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Abstract
In this paper, we study the multipartite entanglement properties of graph states up to seven
qubits. Our analysis shows that the generalized concurrence measure (GCM) is more effi-
cient than geometric entanglement measure (GEM) for measuring entanglement quantity in
the multi-qubit graph states.
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1 Introduction

Entanglement is one of the most striking features of quantum mechanics, which has many
applications in quantum information theory such as quantum teleportation [1–5], quantum
cryptography [6], quantum dense coding [7], and quantum computing [8–10]. Up to now,
different measures have been introduced for measuring entanglement quantity in bipartite
and multipartite systems, however, no one can claim which measure would be more effi-
cient than the others yet [11]. Since each measure has advantages over the others in various
conditions [11–16].

The entangled states have a fundamental role in multipartite systems for application in
quantum information processing and communications as well. Graph states [17, 18] are
a type of n-qubit pure state with various applications in quantum information processing
[19–38]. An n-qubit graph state |G〉 is a pure state associated to a graph G = (V,E). The
graph G = (V,E) gives both a recipe for preparing |G〉 and mathematical characteriza-
tion of |G〉. Graph states play several significant roles in quantum information theory, e.g,
in quantum computation, quantum error-correction, quantum simulation, entanglement dis-
tillation protocols, multipartite purification schemes, GHZ or all-versus-nothing proofs of
Bell’s theorem. Graph states are essential for quantum communication protocols, including
teleportation, entanglement-based quantum key distribution, secret sharing, and reduction of
communication complexity. The graph state formalism is a useful concept which authorizes
a detailed classification of n-qubit entanglement.
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The authors [39] detected that the serial application of a transformation is sufficient to
generate the complete equivalence class of graph states under local unitary (LU) opera-
tions within the Clifford group; this simple transformation is Local Complementation (LC).
All local complimentary (LC) equivalent graph states have the same values of entangle-
ment, accordingly only LC inequivalent graph states should be considered concerning with
the entanglement [17, 18, 40]. The number of non-isomorphic and non-LC-equivalent con-
nected graphs up to seven qubits is 45, which we here calculate their entanglement by two
useful entanglement criteria.

So far, many papers have been published on graph states and hypergraph states in which
the authors used geometric entanglement measure (GEM) for measuring the amount of
entanglement [41–47]. In this work, we demonstrate that not only the GEM is not an
efficient entanglement measure, but also it is actually an unsuitable measure for measur-
ing entanglement quantity of multi-qubit graph states. This work is structured as follows:
Section 2 is dedicated to the expression of basic concepts about the graph states. In
Section 3, we present the generalized concurrence measure (GCM) and GEM which are
used in this work as multipartite entanglement measures. Section 4 is devoted to the classifi-
cation of graph states up to seven qubits under non-isomorphic and non-LC-equivalent con-
nected graphs and multipartite entanglement measures. Finally, we conclude and summarize
in the last section.

2 Graph States and Definitions

An n-qubit graph state corresponding to the graph G = (V,E) is given by the following
equation [17, 18]

|G〉 =
∏

{i,j}∈E

CZij|+〉⊗n
x , (1)

where |+〉x = 1√
2
{|0〉 + |1〉} with basis vectors |0〉 .= (

1
0

)
and |1〉 .= (

0
1

)
is an eigenstate

(eigenvector) of the Pauli matrix σ x with eigenvalue + 1. Now, for each edge connecting
two qubits, i and j, it is applied the controlled-Z (CZ) gate between qubits i and j

CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|. (2)

In each n-qubit system, the number of simple graph states is 2(n
2). So for a 3-qubit system,

there are 8 graph states, for 4-qubit system there are 64 graph states etc., which their non-
isomorphic and non-LC-equivalent connected graphs proposed by Hein et al. are plotted in
Ref. [17, 18]. There are: an inequivalent 2-qubit graph, an inequivalent 3-qubit graph, two
4-qubit graphs (No. 3, No. 4), four 5-qubit graphs (No. 5 - No. 8), eleven 6-qubit graphs
(No. 9 - No. 19), twenty six 7-qubit graphs (No. 20 - No. 45). Therefore, many graphs
can be converted to each other by LU transformations or by permutations of the vertices.
Consequently, they have the same value of entanglement [45].

