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Abstract
We establish an axiomatization for quantum processes, which is a quantum generalization
of process algebra ACP (Algebra of Communicating Processes). We use the framework of
a quantum process configuration 〈p,�〉, but we treat it as two relative independent part: the
structural part p and the quantum part �, because the establishment of a sound and complete
theory is dependent on the structural properties of the structural part p. We let the quan-
tum part � be the outcomes of execution of p to examine and observe the function of the
basic theory of quantum mechanics. We establish not only a strong bisimilarity for quantum
processes, but also a weak bisimilarity to model the silent step and abstract internal compu-
tations in quantum processes. The relationship between quantum bisimilarity and classical
bisimilarity is established, which makes an axiomatization of quantum processes possible.
An axiomatization for quantum processes called qACP is designed, which involves not only
quantum information, but also classical information and unifies quantum computing and
classical computing. qACP can be used easily and widely for verification of most quantum
communication protocols.

Keywords Quantum processes · Process algebra · Algebra of communicating processes ·
Axiomatization

1 Introduction

The basic principles of quantum mechanics are widely adopted in computation and com-
munication. As a relative novel computation pattern, quantum computing [21] brings the
dawn of solving the so-called NP problem because of the strong parallel computation
power of quantum computing. And also, many basic principles of quantum mechan-
ics, such as Heisenberg uncertainty principle and quantum no-cloning theorem, provide
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quantum communication protocols the so-called provable security. Now, some quantum
communication protocols, especially quantum key distribution protocols, have already been
commercially available.

Process algebra [1] is well known in capturing traditional computation, especially par-
allelism and concurrence, in an interleaving pattern, such as CCS (Calculus of Concurrent
Process) [2, 3], CSP (Communicating Sequential Processes) [4] and ACP (Algebra of
Communicating Processes) [5]. To unify quantum computing and classical computing
under the same process algebra framework, is attractive and has an important significance,
because most quantum communication protocols involve quantum information and classical
information, quantum computing and classical computing.

In this paper, we design an axiomatization called qACP for quantum processes with
a quantum generalization of process algebra ACP, which unifies quantum computing and
classical computing. qACP consists of not only an operational semantics based on classi-
cal structural operational semantics, but also an equational logic, by use of which, most
quantum communication protocols can be verified easily.

This paper is organized as follows. In Section 2, we introduce the related works. We do
not repeat some preliminaries, including basic concepts and conclusions about basic lin-
ear algebra, basic quantum mechanics, equational logic, structural operational semantics
and process algebra ACP, please refer to [5, 6] for details. In Section 3, we extend clas-
sical structural operational semantics to support quantum processes. The basic quantum
process algebra (BQPA) is introduced in Section 4, Quantum Process Algebra with Paral-
lelism (QPAP) and Algebra of Quantum Communicating Processes (AQCP) are designed
in Section 5. To capture infinite computing in quantum processes, we discuss recursion in
Section 6. To model silent step and abstract internal computation, silent step and abstrac-
tion operator are introduced in Section 7. We unify qACP and classical ACP in Section 8.
An example of the famous BB84 protocol [18] is verified by use of qACP in Section 9.
qACP can be extended easily in an elegant way, which is shown in Section 10. Finally, we
conclude this paper in Section 11.

2 RelatedWorks

Quantum process algebra provides formal tools for modeling, analysis and verification of
quantum communication protocols, which combines quantum communications and quan-
tum computing together. Gay and Nagarajan [9, 10] defined a language called CQP
(Communicating Quantum Processes) by adding primitives for quantum measurements and
transformation of quantum states to π -calculus. An operational semantics and a type sys-
tem for CQP were also presented to prove that the semantics preserves typing and typing
guarantees that each qubit is owned by a unique process within a system.

Jorrand and Lalire [11–14] defined a language called QPAlg (Quantum Process Algebra),
in which, based on CCS [2, 3], primitives of unitary transformations and quantum mea-
surements were added to CCS. An operational semantics based on probabilistic branching
bisimulation was given in QPAlg.

Ying et al. [15] was introduced as a kind of algebra of pure quantum processes (no classi-
cal data involved) based on CCS. qCCS aimed at providing a suitable framework, in which
the mechanism of quantum concurrent computation can be understood, and interactions and
conjugation of computation and communication in quantum systems can be observed. In
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qCCS, quantum operations (super operators) were chosen to describe transformations of
quantum states, and quantum variables and their substitutions were carefully treated. An
operational semantics for qCCS based on exact (strong) bisimulation and an approximation
version of bisimulation were presented for qCCS.

Based on [15], several kind of bisimulations were presented for qCCS, such as proba-
bilistic bisimulation [8], a kind of weak probabilistic bisimulation [17], open bisimulation
[19] and symbolic bisimulation [16, 20]. These bisimulations provided qCSS with more
semantic models. In some bisimulations, not only pure quantum data, but also classical data
could be involved in qCCS.

In this paper, we propose an axiomatization of quantum processes called qACP, which
is a quantum generalization of process algebra ACP. This work uses some results of the
previous works, especially qCCS, in the following ways. (1) qACP still uses the concept of
a quantum process configuration 〈p,�〉 [8, 8–12, 15, 17, 20], which is usually consisted of
a process term p and state information � of all (public) quantum information variables. (2)
Like qCCS, quantum operations are chosen to describe transformations of quantum states,
and behave as the atomic actions of a pure quantum process. Quantum measurements are
treated as quantum operations, so probabilistic bisimulations are avoided.

There are several innovations in this paper, we enumerate them as follows. (1) A weak
bisimilarity (quantum branching bisimulation equivalence) is established for quantum pro-
cesses. This weak bisimilarity is in a non-probabilistic way that follows [15] and can be
used to model silent step and abstract internal actions. (2) We still use the framework of a
quantum process configuration 〈p,�〉, but we treat it as two relative independent part: the
structural part p and the quantum part �, because the establishment of a sound and com-
plete theory is dependent on the structural properties of the structural part p. We let the
quantum part � be the outcomes of execution of p to examine and observe the function
of the basic theory of quantum mechanics. We establish the relationship between quantum
bisimilarity and classical bisimilarity, including strong bisimilarity and weak bisimilarity,
which makes an axiomatization of quantum processes possible. (3) We establish a series
of axiomatizations of quantum process algebra, including BQPA (Basic Quantum Process
Algebra), QPAP (Quantum Process Algebra with Parallelism), AQCP (Algebra of Quan-
tum Communicating Processes), AQCP with guarded linear recursion, and AQCPτ with
guarded linear recursion. Though these axiomatizations are based on classical axiomatiza-
tions of ACP which is based on the structural analysis the process p, they are not trivial
and ordinary, because it is also necessary to examine if the outcomes � of execution of p
obey the basic quantum mechanics theory. For example, the associativity law of sequen-
tial composition ·,(x · y) · z = x · (y · z) (x,y,z range over the collection of process terms),
is based on the associativity of quantum operations. And the behaviors of the silent step
τ in quantum processes and that in classical processes are different under the framework
of quantum process configuration 〈p,�〉. (4) In this paper, qACP and classical ACP are uni-
fied under the framework of quantum process configuration 〈p,�〉. This unifying means that
quantum information and classical information can be mixed in qACP and quantum com-
puting and classical computing are unified in qACP. Thus, qACP can be used widely for
verification of quantum communication protocols, which involve not only quantum infor-
mation, but also classical information. (5) As a result of axiomatization, qACP has not
only an operational semantics, but also an equation logic which makes the qACP can be
used easily. qACP also inherits the modularity of ACP, and can be extended in an elegant
way.
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3 Structural Operational Semantics Extended to Support Quantum
Processes

In the above section, operational semantics are described by labelled transitions among
process configurations, and a process term is enough to represent a process configuration.
But in quantum processes, to avoid the abuse of quantum information which may violate
the no-cloning theorem, a quantum process configuration 〈p,�〉 [8–12, 15, 17, 20] is usually
consisted of a process term p and state information � of all (public) quantum information
variables. Though quantum information variables are not explicitly defined in qACP and are
hidden behind quantum operations, more importantly, the state information � is the effects
of execution of a series of quantum operations on involved quantum systems, the execution
of a series of quantum operations should not only obey the restrictions of the structure
of the process terms, but also those of quantum mechanics principles. Through the state
information �,wecan check and observe the functions of quantum mechanics principles,
such as quantum entanglement, quantum measurement, etc.

