed by entangled
particles may be distributed over a long distance, and quantum operations manipulated on
one particle not only change the information represented by this particle, but also those
represented by other particles entangled with this particular particle dramatically without
any interactions among them. This new kind of parallelism does not need any information
exchange and any information channel.

So, we extend the Basic Quantum Process Algebra (BQPA) to form a new Algebra of
Quantum Communicating Processes (AQCP) which is also called AQCP.

3.2.1 Shadow Constant

Since process algebra, exactly ACP or qACP, is a kind of algebraic manipulation on actions
or quantum operations, and information are hidden by actions and quantum operations.
Quantum operation manipulated on one particle will change the quantum states of other
entangled particles simultaneously, but, the absence of any quantum operation on other
entangled particles will disturb the principles of structural operational semantics on which
qACP is based. To conquer this problem, we introduce a special constant quantum operation
which is called shadow constant�. Now, the set A of all quantum operations is extended to
A ∪ {�}. The shadow constant � is always depended on some entangled particles, when a
quantum operation α is manipulated on one particle, then there will be shadow operations
�α manipulated on the other entangled particles.

Actually, when one quantum operation α is manipulated on one particle, the states of
the other entangled particles are changed without any quantum operation. So, the behav-
ior of the shadow operation � is doing nothing, as the following transition rule says.
This is why the shadow constant � is called a shadow, especially, �υ is the shadow
of υ.

〈�, �〉 −→ 〈√, �〉

〈�υ, �〉 −→ 〈√, �〉
Obviously, we can get the following two conclusions.

Theorem 1 BQPA with shadow constant is a conservative extension of BQPA.

Proof Since the corresponding TSS of BQPA is source-dependent [20], and the transi-
tion rules for the shadow constant � contain only a fresh constant in their source, so
the corresponding TSS of BQPA with shadow constant is a conservative extension of that
of BQPA. That means that BQPA with shadow constant is a conservative extension of
BQPA.

Theorem 2 Quantum bisimulation equivalence is a congruence with respect to BQPA with
shadow constant.

Proof The structural part of QTSSs for BQPA with shadow constant and BQPA are all in
panth format [20], so bisimulation equivalence that they induce is a congruence. According
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to the definition of quantum bisimulation, quantum bisimulation equivalence that QTSSs
for BQPA with shadow constant induce is also a congruence.

The axioms for shadow constant is shown in Table 1.
We can easily get the following two theorems.

Theorem 3 EBQPA + SC1 - SC3 is sound for BQPA with shadow constant modulo quantum
bisimulation equivalence.

Proof Since quantum bisimulation is both an equivalence and a congruence for BQPA with
shadow constant, only the soundness of the first clause in the definition of the relation = is
needed to be checked. That is, if s = t is an axiom in EBQPA + SC1 - SC3 and σ a closed
substitution that maps the variable in s and t to basic quantum process terms, then we need
to check that 〈σ(s), �〉↔〈σ(t), ς〉.

Since axioms in EBQPA + SC1 - SC3 are sound modulo bisimulation equivalence, accord-
ing to the definition of quantum bisimulation, we only need to check if �′ = ς ′ when � = ς ,
where � evolves into �′ after execution of σ(s) and ς evolves into ς ′ after execution of σ(t).
We can find that every axiom in Table 1 meets the above condition.

Theorem 4 EBQPA + SC1 - SC3 is complete for BQPA with shadow constant modulo
quantum bisimulation equivalence.

Proof To prove that EBQPA + SC1 - SC3 is complete for BQPA with shadow constant
modulo quantum bisilumation equivalence, it means that 〈s, �〉↔〈t, ς〉 implies s = t.

It can be easily proved that EBQPA + SC1 - SC3 is complete for BQPA with shadow
constant modulo bisimulation equivalence, that is, s↔t implies s = t.

(1) The axioms SC1-SC3 are turned into rewriting rules directly from left to right, and
added to the three rewriting rules in the proof the completeness of EBPA (see [5]).
The resulting TRS is terminating modulo AC (Associativity and Commutativity) of +
operator through defining new weight functions on process terms.

weight(�) � 2

weight(υ) � 2

weight(s + t) � weight(s) + weight(t)

weight(s · t) � weight(s)2 · weight(t)
We can get that each application of a rewriting rule strictly decreases the weight of
a process term, and that moreover process terms that are equivalent modulo AC of +
have the same weight. Hence, the TRS is terminating modulo AC of + .