Definition 2.1 (graph isomorphism) Two graphs G1 = (V1,E1) and G2 = (V2,E2) are
called isomorphic (G1 ∼= G2) if there is a bijection f : V1 → V2 is a mapping of a graph
onto itself between a set of vertices such that {a, b} ∈ E1 if and only if (iff) {f(a), f(b)} ∈ E2
[48–50].
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Definition 2.2 (local complementation) By local complementation (LC) of a graph G =
(V,E) at some vertex of a ∈ V can obtain an LC-equivalent graph state as |τa(G)〉 =
Uτ

a (G)|G〉, in which

Uτ
a (G) = exp

(
−i

π

4
σa

x

) ∏

b∈Na

exp
(
i
π

4
σb

z

)
, (3)

is a local Clifford unitary [17, 18]. Also, Na is neighbors of vertex a and σα(α = x, z) are the
Pauli matrices. Hence, two graph states |G〉 and |G′〉 are LC-equivalent iff the corresponding
graphs are linked by a sequence of local complementations. In the other words, LC centered
on a qubit a is visualized easily as a transformation of the subgraph of the ath qubit’s
neighbors, such that one edge between two neighbors of a is removed if the two neighbors
are themselves connected, or one edge is added otherwise [42].

3 Multipartite Entanglement Measures

In order to investigate the entanglement depth of the graph states, we first review the entan-
glement measures. For multipartite systems, several measures of entanglement have been
proposed [11]. Here, we use two important multipartite entanglement measures for measur-
ing entanglement quantity of graph states, namely GCM and GEM. First, for an n-partite
pure state |ψ〉, the GCM is defined as [51–54]

GCM(|ψ〉) = 2
1− n

2 ×
(

2n − 2 −
∑

α

Trρ2
α

)1

2
, (4)

where α labels as all different subsystems of the n-partite system and ρα are the correspond-
ing reduced density matrices which determined by taking the partial trace of ρ̂ = |ψ〉〈ψ |.
For example, for a 3-qubit system, one requires to determine the reduced density matrices
ρ1 = T r23ρ̂, ρ2 = T r13ρ̂, ρ3 = T r12ρ̂, ρ12 = T r3ρ̂, ρ13 = T r2ρ̂, and ρ23 = T r1ρ̂.
Second, let us consider GEM, which is defined for pure states as [55–60]

GEM(|ψ〉) = 1 − max|φ〉=|a〉|b〉|c〉|〈φ|ψ〉|2, (5)

where |φ〉 = |a〉|b〉|c〉 is the set of product states. This is the distance between the product
state |φ〉 and another state as |ψ〉 in terms of fidelity Fφ = |〈φ|ψ〉|2. For mixed states, this
entanglement monotone can be extended using the convex roof.

4 Efficient Entanglement Measure

We note that up to seven qubits, there are 45 classes of graph states which are not equivalent
under one-qubit unitary transformations [17, 18]. We first obtain 45 graph states corre-
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sponding to 45 graphs which are all plotted in Ref. [17, 18] and numbered. However, to save
space, we only address some of those. Explicitly,

|G1〉 = 1√
2
{|0〉1|+〉2 + |1〉1|−〉2},

|G2〉 = 1√
2
{|0〉1|+〉2|+〉3 + |1〉1|−〉2|−〉3},

|G3〉 = 1√
2
{|0〉1|+〉2|+〉3|+〉4 + |1〉1|−〉2|−〉3|−〉4},

|G5〉 = 1√
2
{|0〉1|+〉2|+〉3|+〉4|+〉5 + |1〉1|−〉2|−〉3|−〉4|−〉5},

|G7〉 = 1

2
{|+〉1|0〉2|+〉3|0〉4|+〉5 + |+〉1|0〉2|−〉3|1〉4|−〉5

+|−〉1|1〉2|−〉3|0〉4|+〉5 + |−〉1|1〉2|+〉3|1〉4|−〉5},
|G12〉 = 1

2
{|+〉1|0〉2|+〉3|0〉4|+〉5|+〉6 + |+〉1|0〉2|−〉3|1〉4|−〉5|+〉6

+|−〉1|1〉2|−〉3|0〉4|+〉5|−〉6 + |−〉1|1〉2|+〉3|1〉4|−〉5|−〉6},
|G15〉 = 1

2
{|+〉1|+〉2|+〉3|0〉4|+〉5|0〉6 + |−〉1|+〉2|−〉3|0〉4|−〉5|1〉6

+|+〉1|−〉2|+〉3|1〉4|−〉5|1〉6 + |−〉1|−〉2|−〉3|1〉4|+〉5|0〉6},
|G20〉 = 1√

2
{|0〉1|+〉2|+〉3|+〉4|+〉5|+〉6|+〉7 + |1〉1|−〉2|−〉3|−〉4|−〉5|−〉6|−〉7}, (6)