So, the operational semantics of quantum processes should be defined based on quantum
process configuration 〈p,�〉, in which � = σ of two state information � and σ means equality
under the framework of quantum information and quantum computing, that is, these two
quantum processes are in the same quantum state. Several important concepts used in this
paper are following. Here, we use α,β to denote quantum operations in contrast to classical
actions a,b.

Definition 3.1 (Quantum process configuration) A quantum process configuration is
defined to be a pair 〈p,�〉, where p is a process (graph) called structural part of the config-
uration, and � ∈ D(H) specifies the current state of the environment, which is called its
quantum part.

Definition 3.2 (Quantum process graph) A quantum process (graph) 〈p,�〉 is an LTS in
which one state s is elected to be the root. If the LTS contains a transition s

α−→ s′, then

〈p, �〉 α−→〈p′, �′〉 where 〈p′,�′〉 has root state s′. Moreover, if the LTS contains a transition

sP, then 〈p,�〉P. (1) A quantum process 〈p0,�0〉 is finite if and only if the process p0 is finite.
(2) A quantum process 〈p0,�0〉 is regular if and only if the process p0 is regular.

Definition 3.3 (Quantum transition system specification) A quantum process transition
rule � is an expression of the form H

π
, with H a set of expressions 〈t, �〉 α−→〈t ′, �′〉 and

〈t,�〉P with t, t ′ ∈ T(�) and �, �′ ∈ D(H), called the (positive) premises of �,and t
α−→t ′,

called structural part of H and denoted as Hs. And π an expression 〈t, �〉 α−→ 〈t ′, �′〉 or

〈t,�〉P with t, t ′ ∈ T(�) and �, �′ ∈ D(H), called the conclusion of �, and t
α−→t ′, called

structural part of π and denoted as π s. The left-hand side of π is called the source of �. Hs

πs

is called the structural part of � and denoted as �s. A quantum process transition rule � is
closed if and only its structural part �s is closed. A quantum transition system specification
(QTSS) is a (possible infinite) set of transition rules.

Definition 3.4 (Quantum bisimulation) A bisimulation relation B is a binary rela-
tion on quantum processes such that: (1) if 〈p, �〉B〈q, σ 〉 and 〈p, �〉 α−→ 〈p′, �′〉 then
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〈q, σ 〉 α−→〈q ′, σ ′〉 with 〈p′, �′〉B〈q ′, σ ′〉; (2) if 〈p, �〉B〈q, σ 〉 and 〈q, σ 〉 α−→〈q ′, σ ′〉 then
〈p, �〉 α−→〈p′, �′〉 with 〈p′, �′〉B〈q ′, σ ′〉; (3) if 〈p, �〉B〈q, σ 〉 and 〈p,�〉P, then 〈q,σ 〉P;(4) if
〈p, �〉B〈q, σ 〉 and 〈q,σ 〉P,then 〈p,�〉P. Two quantum process 〈p,�〉and〈q,σ 〉 are bisimilar,
denoted by 〈p, �〉↔〈q, σ 〉, if there is a bisimulation relation B such that 〈p, �〉B〈q, σ 〉.

Definition 3.5 (Relation between quantum bisimulation and classical bisimulation) For
two quantum processes, 〈p, �〉↔〈q, σ 〉, with � = σ , if and only if p↔q and �′ = σ ′,where
� evolves into �′ after execution of p and σ evolves into σ ′ after execution of q.

Definition 3.6 (Quantum branching bisimulation) A branching bisimulation relation B
is a binary relation on the collection of quantum processes such that: (1) if 〈p, �〉B〈q, σ 〉
and 〈p, �〉 α−→〈p′, �′〉 then either α ≡ τ and 〈p′, �′〉B〈q, σ 〉 or there is a sequence of (zero
or more) τ -transitions 〈q, σ 〉 τ−→· · · τ−→〈q0, σ 0〉 such that 〈p, �〉B〈q0, σ 0〉 and 〈q0, σ 0〉 α−→
〈q ′, σ ′〉 with 〈p′, �′〉B〈q ′, σ ′〉; (2) if 〈p, �〉B〈q, σ 〉 and 〈q, σ 〉 α−→〈q ′, σ ′〉 then either α

≡ τ and 〈p, �〉B〈q ′, σ ′〉 or there is a sequence of (zero or more) τ -transitions 〈p, �〉 τ−→
· · · τ−→〈p0, �0〉 such that 〈p0, �0〉B〈q, σ 〉 and 〈p0, �0〉 α−→〈p′, �′〉 with 〈p′, �′〉B〈q ′, σ ′〉;
(3) if 〈p, �〉B〈q, σ 〉 and 〈p,�〉P, then there is a sequence of (zero or more) τ -transitions
〈q, σ 〉 τ−→· · · τ−→〈q0, σ 0〉 such that 〈p, �〉B〈q0, σ 0〉 and 〈q0,σ 0〉P;(4) if 〈p, �〉B〈q, σ 〉 and
〈q,σ 〉P, then there is a sequence of (zero or more) τ -transitions 〈p, �〉 τ−→· · · τ−→〈p0, �0〉 such
that 〈p0, �0〉B〈q, σ 〉 and 〈p0,�0〉P. Two quantum processes 〈p,�〉and〈q,σ 〉 are branching
bisimilar, denoted by 〈p, �〉↔b〈q, σ 〉, if there is a branching bisimulation relation B such
that 〈p, �〉B〈q, σ 〉.

Definition 3.7 (Relation between quantum branching bisimulation and classical branching
bisimulation) For two quantum processes, 〈p, �〉↔b〈q, σ 〉, with � = σ , if and only if
p↔bq and �′ = σ ′,where �evolves into �′ after execution of p and σ evolves into σ ′ after
execution of q.

Definition 3.8 (Quantum rooted branching bisimulation) A rooted branching bisimula-
tion relation B is a binary relation on quantum processes such that: (1) if 〈p, �〉B〈q, σ 〉
and 〈p, �〉 α−→〈p′, �′〉 then 〈q, σ 〉 α−→〈q ′, σ ′〉 with 〈p′, �′〉↔b〈q ′, σ ′〉; (2) if 〈p, �〉B〈q, σ 〉
and 〈q, σ 〉 α−→〈q ′, σ ′〉 then 〈p, �〉 α−→〈p′, �′〉 with 〈p′, �′〉↔b〈q ′, σ ′〉; (3) if 〈p, �〉B〈q, σ 〉
and 〈p,�〉P,then 〈q,σ 〉P;(4) if 〈p, �〉B〈q, σ 〉 and 〈q,σ 〉P, then 〈p,�〉P. Two quantum pro-
cesses 〈p,�〉and〈q,σ 〉arerooted branching bisimilar, denoted by 〈p, �〉↔rb〈q, σ 〉, if there is
a rooted branching bisimulation relation B such that 〈p, �〉B〈q, σ 〉.

Definition 3.9 (Relation between quantum rooted branching bisimulation and classical
rooted branching bisimulation) For two quantum processes, 〈p, �〉↔rb〈q, σ 〉, with � = σ ,
if and only if p↔rbq and �′ = σ ′, where � evolves into �′ after execution of p and σ evolves
into σ ′ after execution of q.

Definition 3.10 (Congruence) Let � be a signature and D(H) be the state space
of the environment. An equivalence relation B on 〈t ∈ T (�), � ∈ D(H)〉
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is a congruence, i.e., for each f ∈�, if 〈si , �i〉B〈ti , σ i〉 for i ∈{1,· · · ,ar(f)}, then
f (〈s1, �1〉, · · · , 〈sar(f ), �ar(f )〉)B{(〈t1, σ 1〉, · · · , 〈tar(f ), σ ar(f )). An equivalence relation
B on 〈t ∈ T (�), � ∈ D(H)〉 is a congruence, if for each f ∈�, siBti for i ∈{1,· · · ,ar(f)},
and f (s1, · · · , sar(f ))B{(t1, · · · , tar(f )).

Definition 3.11 (Quantum conservative extension) Let T0andT1 be QTSSs over signa-
ture �0and D(H0), and �1and D(H1), respectively. The QTSS T0 ⊕ T1 is a conservative
extension of T0 if the LTSs generated by T0andT0 ⊕ T1contain exactly the same transi-
tions 〈t, �〉 α−→ 〈t ′, �′〉 and 〈t,�〉Pwith t ∈ T (�0) and � ∈ D(H0), and T0 ⊕ T1 =
〈�0 ∪ �1,D(H0 ⊗ H1)〉.