Table 1 Axioms for shadow
constant

No. Axiom

SC1 x + � = �
SC2 � · x = x

SC3 x · � = x
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(2) We will show that the normal form n are not of the form s +�,� · s, s ·�. The proof
is based on induction with respect to the size of the normal form n.

– If n is an atomic action, then it does not contain the shadow constant �.
– n cannot be of the form s + �, s · �,� · s, because in that case, the directed

version of SC1, SC2 and SC3 would apply to it, contradicting the fact that n is a
normal form.

We proved that normal forms are all basic process terms.

(3) We proceed to prove that the axiomatization EBQPA + SC1 - SC3 is complete for BQPA
with shadow constant modulo bisimulation equivalence. Let the process terms s and
t be bisimilar. The TRS is terminating modulo AC of the + , so it reduces s and t to
normal forms n and n′, respectively. Since the rewrite rules and equivalence modulo
AC of the + can be derived from EBQPA + SC1 - SC3, s = n and t = n′. Soundness
of EBQPA +SC1 - SC3 then yields s↔n and t↔n′, so n↔s↔t↔n′. We shown that
the normal forms n and n′ are basic process terms. Then it follows that n↔n′ implies
n =AC n′. Hence, s = n =AC n′ = t.

〈s, �〉↔〈t, ς〉 with � = ς means that s↔t with � = ς and �′ = ς ′, where � evolves into
�′ after execution of s and ς evolves into ς ′ after execution of t, according to the definition
of quantum bisimulation equivalence. The completeness of EBQPA + SC1 - SC3 for BQPA
with shadow constant modulo bisimulation equivalence determines that EBQPA + SC1 - SC3
is complete for BQPA with shadow constant modulo quantum bisimulation equivalence.

3.2.2 Entanglement Merge

In AQCP, there are two kind of merges: left merge and communication merge |. For
parallelism, these two kind of merges remain in the new AQCP. To model entanglement,
another new kind of merge called entanglement merge should be added. In this kind of
merge, there is not any information exchange via any channel.

The merge 〈s ‖ t, �〉 can choose to execute an initial transition of process term s or an
initial transition of process term t, and change the quantum state, which is captured by the
following four transition rules.

〈x, �〉 υ−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈y, �′〉

〈x, �〉 υ−→ 〈x′, �′〉
〈x ‖ y, �〉 υ−→ 〈x′ ‖ y, �′〉

〈y, �〉 υ−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈x, �′〉

〈y, �〉 υ−→ 〈y′, �′〉
〈x ‖ y, �〉 υ−→ 〈x ‖ y′, �′〉
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And also the merge 〈s ‖ t, �〉 can choose to execute a communication of initial transitions
of the process term s and t, and does not change the quantum state, which is expressed by
the following four transition rules.

〈x, �〉 ν−→ 〈√, �〉 〈y, �〉 μ−→〈√, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−−→ 〈√, �〉
〈x, �〉 ν−→ 〈√, �〉 〈y, �〉 μ−→〈y′, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−−→ 〈y′, �〉
〈x, �〉 ν−→ 〈x′, �〉 〈y, �〉 μ−→〈√, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−−→ 〈x′, �〉
〈x, �〉 ν−→ 〈x′, �〉 〈y, �〉 μ−→〈y′, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−−→ 〈x′ ‖ y′, �〉
And also the merge 〈s ‖ t, �〉, in which there is entanglement between s and t, can choose

to execute an initial transition of process term s or an initial transition of process term t, and
change the quantum state, which is expressed by the following eight transition rules.

〈x, �〉 υ−→ 〈√, �′〉 〈y, �〉 �υ−−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈√, �′〉

〈x, �〉 �υ−−→〈√, �′〉 〈y, �〉 υ−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈√, �′〉

〈x, �〉 υ−→ 〈√, �′〉 〈y, �〉 �υ−−→ 〈y′, �′〉
〈x ‖ y, �〉 υ−→ 〈y′, �′〉

〈x, �〉 �υ−−→〈√, �′〉 〈y, �〉 υ−→ 〈y′, �′〉
〈x ‖ y, �〉 υ−→ 〈y′, �′〉

〈x, �〉 υ−→ 〈x′, �′〉 〈y, �〉 �υ−−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈x′, �′〉