where |+〉x = 1√
2
{|0〉 + |1〉} and |−〉x = 1√

2
{|0〉 − |1〉} are eigenstates of the Pauli matrix

σ x with eigenvalues ± 1. For example, in order to calculate the amount of entanglement in
3-qubit graph state (No. 2) by GCM and GEM, we obtain by direct numerical optimization
GCM(|G2〉)= 1.22474, and GEM(|G2〉)= 0.5 with the edges E2 = {{1, 2}, {1, 3}}. There are
45 set of edges corresponding to these graphs which are reported in Appendix.

Next, we apply two entanglement measures (see (4) and (5)) for all 45 graph states and
we enter numerical values in Tables 1 and 2. Hence, we have classified the 45 graphs into
27 and 7 classes, according to the GCM and GEM, respectively.

Table 1 The classification of non-isomorphic and non-LC-equivalent connected graphs up to seven qubits
based on generalized concurrence measure (GCM)

Class GCM Graph No. Class GCM Graph No.

1 1 1 15 1.63936 14, 16
2 1.22474 2 16 1.64886 24
3 1.32288 3 17 1.65831 17, 25, 31
4 1.36931 5 18 1.67705 18, 26
5 1.39194 9 19 1.68634 27, 32
6 1.40312 20 20 1.69558 19, 28, 33
7 1.41421 4 21 1.70477 29, 34
8 1.50000 6 22 1.71391 30, 35, 36
9 1.54110 7, 10 23 1.72301 37
10 1.56125 21 24 1.73205 38, 39
11 1.58114 8, 11 25 1.74105 41
12 1.60078 12 26 1.75000 40, 42, 43, 45
13 1.62019 13, 15, 22 27 1.75891 44
14 1.62980 23
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Table 2 The classification of
non-isomorphic and non-LC-
equivalent connected graphs up to
seven qubits based on geometric
entanglement measure (GEM)

Class GEM Graph No.

1 0.50000 1, 2, 3, 5, 9, 20
2 0.75000 4, 6, 7, 10-12, 15, 21-24, 31
3 0.86855 8
4 0.87500 13-14, 16-18, 25-30, 32-38, 43
5 0.91667 19
6 0.93428 39, 41, 45
7 0.93750 40, 42, 44

In the last step, we collect the classification results in Table 3. We here should comment
about the results in the tables. The resolution power (RP) in Table 3 is computed using the
following equation

RP = η[χ ]
η[κ] × 100, (7)

where η[χ ] denotes the number of classes based on GCM or GEM and η[κ] is the number
of categories according to non-isomorphic and non-LC-equivalent connected graphs. There-
fore, the RP in Table 3 is the ratio of the number of classifications taken from multipartite
entanglement measures (see (4) and (5)) to the number of non-isomorphic and non-LC-
equivalent connected graphs. Using the method of comparing the results of these classes
with classification of graph states under non-isomorphic and non-LC-equivalent connected
graphs, as we call RP method, we found that the GCM seems more efficient than GEM for
multi-qubit graph states.

5 Conclusion

We propose two novel classifications for the entanglement in graph states up to seven
qubits based on generalized concurrence measure (GCM) and geometric entanglement mea-
sure (GEM), and we also compare those with the classification under non-isomorphic and
non-LC-equivalent connected graphs. Numerical values reveal that the 45 graph states are
classified according to the GCM and GEM into 27 and 7 categories, respectively. Accord-
ingly, our results propose that the GCM is a suitable entanglement measure for measuring
entanglement quantity of multi-qubit graph states, and it is also more efficient than GEM.
The suggested approach (RP method) can be employed to recognize the proper performance
of each new measure proposed for measuring entanglement in multi-qubit graph states.