Definition 3.12 (Relation between quantum conservative extension and classical conser-
vative extension) The QTSS T0 ⊕ T1 is a quantum conservative extension of T0with
transitions 〈t, �〉 α−→〈t ′, �′〉 and 〈t,�〉P, if its corresponding TSS T ′

0 ⊕ T ′
1 is a conservative

extension of T ′
0 with transitions t

α−→t ′ and tP.

4 BQPA – Basic Quantum Process Algebra

In the following, the variables x,x′,y,y′,z,z′ range over the collection of process terms, the
variables υ,ω range over the set A of atomic quantum operations, α,β ∈ A,s,s′,t,t′ are
closed items, τ is the special constant silent step, δ is the special constant deadlock,
and the predicate

α−→√
represents successful termination after execution of the quantum

operation α.
BQPA includes three kind of operators: the execution of atomic quantum operation α,the

alternative composition operator + and the sequential composition operator ·. Each finite
process can be represented by a closed term that is built from the set A of atomic quantum
operations, the alternative composition operator + , and the sequential composition oper-
ator ·. The collection of all basic process terms is called Basic Quantum Process Algebra
(BQPA), which is abbreviated to BQPA.

4.1 Transition Rules of BQPA

We give the transition rules under quantum transition system specification (QTSS) for
BQPA as follows.

〈υ, �〉 υ−→〈√, υ(�)〉

〈x, �〉 υ−→〈√, �′〉
〈x + y, �〉 υ−→〈√, �′〉

〈x, �〉 υ−→〈x′, �′〉
〈x + y, �〉 υ−→〈x′, �′〉
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〈y, �〉 υ−→〈√, �′〉
〈x + y, �〉 υ−→〈√, �′〉

〈y, �〉 υ−→〈y′, �′〉
〈x + y, �〉 υ−→〈y′, �′〉

〈x, �〉 υ−→〈√, �′〉
〈x · y, �〉 υ−→〈y, �′〉

〈x, �〉 υ−→〈x′, �′〉
〈x · y, �〉 υ−→〈x′ · y, �′〉

where υ(�)represents the new state of a quantum system, whose origin state is �,after the
execution of the atomic quantum operation υ.

– The first transition rule says that each atomic quantum operation υ can terminate
successfully, and the state of the environment would be changed from � to υ(�).

– The next four transition rules say that s + t can execute alternatively, that is, it can
execute either s or t.

– The last two transition rules say that s · t can execute sequentially, that is, it executes s
in the first, after successful termination of s, then execution of t follows.

4.2 Axiomatization for BQPA

We design an axiomatization EBQPA for BQPA modulo quantum bisimulation equivalence
as Table 1 shows.

Several important conclusions are following.

Theorem 4.1 Quantum bisimulation equivalence is a congruence with respect to BQPA.

Proof The structural part of QTSSs for BQPA are all in panth format, so bisimulation
equivalence that they induce is a congruence. According to the definition of quantum
bisimulation, quantum bisimulation equivalence that QTSSs for BQPA induce is also a
congruence.

Theorem 4.2 EBQPA is sound for BQPA modulo quantum bisimulation equivalence.

Proof Since quantum bisimulation is both an equivalence and a congruence for BQPA, only
the soundness of the first clause in the definition of the relation = is needed to be checked.

Table 1 Axioms for BQPA No. Axiom

QA1 x + y = y + x
QA2 (x + y) + z = x + (y + z)
QA3 x + x = x
QA4 (x + y) · z = x · z + y · z
QA5 (x · y) · z = x · (y · z)
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That is, if s = t is an axiom in EBQPA and σ a closed substitution that maps the variable in s
and t to basic quantum process terms, then we need to check that 〈σ(s), �〉↔〈σ(t), σ 〉.

Since axioms in EBQPA (same as EBPA) are sound for BPA modulo bisimulation equiv-
alence, according to the definition of quantum bisimulation, we only need to check if �′ =
σ ′, where � evolves into �′ after execution of σ (s) and σ evolves into σ ′ after execution of
σ (t). For example, the axiom QA5 is sound for BQPA modulo quantum bisimulation equiv-
alence, based on the associativity of quantum operations, that is, (σ (s) · σ (t)) · σ (u)(�) =
σ (s) · (σ (t) · σ (u))(σ ) for any � = σ .

Theorem 4.3 EBQPA is complete for BQPA modulo quantum bisimulation equivalence.

Proof To prove that EBQPA is complete for BQPA modulo quantum bisilumation
equivalence, it means that 〈s, �〉↔〈t, σ 〉 implies s = t.

It was already proved that EBQPA (same as EBPA) is complete for BPA modulo bisim-
ulation equivalence, that is, s↔t implies s = t. 〈s, �〉↔〈t, σ 〉 with � = σ means that s↔t

with � = σ and �′ = σ ′, where � evolves into �′ after execution of s and σ evolves into
σ ′after execution of t, according to the definition of quantum bisimulation equivalence. The
completeness of EBQPA for BPA modulo bisimulation equivalence determines that EBQPA
is complete for BQPA modulo quantum bisimulation equivalence.

5 AQCP – Algebra of Quantum Communicating Processes

It is well known that process algebra captures parallelism and concurrency by means of the
so-called interleaving pattern in contrast to the so-called true concurrency. Quantum pro-
cesses can execute in parallel and communicate with each other, since the actions used to
communicate are not quantum operations, which means that after the execution of com-
municating actions, the quantum state maintains unchanged. We introduce a new set C of
atomic communicating actions. A merge operator ‖ and a communication function γ : C ×
C → C can be used to capture the parallelism and the communication.

In the following, the variables υ,ω range over the set A of atomic quantum operations,
and the variable ν,μ range over the set C of atomic communicating actions.

The merge 〈s ‖ t,�〉 can choose to execute an initial transition of process term s or an
initial transition of process term t, and change the quantum state, which is captured by the
following four transition rules.

〈x, �〉 υ−→〈√, �′〉
〈x ‖ y, �〉 υ−→〈y, �′〉

〈x, �〉 υ−→〈x′, �′〉
〈x ‖ y, �〉 υ−→〈x′ ‖ y, �′〉

〈y, �〉 υ−→〈√, �′〉
〈x ‖ y, �〉 υ−→〈x, �′〉

〈y, �〉 υ−→〈y′, �′〉
〈x ‖ y, �〉 υ−→〈x ‖ y′, �′〉
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And also the merge 〈s ‖ t,�〉 can choose to execute a communication of initial transitions
of the process term s and t, and does not change the quantum state, which is expressed by
the following four transition rules.

〈x, �〉 ν−→〈√, �〉 〈y, �〉 μ−→〈√, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−→ 〈√, �〉

〈x, �〉 ν−→〈√, �〉 〈y, �〉 μ−→〈y′, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−→ 〈y′, �〉
〈x, �〉 ν−→〈x′, �〉 〈y, �〉 μ−→〈√, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−→ 〈x′, �〉
〈x, �〉 ν−→〈x′, �〉 〈y, �〉 μ−→〈y′, �〉

〈x ‖ y, �〉 γ (ν,μ)−−−→ 〈x′ ‖ y′, �〉

5.1 Left Merge and CommunicationMerge

Since there does not exist a sound and complete finite axiomatization for BPA extended with
the merge, modulo bisimulation equivalence, it is can be proved that there does not exist a
sound and complete axiomatization for BQPA extended with the merge modulo quantum
bisimulation equivalence either. This can be overcome by defining two extra operator that
are called left merge and communication merge |. We call BQPA extended with the merge
operator ‖,the left merge operator and the communication merge operator | as Quantum
Process Algebra with Parallelism, which is abbreviated to QPAP.

5.1.1 Transition Rules of QPAP

The left merge takes its initial transition from the process term s and changes the
quantum state, and then behaves as the merge ‖, which is expressed by the following two
transition rules.

The communication merge 〈s|t,�〉 executes as initial transition a communication between
initial transition of the process term s and t, and does not change the quantum state, and then
behaves as the merge operator ‖, which is captured by the following four transition rules.