〈x, �〉 �υ−−→〈x′, �′〉 〈y, �〉 υ−→ 〈√, �′〉
〈x ‖ y, �〉 υ−→ 〈x′, �′〉

〈x, �〉 υ−→ 〈x′, �′〉 〈y, �〉 �υ−−→ 〈y′, �′〉
〈x ‖ y, �〉 υ−→ 〈x′ ‖ y′, �′〉

〈x, �〉 �υ−−→〈x′, �′〉 〈y, �〉 υ−→ 〈y′, �′〉
〈x ‖ y, �〉 υ−→ 〈x′ ‖ y′, �′〉
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Since there does not exist a sound and complete finite axiomatization for BPA extended
with the merge, modulo bisimulation equivalence, it is can be proved that there does not
exist a sound and complete axiomatization for BQPA extended with the merge modulo
quantum bisimulation equivalence either. This can be overcome by defining three extra
operator that are called left merge and communication merge |, and also entanglement
merge �. We call BQPA extended with the merge operator ‖, the left merge operator ,
the communication merge operator | and the entanglement merge � as Quantum Process
Algebra with Parallelism and entanglement, which is also called QPAP.

The left merge and communication merge | are the same as those in QPAP in qACP.
The eight transition rules of entanglement merge � are as follows.

〈x, �〉 υ−→ 〈√, �′〉 〈y, �〉 �υ−−→ 〈√, �′〉
〈x � y, �〉 υ−→ 〈√, �′〉

〈x, �〉 �υ−−→〈√, �′〉 〈y, �〉 υ−→ 〈√, �′〉
〈x � y, �〉 υ−→ 〈√, �′〉

〈x, �〉 υ−→ 〈√, �′〉 〈y, �〉 �υ−−→ 〈y′, �′〉
〈x � y, �〉 υ−→ 〈y′, �′〉

〈x, �〉 �υ−−→〈√, �′〉 〈y, �〉 υ−→ 〈y′, �′〉
〈x � y, �〉 υ−→ 〈y′, �′〉

〈x, �〉 υ−→ 〈x′, �′〉 〈y, �〉 �υ−−→ 〈√, �′〉
〈x � y, �〉 υ−→ 〈x′, �′〉

〈x, �〉 �υ−−→〈x′, �′〉 〈y, �〉 υ−→ 〈√, �′〉
〈x � y, �〉 υ−→ 〈x′, �′〉

〈x, �〉 υ−→ 〈x′, �′〉 〈y, �〉 �υ−−→ 〈y′, �′〉
〈x � y, �〉 υ−→ 〈x′ ‖ y′, �′〉

〈x, �〉 �υ−−→〈x′, �′〉 〈y, �〉 υ−→ 〈y′, �′〉
〈x � y, �〉 υ−→ 〈x′ ‖ y′, �′〉

We can get the following conclusions.

Theorem 5 QPAP is a conservative extension of BQPA with shadow constant.

Proof Since the corresponding TSS of BQPA with shadow constant is source-dependent
[20], and the transition rules for merge operator ‖, left merge operator , communica-
tion merge | and entanglement merge � contain only a fresh operator in their source,
so the corresponding TSS of QPAP is a conservative extension of that of BQPA with
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shadow constant. That means that QPAP is a conservative extension of BQPA with shadow
constant.

Theorem 6 Quantum bisimulation equivalence is a congruence with respect to QPAP.

Proof The structural part of QTSSs for QPAP and BQPA with shadow constant are all in
panth format [20], so bisimulation equivalence that they induce is a congruence. According
to the definition of quantum bisimulation, quantum bisimulation equivalence that QTSSs
for QPAP induce is also a congruence.

We design an axiomatization for QPAP illustrated in Table 2.
Then, we can get the soundness and completeness theorems as follows.

Theorem 7 EQPAP is sound for QPAP modulo quantum bisimulation equivalence.

Proof Since quantum bisimulation is both an equivalence and a congruence for QPAP
[20], only the soundness of the first clause in the definition of the relation = is needed
to be checked. That is, if s = t is an axiom in EQPAP and σ a closed substitution that

Table 2 Axioms for QPAP
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maps the variable in s and t to basic quantum process terms, then we need to check that
〈σ(s), �〉↔〈σ(t), ς〉.

Since axioms in EQPAP (same as EPAP) are sound for QPAP modulo bisimulation equiva-
lence, according to the definition of quantum bisimulation, we only need to check if �′ = ς ′
when � = ς , where � evolves into �′ after execution of σ(s) and ς evolves into ς ′ after
execution of σ(t). We can find that every axiom in Table 2 meets the above condition.

Theorem 8 EQPAP is complete for QPAP modulo quantum bisimulation equivalence.