Table 3 Classification of graph states up to seven qubits based on GCM and GEM

n η [GCM] η [GEM] η[κ] RP [GCM] RP [GEM]

2 1 1 1 100% 100%
3 1 1 1 100% 100%
4 2 2 2 100% 100%
5 4 3 4 100% 75%
6 9 4 11 81.82% 36.36%
7 16 5 26 61.54% 19.23%
Up to 7 27 7 45 60% 15.55%

In the second column, the number of graph states with n = 2, 3, 4, 5, 6 and 7 vertices is listed which are
categorized by generalized concurrence measure (η [GCM]). In the third column, the number of graph states
which are categorized by geometric entanglement measure (η [GEM]). The values in the fourth column
(number of non-isomorphic and non-LC-equivalent connected graphs) were computed in Refs. [18] and [61]
together with a database of representatives for each equivalence class (η[κ]). In the fifth column and the last
column give the results of the resolution power (RP)
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We believe that the investigation of graph states is necessary for a better understanding of
multipartite systems and validation of multipartite entanglement measures.

Appendix

In this Appendix, we give the set of edges corresponding to the non-isomorphic and non-
LC-equivalent connected graphs up to seven qubits.

Table 4 The set of edges corresponding to the non-isomorphic and non-LC-equivalent connected graphs

Graph No. Edges

1 {{1, 2}}
2 {{1, 2}, {1, 3}}
3 {{1, 2}, {1, 3}, {1, 4}}
4 {{1, 2}, {2, 3}, {3, 4}}
5 {{1, 2}, {1, 3}, {1, 4}, {1, 5}}
6 {{1, 2}, {2, 3}, {3, 4}, {2, 5}}
7 {{1, 2}, {2, 3}, {3, 4}, {4, 5}}
8 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}
9 {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}
10 {{1, 6}, {2, 6}, {3, 6}, {4, 5}, {5, 6}}
11 {{1, 6}, {2, 6}, {3, 5}, {4, 5}, {5, 6}}
12 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 6}}
13 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}}
14 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}
15 {{1, 6}, {2, 4}, {3, 4}, {4, 5}, {5, 6}, {3, 6}}
16 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 4}, {3, 6}}
17 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 6}}
18 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}}
19 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}, {1, 3}, {4, 6}, {2, 5}}
20 {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}}
21 {{1, 7}, {2, 7}, {3, 7}, {4, 7}, {5, 6}, {6, 7}}
22 {{1, 7}, {2, 7}, {3, 7}, {4, 6}, {5, 6}, {6, 7}}
23 {{1, 7}, {2, 7}, {3, 7}, {4, 5}, {5, 6}, {6, 7}}
24 {{1, 7}, {2, 7}, {3, 5}, {4, 5}, {5, 6}, {6, 7}}
25 {{1, 2}, {1, 7}, {3, 7}, {4, 7}, {5, 6}, {6, 7}}
26 {{1, 7}, {2, 7}, {3, 6}, {4, 5}, {5, 6}, {6, 7}}
27 {{1, 2}, {2, 7}, {2, 3}, {4, 3}, {5, 4}, {6, 5}}
28 {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {5, 6}, {6, 7}}
29 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}, {6, 7}}
30 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}}
31 {{2, 3}, {3, 4}, {4, 5}, {5, 6}, {5, 7}, {1, 3}, {6, 3}}
32 {{1, 7}, {2, 7}, {3, 6}, {4, 5}, {5, 6}, {6, 7}, {5, 7}}
33 {{2, 3}, {3, 4}, {4, 5}, {6, 5}, {7, 6}, {3, 7}, {1, 3}}
34 {{2, 3}, {3, 4}, {4, 5}, {6, 5}, {7, 6}, {3, 6}, {1, 4}}
35 {{2, 3}, {3, 4}, {4, 5}, {6, 5}, {7, 6}, {3, 7}, {1, 6}}
36 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {4, 7}, {3, 5}}
37 {{1, 7}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {3, 7}}
38 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 6}}
39 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 5}}
40 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 7}}
41 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 5}, {1, 6}}
42 {{1, 3}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 7}, {2, 6}}
43 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {5, 7}, {1, 4}, {3, 6}}
44 {{1, 4}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {1, 7}, {2, 7}, {3, 5}}
45 {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {3, 7}, {2, 7}, {2, 5}, {4, 6}}
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