〈x, �〉 ν−→〈√, �〉 〈y, �〉 μ−→〈√, �〉

〈x | y, �〉 γ (ν,μ)−−−→ 〈√, �〉
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〈x, �〉 ν−→〈√, �〉 〈y, �〉 μ−→〈y′, �〉

〈x | y, �〉 γ (ν,μ)−−−→ 〈y′, �〉
〈x, �〉 ν−→〈x′, �〉 〈y, �〉 μ−→〈√, �〉

〈x | y, �〉 γ (ν,μ)−−−→ 〈x′, �〉
〈x, �〉 ν−→〈x′, �〉 〈y, �〉 μ−→〈y′, �〉

〈x | y, �〉 γ (ν,μ)−−−→ 〈x′ ‖ y′, �〉
It must be pointed out that the communication function γ (ν,μ) of two communicating

actions ν and μ is used to exchange data between two interleaving quantum processes. Due
to the quantum no-cloning theorem, the data must be exchanged by references (the names
of the quantum variables), but not by values.

Theorem 5.1 QPAP is a conservative extension of BQPA.

Proof Since the corresponding TSS of BQPA is source-dependent, and the transition rules
for merge operator ‖, left merge operator and communication merge |contain only a fresh
operator in their source, so the corresponding TSS of QPAP is a conservative extension of
that of BQPA. That means that QPAP is a conservative extension of BQPA.

Theorem 5.2 Quantum bisimulation equivalence is a congruence with respect to QPAP.

Proof The structural part of QTSSs for QPAP and BQPA are all in panth format, so bisimu-
lation equivalence that they induce is a congruence. According to the definition of quantum
bisimulation, quantum bisimulation equivalence that QTSSs for QPAP induce is also a
congruence.

5.1.2 Axiomatization for QPAP

We design an axiomatization for QPAP illustrated in Table 2.
Then, we can get the soundness and completeness theorems as follows.

Theorem 5.3 EQPAP is sound for QPAP modulo quantum bisimulation equivalence.

Table 2 Axioms for QPAP No. Axiom

QM1
QLM2
QLM3
QLM4
QCM5 ν|μ = γ (ν,μ)
QCM6 ν|(μ · y) = γ (ν,μ) · y
QCM7 (ν · x)|μ = γ (ν,μ) · x
QCM8 (ν · x)|(μ · y) = γ (ν,μ) · (x ‖ y)
QCM9 (x + y)|z = x|z + y|z
QCM10 x|(y + z) = x|y + x|z
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Proof Since quantum bisimulation is both an equivalence and a congruence for QPAP, only
the soundness of the first clause in the definition of the relation = is needed to be checked.
That is, if s = t is an axiom in EQPAP and σ a closed substitution that maps the variable in s
and t to basic quantum process terms, then we need to check that 〈σ(s), �〉↔〈σ(t), σ 〉.

Since axioms in EQPAP (same as EPAP) are sound for PAP modulo bisimulation equiv-
alence, according to the definition of quantum bisimulation, we only need to check if �′ =
σ ′when � = σ , where � evolves into �′ after execution of σ (s) and σ evolves into σ ′ after
execution of σ (t). We can find that every axiom in Table 2 meets the above condition.

Theorem 5.4 EQPAP is complete for QPAP modulo quantum bisimulation equivalence.

Proof To prove that EQPAP is complete for QPAP modulo quantum bisilumation equiva-
lence, it means that 〈s, �〉↔〈t, σ 〉 implies s = t.

It was already proved that EQPAP (same as EPAP) is complete for PAP modulo bisimula-
tion equivalence, that is, s↔t implies s = t. 〈s, �〉↔〈t, σ 〉 with � = σmeans that s↔t with
� = σ and �′ = σ ′, where � evolves into �′ after execution of s and σ evolves into σ ′ after
execution of t, according to the definition of quantum bisimulation equivalence. The com-
pleteness of EQPAP for PAP modulo bisimulation equivalence determines that EQPAP is
complete for QPAP modulo quantum bisimulation equivalence.

5.2 Deadlock and Encapsulation

The mismatch of two communicating action pair ν and μ can cause a deadlock (nothing to
do), we introduce the deadlock constant δ and extend the communication function γ to γ :
C × C → C ∪{δ}. So, the introduction about communication merge | in the above section
should be with γ (ν,μ)�=δ. We also introduce a unary encapsulation operator ∂H for sets H
of atomic communicating actions, which rename all actions in H into δ. QPAP extended
with deadlock constant δ and encapsulation operator ∂H is called the Algebra of Quantum
Communicating Processes, which is abbreviated to AQCP.

5.2.1 Transition Rules of AQCP

The encapsulation operator ∂H(t) can execute all transitions of process term t of which
the labels are not in H, and does not change the quantum state, which is expressed by the
following two transition rules.

〈x, �〉 ν−→〈√, �〉
〈∂H (x), �〉 ν−→〈√, �〉

ν /∈ H

〈x, �〉 ν−→〈x′, �〉
〈∂H (x), �〉 ν−→〈∂H (x′), �〉

ν /∈ H

Theorem 5.5 AQCP is a conservative extension of QPAP.

Proof Since the corresponding TSS of QPAP is source-dependent, and the transition
rules for encapsulation operator ∂H contain only a fresh operator in their source, so the
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corresponding TSS of AQCP is a conservative extension of that of QPAP. That means that
AQCP is a conservative extension of QPAP.

Theorem 5.6 Quantum bisimulation equivalence is a congruence with respect to AQCP.

Proof The structural part of QTSSs for AQCP and QPAP are all in panth format, so bisimu-
lation equivalence that they induce is a congruence. According to the definition of quantum
bisimulation, quantum bisimulation equivalence that QTSSs for AQCP induce is also a
congruence.

5.2.2 Axiomatization for AQCP

The axioms for AQCP are shown in Table 3.
The soundness and completeness theorems are following.

Theorem 5.7 EAQCP is sound for AQCP modulo quantum bisimulation equivalence.

Proof Since quantum bisimulation is both an equivalence and a congruence for AQCP, only
the soundness of the first clause in the definition of the relation = is needed to be checked.
That is, if s = t is an axiom in EAQCP and σ a closed substitution that maps the variable in s
and t to basic quantum process terms, then we need to check that 〈σ(s), �〉↔〈σ(t), σ 〉.

Since axioms in EAQCP (same as EACP) are sound for ACP modulo bisimulation equiv-
alence, according to the definition of quantum bisimulation, we only need to check if �′ =
σ ′ when � = σ , where � evolves into �′ after execution of σ (s) and σ evolves into σ ′ after
execution of σ (t). We can find that every axiom in Table 3 meets the above condition.

Theorem 5.8 EAQCP is complete for AQCP modulo quantum bisimulation equivalence.

Proof To prove that EAQCP is complete for AQCP modulo quantum bisilumation
equivalence, it means that 〈s, �〉↔〈t, σ 〉 implies s = t.

It was already proved that EAQCP (same as EACP) is complete for ACP modulo bisim-
ulation equivalence, that is, s↔t implies s = t. 〈s, �〉↔〈t, σ 〉 with � = σ means that s↔t

with � = σ and �′ = σ ′, where � evolves into �′ after execution of s and σ evolves into
σ ′after execution of t, according to the definition of quantum bisimulation equivalence. The

Table 3 Axioms for AQCP No. Axiom

QA6 x + δ = x
QA7 δ · x = δ

QD1 ν /∈H ∂H(ν) = ν

QD2 ν ∈ H ∂H(ν) = δ

QD3 ∂H(δ) = δ

QD4 ∂H(x + y) = ∂H(x) + ∂H(y)
QD5 ∂H(x · y) = ∂H(x) · ∂H(y)
QLM11

QCM12 δ|x = δ

QCM13 x|δ = δ
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completeness of EAQCP for ACP modulo bisimulation equivalence determines that EAQCP
is complete for AQCP modulo quantum bisimulation equivalence.

6 Recursion

To capture infinite computing, recursion is introduced in this section. In the following,
E,F,G are guarded linear recursion specifications, X,Y,Z are recursive variables. We first
introduce several important concepts, which come from [5].

Definition 6.1 (Recursive specification) A recursive specification is a finite set of recursive
equations

X1 = t1(X1, · · · , Xn)

...

Xn = tn(X1, · · · , Xn)

where the left-hand sides of Xi are called recursion variables, and the right-hand sides
ti(X1,· · · ,Xn) are process terms in AQCP with possible occurrences of the recursion
variables X1,· · · ,Xn.