Proof To prove that EQPAP is complete for QPAP modulo quantum bisilumation equiva-
lence, it means that 〈s, �〉↔〈t, ς〉 implies s = t.

It can be easily proved that EQPAP (same as EPAP) is complete for PAP modulo
bisimulation equivalence, that is, s↔t implies s = t.

(1) The axioms QM1, QLM2-QLM4, QCM5-QCM10, QEM11-QEM23 are turned into
rewriting rules directly from left to right, and added to the 20 rewriting rules in the
proof the completeness of EBPA (see [5]). The resulting TRS is terminating modulo
AC (Associativity and Commutativity) of + operator through defining new weight
functions on process terms.

We can get that each application of a rewriting rule strictly decreases the weight of
a process term, and that moreover process terms that are equivalent modulo AC of +
have the same weight. Hence, the TRS is terminating modulo AC of + .

(2) We will show that the normal form n are not of the form s ‖ t, and s � t .
The proof is based on induction with respect to the size of the normal form n.

– If n is an atomic action, then it does not contain the shadow constant �.
– Suppose n =AC s + t or n =AC s · t. Then by induction, the normal forms s and t

do not contain †, so n does not contain any parallel operator.
– n cannot be of the form s ‖ t, because in that case, the directed version of QM1

would apply to it, contradicting the fact that n is a normal form.
– n cannot be of the form s t, because in that case, the directed version of QLM2-

QLM4 would apply to it, contradicting the fact that n is a normal form.
– n cannot be of the form s | t, because in that case, the directed version of QCM5-

QCM10 would apply to it, contradicting the fact that n is a normal form.
– n cannot be of the form s � t , because in that case, the directed version of QEM11-

QEM20 would apply to it, contradicting the fact that n is a normal form.

We proved that normal forms are all basic process terms.

(3) We proceed to prove that the axiomatization EQPAP is complete for QPAP modulo
bisimulation equivalence. Let the process terms s and t be bisimilar. The TRS is termi-
nating modulo AC of the + , so it reduces s and t to normal forms n and n′, respectively.
Since the rewrite rules and equivalence modulo AC of the + can be derived from EQPAP,
s = n and t = n′. Soundness of EQPAP then yields s↔n and t↔n′, so n↔s↔t↔n′.
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Table 3 Two extra axioms for
AQCP

No. Axiom

QEM24 δ � x = δ

QEM25 x � δ = δ

We shown that the normal forms n and n′ are basic process terms. Then it follows that
n↔n′ implies n =AC n′. Hence, s = n =AC n′ = t.

〈s, �〉↔〈t, ς〉 with � = ς means that s↔t with � = ς and �′ = ς ′, where � evolves
into �′ after execution of s and ς evolves into ς ′ after execution of t, according to the defi-
nition of quantum bisimulation equivalence. The completeness of EQPAP for QPAP modulo
bisimulation equivalence determines that EQPAP is complete for QPAP modulo quantum
bisimulation equivalence.

For deadlock constant δ and encapsulation operator ∂H, two extra axioms should be
added, as Table 3 shows.

We can easily get that the new axiomatization EAQCP is sound for AQCP modulo quan-
tum bisimulation equivalence, and the new EAQCP is complete for AQCP modulo quantum
bisimulation equivalence.

4 qACPwith Entanglement Merge

Now, we consider the influence of the new AQCP with entanglement to the whole qACP,
i.e., AQCP with guarded recursion and AQCPτ with guarded recursion, which are based
on AQCP.

Guarded recursion defines infinite computation through guarded recursion specifica-
tions. Extension to guarded recursion based on the new AQCP has almost no influence
comparing with that in qACP. The axiomatization EAQCP + RDP + RSP is sound and
complete for AQCP with linear recursion modulo quantum bisimulation equivalence.

Similarly, the new AQCP does not influence AQCPτ with guarded recursion, i.e.,
EAQCPτ

+ RSP + RDP + CFAR is sound and complete for AQCPτ with guarded linear
recursion, modulo quantum rooted branching bisimulation equivalence.

But, entanglement merge � makes entanglement explicit in qACP. Based on the frame-
work of quantum process configuration 〈p, �〉, by introducing silent step τ and abstraction
operator τ I, the definition of � only records the so-called public quantum variables and
claim that a τ operation only manipulates on entangled quantum variables which should be
included in the so-called private variables. Now, we explicitly define a new entanglement
merger to model entanglement in quantum processes and this declaration can be moved
away.

Since, shadow constant quantum operation and entanglement merge are defined for quan-
tum operations, i.e., they are only valid for quantum operations. A quantum operation α can
only effect with its shadow constant �α , any other mismatch, such as α and β, α and �β ,
a classical action a and a quantum operation α, will all cause a deadlock δ. This leads that
qACP with entanglement merge also unify quantum and classical computing in a high level
of computational logic, the same as qACP does.

From now on, we call qACP which represents not only the original qACP, but also qACP
with entanglement merge.
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5 Verification for Quantum Protocols with Entanglement – the E91
Protocol

With support of Entanglement merge �, now, qACP can be used to verify quantum protocols
utilizing entanglement. The E91 protocol [16] is the first quantum protocol which utilizes
entanglement and mixes quantum and classical information. In this section, we take an
example of verification for the E91 protocol.

The E91 protocol is used to create a private key between two parities, Alice and Bob.
Firstly, we introduce the basic E91 protocol briefly, which is illustrated in Fig. 1.

1. Alice generates a string of EPR pairs q with size n, i.e., 2n particles, and sends a string
of qubits qb from each EPR pair with n to Bob through a quantum channel Q, remains
the other string of qubits qa from each pair with size n.

2. Alice create two string of bits with size n randomly, denoted as Ba and Ka.
3. Bob receives qb and randomly generates a string of bits Bb with size n.
4. Alice measures each qubit of qa according to a basis by bits of Ba. And the measurement

results would be Ka, which is also with size n.
5. Bob measures each qubit of qb according to a basis by bits of Bb. And the measurement

results would be Kb, which is also with size n.
6. Bob sends his measurement bases Bb to Alice through a public channel P.
7. Once receiving Bb, Alice sends her bases Ba to Bob through channel P, and Bob

receives Ba.
8. Alice and Bob determine that at which position the bit strings Ba and Bb are equal, and

they discard the mismatched bits of Ba and Bb. Then the remaining bits of Ka and Kb,
denoted as K ′

a and K ′
b with Ka,b = K ′

a = K ′
b.

We re-introduce the basic E91 protocol in an abstract way with more technical details as
Fig. 1 illustrates.

Now,M[qa;Ka] denotes the Alice’s measurement operation of qa, and�M[qa;Ka ] denotes
the responding shadow constant; M[qb;Kb] denotes the Bob’s measurement operation of
qb, and �M[qb;Kb] denotes the responding shadow constant. Alice sends qb to Bob through
the quantum channel Q by quantum communicating action sendQ(qb) and Bob receives qb
through Q by quantum communicating action receiveQ(qb). Bob sends Bb to Alice through
the public channel P by classical communicating action sendP(Bb) and Alice receives
Bb through channel P by classical communicating action receiveP(Bb), and the same as
sendP(Ba) and receiveP(Ba). Alice and Bob generate the private key Ka,b by a classi-
cal comparison action cmp(Ka,b,Ka,Kb,Ba,Bb). Let Alice and Bob be a system AB and
let interactions between Alice and Bob be internal actions. AB receives external input Di

Fig. 1 The E91 protocol
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through channel A by communicating action receiveA(Di) and sends results Do through
channel B by communicating action sendB(Do).

Then the state transition of Alice can be described by qACP as follows.

A =
∑

Di∈Δi

receiveA(Di) · A1

A1 = sendQ(qb) · A2

A2 = M[qa; Ka] · A3

A3 = �M[qb;Kb] · A4

A4 = receiveP (Bb) · A5

A5 = sendP (Ba) · A6

A6 = cmp(Ka,b,Ka,Kb, Ba, Bb) · A

where Δi is the collection of the input data.
And the state transition of Bob can be described by qACP as follows.

B = receiveQ(qb) · B1

B1 = �M[qa;Ka ] · B2

B2 = M[qb; Kb] · B3

B3 = sendP (Bb) · B4

B4 = receiveP (Ba) · B5

B5 = cmp(Ka,b, Ka,Kb, Ba, Bb) · B6

B6 =
∑

Do∈Δo

sendB(Do) · B

where Δo is the collection of the output data.
The send action and receive action of the same data through the same channel can com-

municate each other, otherwise, a deadlock δ will be caused. The quantum operation and its
shadow constant pair will lead entanglement occur, otherwise, a deadlock δ will occur. We
define the following communication functions.