Definition 6.2 (Solution) Processes p1,· · · ,pn are a solution for a recursive specifi-
cation {Xi = ti(X1,· · · ,Xn)|i ∈{1,· · · ,n}} (with respect to bisimulation equivalence) if
pi↔ti (p1, · · · , pn) for i ∈{1,· · · ,n}.

Definition 6.3 (Guarded recursive specification) A recursive specification

X1 = t1(X1, · · · , Xn)

...

Xn = tn(X1, · · · , Xn)

is guarded if the right-hand sides of its recursive equations can be adapted to the form by
applications of the axioms in EAQCP and replacing recursion variables by the right-hand
sides of their recursive equations,

α1 · s1(X1, · · · , Xn) + · · · + αk · sk(X1, · · · , Xn) + β1 + · · · + βl

where α1,· · · ,αk,β1,· · · ,β l ∈ A ∪ C, and the sum above is allowed to be empty, in which
case it represents the deadlock δ.

Definition 6.4 (Linear recursive specification) A recursive specification is linear if its
recursive equations are of the form

α1X1 + · · · + αkXk + β1 + · · · + βl

where α1,· · · ,αk,β1,· · · ,β l ∈ A ∪ C, and the sum above is allowed to be empty, in which
case it represents the deadlock δ.
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6.1 Transition Rules of Guarded Recursion

For a guarded recursive specifications E with the form

X1 = t1(X1, · · · , Xn)

· · ·

Xn = tn(X1, · · · , Xn)

the behavior of the solution 〈Xi|E〉forthe recursion variable XiinE, where i ∈{1,· · ·
,n},isexactly the behavior of their right-hand sides ti(X1,· · · ,Xn),which is captured by the
following two transition rules.

〈ti (〈X1|E〉, · · · , 〈Xn|E〉), �〉 υ−→〈√, �′〉
〈〈Xi |E〉, �〉 υ−→〈√, �′〉

〈ti (〈X1|E〉, · · · , 〈Xn|E〉), �〉 υ−→〈y, �′〉
〈〈Xi |E〉, �〉 υ−→〈y, �′〉

Theorem 6.1 AQCP with guarded recursion is a conservative extension of AQCP.

Proof Since the corresponding TSS of AQCP is source-dependent, and the transition rules
for guarded recursion contain only a fresh constant in their source, so the corresponding
TSS of AQCP with guarded recursion is a conservative extension of that of AQCP. That
means that AQCP with guarded recursion is a conservative extension of AQCP.

Theorem 6.2 Quantum bisimulation equivalence is a congruence with respect to AQCP
with guarded recursion.

Proof The structural part of QTSSs for guarded recursion and AQCP are all in panth
format, so bisimulation equivalence that they induce is a congruence. According to the def-
inition of quantum bisimulation, quantum bisimulation equivalence that QTSSs for AQCP
with guarded recursion induce is also a congruence.

6.2 Axiomatization for Guarded Recursion

The RDP (Recursive Definition Principle) and the RSP (Recursive Specification Principle)
are shown in Table 4.

Theorem 6.3 EAQCP + RDP + RSP is sound for AQCP with guarded recursion modulo
quantum bisimulation equivalence.

Table 4 Recursive definition principle and recursive specification principle

No. Axiom

RDP 〈Xi|E〉 = ti(〈X1|E,· · · ,Xn|E〉) (i ∈{1,· · · ,n})
RSP if yi = ti(y1,· · · ,yn) for i ∈{1,· · · ,n}, then yi = 〈Xi|E〉 (i ∈{1,· · · ,n})
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Proof Since quantum bisimulation is both an equivalence and a congruence for AQCP with
guarded recursion, only the soundness of the first clause in the definition of the relation = is
needed to be checked. That is, if s = t is an axiom in EAQCP + RDP + RSP and σ a closed
substitution that maps the variable in s and t to basic quantum process terms, then we need
to check that 〈σ(s), �〉↔〈σ(t), σ 〉.

Since axioms in EAQCP + RDP + RSP (same as EACP + RDP + RSP) are sound for
ACP with guarded recursion modulo bisimulation equivalence, according to the definition
of quantum bisimulation, we only need to check if �′ = σ ′ when � = σ , where � evolves
into �′ after execution of σ (s) and σ evolves into σ ′ after execution of σ (t). We can find that
every axiom in Table 4 meets the above condition.

Theorem 6.4 EAQCP + RDP + RSP is complete for AQCP with linear recursion modulo
quantum bisimulation equivalence.

Proof To prove that EAQCP + RDP + RSP is complete for AQCP with linear recursion
modulo quantum bisilumation equivalence, it means that 〈s, �〉↔〈t, σ 〉 implies s = t.

It was already proved that EAQCP + RDP + RSP (same as EACP + RDP +RSP) is complete
for ACP with linear recursion modulo bisimulation equivalence, that is, s↔t implies s =
t. 〈s, �〉↔〈t, σ 〉 with � = σ means that s↔t with � = σ and �′ = σ ′, where � evolves into
�′ after execution of s and σ evolves into σ ′ after execution of t, according to the definition
of quantum bisimulation equivalence. The completeness of EAQCP + RDP + RSP for ACP
with linear recursion modulo bisimulation equivalence determines that EAQCP + RDP + RSP
is complete for AQCP with linear recursion modulo quantum bisimulation equivalence.

7 Abstraction

A quantum program has internal implementations and external behaviors. Abstraction tech-
nology abstracts away from the internal steps to check if the internal implementations really
display the desired external behaviors. This makes the introduction of special silent step
constant τ and the abstraction operator τ I.

Firstly, we introduce the concept of guarded linear recursive specification, which comes
from [5].

Definition 7.1 (Guarded linear recursive specification) A recursive specification is linear
if its recursive equations are of the form

α1X1 + · · · + αkXk + β1 + · · · + βl

where α1,· · · ,αk,β1,· · · ,β l ∈ A ∪ C ∪{τ }.
A linear recursive specification E is guarded if there does not exist an infinite sequence

of τ -transitions 〈X|E〉 τ−→〈X′|E〉 τ−→〈X′′|E〉 τ−→· · · .

7.1 Silent Step

A τ -transition is silent, which is means that it can be eliminated from a quantum process
graph. τ is an internal step and keep silent from an external observer, but please remember,
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τ is a quantum operation in nature. This fact makes that τmust influence the state of all
quantum variables �,that is, τ is not really silent for a quantum process configuration 〈p,�〉.
To make τkeep silent, the definition of � must be changed, that is, � does not record the state
of all quantum variables, some variables must be moved away. But, what variables should
be moved away? The quantum variables that τ may influence are called private variables.
These private variables include not only the variables τ directly manipulates, but also those
variables which are entangled with the variables that τ directly manipulates. The quantum
variables that τ can not influence are called public variables. In the following, � records
the state of all public variables. We use the symbol τ (�) to denote the state of all public
quantum variables after execution of τ . From an external view, we can see that � = τ (�).

The processing of τ in quantum processes is some what farfetched. But, it is the only
choice under the framework of quantum process configuration 〈p,�〉. Otherwise, the con-
cept of branching bisimulation (weak bisimilarity) and the theory of abstraction can not be
established.

Now, the set A of all quantum operations is extended to A ∪{τ },C to C ∪{τ }, and γ to γ

: C ∪{τ }× C ∪{τ }→ C ∪{δ}.

7.1.1 Transition Rules of Silent Step

τ keeps silent from an external observer, which is expressed by the following transition
rules.

〈τ , �〉 τ−→〈√, τ (�)〉

Transition rules for alternative composition, sequential composition and guarded linear
recursion that involves τ -transitions are omitted.

Theorem 7.1 AQCP with silent step and guarded linear recursion is a conservative
extension of AQCP with guarded linear recursion.

Proof The corresponding TSS of AQCP with silent step and guarded linear recursion is
a conservative extension of that of AQCP with guarded linear recursion. That means that
AQCP with silent step and guarded linear recursion is a conservative extension of AQCP
with guarded linear recursion.

Theorem 7.2 Quantum rooted branching bisimulation equivalence is a congruence with
respect to AQCP with silent step and guarded linear recursion.