γ (sendQ(qb), receiveQ(qb)) � cQ(qb)

γ (sendP (Bb), receiveP (Bb)) � cP (Bb)

γ (sendP (Ba), receiveP (Ba)) � cP (Ba)

Let A and B in parallel, then the system AB can be represented by the following process
term.

τ I (∂H (A ‖ B))

whereH ={sendQ(qb), receiveQ(qb), sendP (Bb), receiveP (Bb), sendP (Ba), receiveP (Ba),

M[qa;Ka],�M[qa;Ka ],M[qb;Kb],�M[qb;Kb]} and I={cQ(qb), cP(Bb), cP(Ba),M[qa;Ka],
M[qb;Kb], cmp(Ka,b,Ka,Kb,Ba,Bb)}.

Then we get the following conclusion.

Theorem 9 The basic E91 protocolτ I(∂H(A ‖ B)) exhibits desired external behaviors.

Proof

∂H (A ‖ B) =
∑

Di∈Δi

receiveA(Di) · ∂H (A1 ‖ B)
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∂H (A1 ‖ B) = cQ(qb) · ∂H (A2 ‖ B1)

∂H (A2 ‖ B1) = M[qa; Ka] · ∂H (A3 ‖ B2)

∂H (A3 ‖ B2) = M[qb; Kb] · ∂H (A4 ‖ B3)

∂H (A4 ‖ B3) = cP (Bb) · ∂H (A5 ‖ B4)

∂H (A5 ‖ B4) = cP (Ba) · ∂H (A6 ‖ B5)

∂H (A6 ‖ B5) = cmp(Ka,b,Ka,Kb, Ba, Bb) · ∂H (A ‖ B5)

∂H (A ‖ B5) = cmp(Ka,b, Ka,Kb, Ba, Bb) · ∂H (A ‖ B6)

∂H (A ‖ B6) =
∑

Do∈Δo

sendB(Do) · ∂H (A ‖ B)

Let ∂H(A ‖ B) = 〈X1|E〉, where E is the following guarded linear recursion specification:

{X1 =
∑

Di∈Δi

receiveA(Di) · X2, X2 = cQ(qb) · X3,

X3 = M[qa;Ka] · X4, X4 = M[qb; Kb] · X5, X5 = cP (Bb) · X6, X6 = cP (Ba) · X7,

X7 = cmp(Ka,b,Ka,Kb, Ba, Bb) · X8, X8 = cmp(Ka,b,Ka,Kb, Ba, Bb) · X9,

X9 =
∑

Do∈Δo

sendB(Do) · X1}

Then we apply abstraction operator τ I into 〈X1|E〉.

τ I (〈X1|E〉) =
∑

Di∈Δi

receiveA(Di) · τ I (〈X2|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X3|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X4|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X5|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X6|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X7|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X8|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X9|E〉)

=
∑

Di∈Δi

∑

Do∈Δo

receiveA(Di) · sendB(Do) · τ I (〈X1|E〉)

We get τ I (〈X1|E〉) = ∑
Di∈Δi

∑
Do∈Δo

receiveA(Di) · sendB(Do) · τ I (〈X1|E〉), that is,
τ I (∂H (A ‖ B)) = ∑

Di∈Δi

∑
Do∈Δo

receiveA(Di) · sendB(Do) · τ I (∂H (A ‖ B)). So, the
basic E91 protocol τ I(∂H(A ‖ B)) exhibits desired external behaviors.

IInternational Journal of Theoretical Physics (2019) 58:3611–36263624



6 Conclusions

We explicitly model entanglement in quantum processes by introducing a shadow constant
quantum operation � and a so-called entanglement merge � into quantum process algebra
qACP. The new qACP has wide use in verification for quantum protocols, since most quan-
tum protocols have mixtures with classical and quantum information, and also there are
many quantum protocols adopting entanglement.

To maintain the principle of structural operational semantics on which qACP is based,
the shadow constant quantum operation is really a kind of placeholder, and the entanglement
merge � actually does a synchronization between two interleaving processes at the point
of the quantum operation and its shadows. During verification for quantum protocols, the
synchronization point and the shadow constant quantum operations are put in place during
the modeling phase.

But, (1) This synchronization and the shadow constant (though it is only a shadow) are
not existing actually in quantum protocols and quantum computing; (2) qACP is a kind of
high level computational logic, though quantum and classical computing are unified under
this high level computational logic, but the hidden quantum information and more technical
details can not be observed. In future, more suitable theory should be pursued to satisfy the
above two requirements.
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