Proof The structural part of QTSSs for AQCP with silent step and guarded linear recur-
sion are all in RBB cool format by incorporating the successful termination predicate ↓ in
the transition rules, so rooted branching bisimulation equivalence that they induce is a
congruence. According to the definition of quantum rooted branching bisimulation, quan-
tum rooted branching bisimulation equivalence that QTSSs for AQCP with silent step and
guarded linear recursion induce is also a congruence.
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7.1.2 Axioms for Silent Step

The axioms for silent step is shown in Table 5.

Theorem 7.3 EAQCP + QB1,QB2 + RDP + RSP is sound for AQCP with silent step and
guarded linear recursion, modulo quantum rooted branching bisimulation equivalence.

Proof Since quantum rooted branching bisimulation is both an equivalence and a congru-
ence for AQCP with silent step and guarded linear recursion, only the soundness of the first
clause in the definition of the relation = is needed to be checked. That is, if s = t is an axiom
in EAQCP+ QB1,QB2 + RDP + RSP and σ a closed substitution that maps the variable in s
and t to basic quantum process terms, then we need to check that 〈σ(s), �〉↔rb〈σ(t), σ 〉.

Since axioms in EAQCP + QB1,QB2 + RDP + RSP (same as EACP + QB1,QB2 + RDP
+ RSP) are sound for ACP with silent step and guarded linear recursion modulo rooted
branching bisimulation equivalence, according to the definition of quantum rooted branch-
ing bisimulation, we only need to check if �′ = σ ′ when � = σ , where �evolves into �′ after
execution of σ (s) and σ evolves into σ ′ after execution of σ (t). We can find that every axiom
in Table 5 meets the above condition.

Theorem 7.4 EAQCP + QB1,QB2 + RDP + RSP is complete for AQCP with silent step
and guarded linear recursion, modulo quantum rooted branching bisimulation equivalence.

Proof To prove that EAQCP + QB1,QB2 + RDP + RSP is complete for AQCP with
silent step and guarded linear recursion modulo quantum rooted branching bisilumation
equivalence, it means that 〈s, �〉↔rb〈t, σ 〉 implies s = t.

It was already proved that EAQCP + QB1,QB2 + RDP + RSP (same as EACP + QB1,QB2
+ RDP + RSP) is complete for ACP with silent step and guarded linear recursion modulo
rooted branching bisimulation equivalence, that is, s↔rbt implies s = t. 〈s, �〉↔rb〈t, σ 〉
with � = σ means that s↔rbt with � = σ and �′ = σ ′, where � evolves into �′ after execution
of s and σ evolves into σ ′ after execution of t, according to the definition of quantum rooted
branching bisimulation equivalence. The completeness of EAQCP + QB1,QB2 + RDP + RSP
for ACP with silent step and guarded linear recursion modulo rooted branching bisimulation
equivalence determines that EAQCP + QB1,QB2 + RDP + RSP is complete for AQCP with
silent step and guarded linear recursion modulo quantum rooted branching bisimulation
equivalence.

7.2 Abstraction

Abstraction operator τ I is used to abstract away the internal implementations. AQCP
extended with silent step τ and abstraction operator τ I is denoted by AQCPτ .

Table 5 Axioms for silent step No. Axiom

QB1 υ · τ = υ

QB2 υ · (τ · (x + y) + x) = υ · (x + y)
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7.2.1 Transition Rules of Abstraction Operator

Abstraction operator τ I(t) renames all labels of transitions of t that are in the set I into τ ,
and does not change the state of all public quantum variables, which is captured by the
following four transition rules.

〈x, �〉 υ−→〈√, �′〉
〈τ I (x), �〉 υ−→〈√, �′〉

υ /∈ I

〈x, �〉 υ−→〈x′, �′〉
〈τ I (x), �〉 υ−→〈τ I (x′), �′〉

υ /∈ I

〈x, �〉 υ−→〈√, �′〉
〈τ I (x), �〉 τ−→〈√, τ (�)〉

υ ∈ I

〈x, �〉 υ−→〈x′, �′〉
〈τ I (x), �〉 τ−→〈τ I (x′), τ (�)〉

υ ∈ I

Note that � = τ (�) = τ (�′) in the sense of public variables.

Theorem 7.5 AQCPτwith guarded linear recursion is a conservative extension of AQCP
with silent step and guarded linear recursion.

Proof The corresponding TSS of AQCPτwith guarded linear recursion is a conservative
extension of that of AQCP with silent step and guarded linear recursion. That means that
AQCPτwith guarded linear recursion is a conservative extension of AQCP with silent step
and guarded linear recursion.

Theorem 7.6 Quantum rooted branching bisimulation equivalence is a congruence with
respect to AQCPτwith guarded linear recursion.

Proof The structural part of QTSSs for AQCPτwith guarded linear recursion are all in RBB
cool format by incorporating the successful termination predicate ↓ in the transition rules,
so rooted branching bisimulation equivalence that they induce is a congruence. According to
the definition of quantum rooted branching bisimulation, quantum rooted branching bisim-
ulation equivalence that QTSSs for AQCPτwith guarded linear recursion induce is also a
congruence.

7.2.2 Axiomatization for Abstraction Operator

The axioms for abstraction operator are shown in Table 6.
Before we introduce the cluster fair abstraction rule, the concept of cluster is given firstly,

which comes from [5].

Definition 7.2 (Cluster) Let E be a guarded linear recursive specification, and I ⊆ A. Two
recursion variable X and Y in E are in the same cluster for I if and only if there exist
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Table 6 Axioms for abstraction
operator

No. Axiom

QTI1 υ /∈I τ I(υ) = υ

QTI2 υ ∈ I τ I(υ) = τ

QTI3 τ I(δ) = δ

QTI4 τ I(x + y) = τ I(x) + τ I(y)
QTI5 τ I(x · y) = τ I(x) · τ I(y)

sequences of transitions 〈X|E〉 β1−→· · · βm−→ 〈Y |E〉 and 〈Y |E〉 η1−→· · · ηn−→〈X|E〉, where β1,· · ·
,βm,η1,· · · ,ηn ∈ I ∪{τ }.

α or αX is an exit for the cluster C if and only if: (1) αorαXisasummand at the right-hand
side of the recursive equation for a recursion variable in C, and (2) in the case of αX, either
α/∈I ∪{τ } or X/∈C.

Theorem 7.7 EAQCPτ
+ RSP + RDP + CFAR is sound for AQCPτwith guarded linear

recursion, modulo quantum rooted branching bisimulation equivalence.

Proof Since quantum rooted branching bisimulation is both an equivalence and a congru-
ence for AQCPτwith guarded linear recursion, only the soundness of the first clause in the
definition of the relation = is needed to be checked. That is, if s = t is an axiom in EAQCPτ

+ RSP + RDP + CFAR and σ a closed substitution that maps the variable in s and t to basic
quantum process terms, then we need to check that 〈σ(s), �〉↔rb〈σ(t), σ 〉.

Since axioms in EAQCPτ
+ RSP + RDP + CFAR (same as EACPτ + RSP + RDP + CFAR)

are sound for ACPτwith guarded linear recursion modulo rooted branching bisimulation
equivalence, according to the definition of quantum rooted branching bisimulation, we only
need to check if �′ = σ ′ when � = σ , where � evolves into �′ after execution of σ (s) and
σ evolves into σ ′ after execution of σ (t). We can find that every axiom in Tables 6 and 7
meets the above condition.

Theorem 7.8 EAQCPτ
+ RSP + RDP + CFAR is complete for AQCPτwith guarded linear

recursion, modulo quantum rooted branching bisimulation equivalence.

Proof To prove that EAQCPτ
+ RSP + RDP + CFAR is complete for AQCPτwith guarded

linear recursion modulo quantum rooted branching bisilumation equivalence, it means that
〈s, �〉↔rb〈t, σ 〉 implies s = t.

It was already proved that EAQCPτ
+ RSP + RDP + CFAR (same as EACPτ + RSP + RDP

+ CFAR) is complete for ACPτ with guarded linear recursion modulo rooted branching
bisimulation equivalence, that is, s↔rbt implies s = t. 〈s, �〉↔rb〈t, σ 〉with � = σmeans that
s↔rbt with � = σ and �′ = σ ′, where � evolves into �′ after execution of s and σ evolves
into σ ′ after execution of t, according to the definition of quantum rooted branching bisim-
ulation equivalence. The completeness of EAQCPτ

+ RSP + RDP + CFAR for ACPτwith
guarded linear recursion modulo rooted branching bisimulation equivalence determines that

Table 7 Cluster fair abstraction rule

No. Axiom

CFAR If X is in a cluster for I with exits {υ1Y1,· · · ,υmYm,ω1,· · · ,ωn},
then τ · τ I(〈X|E〉) = τ · τ I(υ1〈Y1|E〉,· · · ,υm〈Ym|E〉,ω1,· · · ,ωn)
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EAQCPτ
+ RSP + RDP + CFAR is complete for AQCPτwith guarded linear recursion modulo

quantum rooted branching bisimulation equivalence.

8 Unifying Quantum and Classical Computing

We use a quantum process configurations 〈p,�〉 to represent information related to the exe-
cution of a quantum process, in which p represents the structural properties of a quantum
process and � expresses the quantum properties of a quantum process. We have established
a whole theory about quantum processes based on ACP, which is called qACP.

In qACP, the set A of actions is consisted of atomic quantum operations, and also the
deadlock δ and the silent step τ . The execution of an atomic quantum operation α not
only influences of the structural part p, but also changes the state of quantum variables �.
We still use the framework of a quantum process configuration p,� under the situation of
classical computing. In classical computing, the execution of a (classical) atomic action a
only influence the structural part p, and maintain the quantum state � unchanged. Note that,
this kind of actions are already introduced in AQCP in Section 5, which are called quantum
communicating actions, and range over the set C of quantum communicating actions. In
nature, quantum communicating actions are some kind of classical actions in contrast to
quantum operations, because they are unrelated to the quantum state �. The difference of a
quantum communicating action and a classical communicating action is that they exchange
different contents, a classical communicating action exchange the classical data by value or
by reference, while a quantum communicating action exchange the quantum variables only
by reference. We extend the set C of quantum communicating actions to classical atomic
actions (including classical communicating actions), and variables ν,μ range over C, and
a,b ∈ C.

Base on the fact that a classical action a does not affect the quantum state �, we can gen-
eralize classical ACP under the framework of quantum process configuration 〈p,�〉. We only
take an example of BPA, while PAP, ACP, ACP with guarded linear recursion, ACPτwith
guarded linear recursion are omitted.

We give the transition rules under quantum transition system specification (QTSS) for
BPA as follows.

〈υ, �〉 ν−→〈√, �〉

〈x, �〉 ν−→〈√, �〉
〈x + y, �〉 ν−→〈√, �〉

〈x, �〉 ν−→〈x′, �〉
〈x + y, �〉 ν−→〈x′, �〉

〈y, �〉 ν−→〈√, �〉
〈x + y, �〉 ν−→〈√, �〉
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〈y, �〉 ν−→〈y′, �〉
〈x + y, �〉 ν−→〈y′, �〉

〈x, �〉 ν−→〈√, �〉
〈x · y, �〉 ν−→〈y, �〉

〈x, �〉 ν−→〈x′, �〉
〈x · y, �〉 ν−→〈x′ · y, �〉

We design an axiomatization EBPA for BPA modulo quantum bisimulation equivalence
as Table 8 shows.

We can get the following conclusions naturally.

Theorem 8.1 Quantum bisimulation equivalence is a congruence with respect to BPA.

Theorem 8.2 EBPA is sound for BPA modulo quantum bisimulation equivalence.

Theorem 8.3 EBPA is complete for BPA modulo quantum bisimulation equivalence.

Note that, the behavior of deadlock constant δ quantum computing is the same as that of
classical computing. But, the behavior of silent step τ is different under the framework of
quantum process configuration 〈p,�〉 for quantum computing and classical computing, just
because τ in quantum computing can affect the state of all quantum variables, while τ in
classical computing really keeps silent.

Making classical ACP (including BPA, PAP, ACP, ACP with guarded linear recursion,
and ACPτwith guarded linear recursion) being under the framework of quantum process
configuration 〈p,�〉 for classical computing is trivial, because � is meaningless only for clas-
sical computing. But, in the view of unifying quantum computing and classical computing,
this work would be very important. Fortunately, qACP and classical ACP are unified under
the framework of quantum process configuration 〈p,�〉, that is, qACP and classical ACP
have the same equational logic (axiomatization EqACP and EACP) and the same semantic
model (strong quantum bisimilarity and weak quantum bisimilarity).

The unifying of qACP and classical ACP has an important significance, because most
quantum protocols, like the famous BB84 protocol [18], are mixtures of quantum informa-
tion and classical information, and those of quantum computing and classical computing.
This unifying can be used widely in verification for all quantum protocols.

Table 8 Axioms for BPA No. Axiom

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y) · z = x · z + y · z
A5 (x · y) · z = x · (y · z)
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9 Verification for Quantum Protocols – the BB84 Protocol

The unifying of qACP and classical ACP under the framework of quantum process config-
uration 〈p,�〉 makes verification for quantum protocols possible, not only the pure quantum
protocol, but also protocol that mixes quantum information and classical information.

The famous BB84 protocol [18] is the first quantum key distribution protocol, in which
quantum information and classical information are mixed. We take an example of the BB84
protocol to illustrate the usage of qACP in verification of quantum protocols.

The BB84 protocol is used to create a private key between two parities, Alice and Bob.
Firstly, we introduce the basic BB84 protocol briefly, which is illustrated in Fig. 1.

1. Alice create two string of bits with size n randomly, denoted as Ba and Ka.
2. Alice generates a string of qubits q with size n, and the i th qubit in q is |xy〉, where x is

the i th bit of Ba and y is the i th bit of Ka.
3. Alice sends q to Bob through a quantum channel Q between Alice and Bob.
4. Bob receives q and randomly generates a string of bits Bb with size n.
5. Bob measures each qubit of q according to a basis by bits of Bb. And the measurement

results would be Kb, which is also with size n.
6. Bob sends his measurement bases Bb to Alice through a public channel P.
7. Once receiving Bb, Alice sends her bases Ba to Bob through channel P, and Bob

receives Ba.
8. Alice and Bob determine that at which position the bit strings Ba and Bb are equal, and

they discard the mismatched bits of Ba and Bb. Then the remaining bits of Ka and Kb,
denoted as K ′

a and K ′
b with Ka,b = K ′

a = K ′
b.

We re-introduce the basic BB84 protocol in an abstract way with more technical details
as Fig. 1 illustrates.

Now, we assume a special measurement operation Rand[q;Ba] which create a string of
n random bits Bafrom the q quantum system, and the same as Rand[q;Ka], Rand[q′;Bb].
M[q;Kb] denotes the Bob’s measurement operation of q. The generation of n qubits q
through two quantum operations SetKa [q] and HBa [q]. Alice sends q to Bob through the
quantum channelQ by quantum communicating action sendQ(q) and Bob receives q through
Q by quantum communicating action receiveQ(q). Bob sends Bb to Alice through the pub-
lic channel P by classical communicating action sendP(Bb) and Alice receives Bbthrough
channel P by classical communicating action receiveP(Bb), and the same as sendP(Ba) and
receiveP(Ba). Alice and Bob generate the private key Ka,b by a classical comparison action
cmp(Ka,b,Ka,Kb,Ba,Bb). Let Alice and Bob be a system AB and let interactions between
Alice and Bob be internal actions. AB receives external input Di through channel A by com-
municating action receiveA(Di) and sends results Dothrough channel B by communicating
action sendB(Do).

Alice BobA

Q

P

B

Fig. 1 The BB84 protocol
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Then the state transition of Alice can be described by qACP as follows.

A =
∑

Di∈Δi

receiveA(Di) · A1

A1 = Rand[q; Ba] · A2

A2 = Rand[q; Ka] · A3

A3 = SetKa [q] · A4

A4 = HBa [q] · A5

A5 = sendQ(q) · A6

A6 = receiveP (Bb) · A7

A7 = sendP (Ba) · A8

A8 = cmp(Ka,b, Ka,Kb, Ba, Bb) · A

where Δi is the collection of the input data.
And the state transition of Bob can be described by qACP as follows.

B = receiveQ(q) · B1

B1 = Rand[q ′; Bb] · B2

B2 = M[q; Kb] · B3

B3 = sendP (Bb) · B4

B4 = receiveP (Ba) · B5

B5 = cmp(Ka,b, Ka,Kb, Ba, Bb) · B6

B6 =
∑

Do∈Δo

sendB(Do) · B

where Δo is the collection of the output data.
The send action and receive action of the same data through the same channel can

communicate each other, otherwise, a deadlock δ will be caused. We define the following
communication functions.

γ (sendQ(q), receiveQ(q)) � cQ(q)

γ (sendP (Bb), receiveP (Bb)) � cP (Bb)

γ (sendP (Ba), receiveP (Ba)) � cP (Ba)

LetA andB in parallel, then the systemAB can be represented by the following process term.

τ I (∂H (A ‖ B))

where H = {sendQ(q), receiveQ(q), sendP(Bb), receiveP(Bb), sendP(Ba), receiveP(Ba)} and
I = {Rand[q; Ba],Rand[q; Ka], SetKa [q], HBa [q],Rand[q ′; Bb], M[q; Kb], cQ(q),cP(Bb),
cP(Ba), cmp(Ka,b,Ka,Kb,Ba,Bb)}.

Then we get the following conclusion.

Theorem 9.1 The basic BB84 protocol τ I(∂H(A ‖ B)) exhibits desired external behaviors.
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Proof
∂H (A ‖ B) =

∑

Di∈Δi

receiveA(Di) · ∂H (A1 ‖ B)

∂H (A1 ‖ B) = Rand[q; Ba] · ∂H (A2 ‖ B)

∂H (A2 ‖ B) = Rand[q; Ka] · ∂H (A3 ‖ B)

∂H (A3 ‖ B) = SetKa [q] · ∂H (A4 ‖ B)

∂H (A4 ‖ B) = HBa [q] · ∂H (A5 ‖ B)

∂H (A5 ‖ B) = cQ(q) · ∂H (A6 ‖ B1)

∂H (A6 ‖ B1) = Rand[q ′; Bb] · ∂H (A6 ‖ B2)

∂H (A6 ‖ B2) = M[q; Kb] · ∂H (A6 ‖ B3)

∂H (A6 ‖ B3) = cP (Bb) · ∂H (A7 ‖ B4)

∂H (A7 ‖ B4) = cP (Ba) · ∂H (A8 ‖ B5)

∂H (A8 ‖ B5) = cmp(Ka,b,Ka,Kb, Ba, Bb) · ∂H (A ‖ B5)

∂H (A ‖ B5) = cmp(Ka,b, Ka,Kb, Ba, Bb) · ∂H (A ‖ B6)

∂H (A ‖ B6) =
∑

Do∈Δo

sendB(Do) · ∂H (A ‖ B)

Let ∂H(A ‖ B) = 〈X1|E〉, where E is the following guarded linear recursion specification:

{X1 =
∑

Di∈Δi

receiveA(Di) · X2, X2 = Rand[q; Ba] · X3, X3 = Rand[q; Ka] · X4,

X4 = SetKa [q] · X5, X5 = HBa [q] · X6, X6 = cQ(q) · X7,

X7 = Rand[q ′; Bb] · X8, X8 = M[q; Kb] ·X9, X9 = cP (Bb) · X10, X10 = cP (Ba) · X11,

X11 = cmp(Ka,b,Ka,Kb, Ba, Bb) · X12, X12 = cmp(Ka,b, Ka,Kb, Ba, Bb) · X13,

X13 =
∑

Do∈Δo

sendB(Do) · X1}

Then we apply abstraction operator τ Iinto 〈X1|E〉.

τ I (〈X1|E〉) =
∑

Di∈Δi

receiveA(Di) · τ I (〈X2|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X3|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X4|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X5|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X6|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X7|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X8|E〉)
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=
∑

Di∈Δi

receiveA(Di) · τ I (〈X9|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X10|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X11|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X12|E〉)

=
∑

Di∈Δi

receiveA(Di) · τ I (〈X13|E〉)

=
∑

Di∈Δi

∑

Do∈Δo

receiveA(Di) · sendB(Do) · τ I (〈X1|E〉)

We get τ I (〈X1|E〉) = ∑
Di∈Δi

∑
Do∈Δo

receiveA(Di) · sendB(Do) · τ I (〈X1|E〉), that is,
τ I (∂H (A ‖ B)) = ∑

Di∈Δi

∑
Do∈Δo

receiveA(Di) · sendB(Do) · τ I (∂H (A ‖ B)). So, the
basic BB84 protocol τ I(∂H(A ‖ B)) exhibits desired external behaviors.

10 Extensions – Renaming Operator

One of the most fascinating characteristics is the modularity of ACP, that is, ACP can be
extended easily. Through out this paper, we can see that qACP also inherents the modularity
characteristics of ACP. By introducing new operators or new constants, qACP can have
more properties. It is already proved that ACP or qACP possibly has the same expressive
power as a Turing machine [7]. Though extensions can not improve the expressive power of
qACP, but they provide qACP an elegant fashion to express a new property.

In this section, we take an example of renaming operator which is used to rename the
atomic quantum operations.

10.1 Transition Rules of Renaming Operators

Renaming operator �f(t) renames all actions in process term t, and the change of the
quantum state is consistent, which is expressed by the following two transition rules.

〈x, �〉 υ−→〈√, �′〉

〈�f (x), �〉 f (υ)−→ 〈√, �′〉

〈x, �〉 υ−→〈x′, �′〉

〈�f (x), �〉 f (υ)−→ 〈�f (x′), �′〉

Theorem 10.1 AQCPτ with guarded linear recursion and renaming operators is a
conservative extension of AQCPτ with guarded linear recursion.

Proof The corresponding TSS of AQCPτwith guarded linear recursion and renaming oper-
ators is a conservative extension of that of AQCPτwith guarded linear recursion. That
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means that AQCPτwith guarded linear recursion and renaming operators is a conservative
extension of AQCPτwith guarded linear recursion.

Theorem 10.2 Quantum rooted branching bisimulation equivalence is a congruence with
respect to AQCPτ with guarded linear recursion and renaming operators.

Proof The structural part of QTSSs for AQCPτwith guarded linear recursion and renaming
operators are all in RBB cool format by incorporating the successful termination predicate
↓ in the transition rules, so rooted branching bisimulation equivalence that they induce
is a congruence. According to the definition of quantum rooted branching bisimulation,
quantum rooted branching bisimulation equivalence that QTSSs for AQCPτwith guarded
linear recursion and renaming operators induce is also a congruence.

10.2 Axioms for Renaming Operators

The axioms for renaming operator is shown in Table 9.

Theorem 10.3 EAQCPτ
+ RSP + RDP + CFAR + QRN1-QRN4 is sound forAQCPτwith

guarded linear recursion and renaming operators, modulo quantum rooted branching
bisimulation equivalence.

Proof Since quantum rooted branching bisimulation is both an equivalence and a congru-
ence for AQCPτwith guarded linear recursion and renaming operators, only the soundness
of the first clause in the definition of the relation = is needed to be checked. That is, if s =
t is an axiom in EAQCPτ

+ RSP + RDP + CFAR + QRN1-QRN4 and σaclosed substitution
that maps the variable in s and t to basic quantum process terms, then we need to check that
〈σ(s), �〉↔rb〈σ(t), σ 〉.

Since axioms in EAQCPτ
+ RSP + RDP + CFAR + QRN1-QRN4 (same as EACPτ + RSP

+ RDP + CFAR + QRN1-QRN4) are sound for ACPτwith guarded linear recursion and
renaming operators modulo rooted branching bisimulation equivalence, according to the
definition of quantum rooted branching bisimulation, we only need to check if �′ = σ ′ when
� = σ , where � evolves into �′ after execution of σ (s) and σ evolves into σ ′ after execution
of σ (t). We can find that every axiom in Table 9 meets the above condition.

Theorem 10.4 EAQCPτ
+ RSP + RDP +CFAR +QRN1-QRN4 is complete forAQCPτwith

guarded linear recursion and renaming operators, modulo quantum rooted branching
bisimulation equivalence.

Proof To prove that EAQCPτ
+ RSP + RDP + CFAR + QRN1-QRN4 is complete for

AQCPτwith guarded linear recursion and renaming operators modulo quantum rooted
branching bisilumation equivalence, it means that 〈s, �〉↔rb〈t, σ 〉 implies s = t.

Table 9 Axioms for renaming No. Axiom

QRN1 �f(υ) = f(υ)
QRN2 �f(δ) = δ

QRN3 �f(x + y) = �f(x) + �f(y)
QRN4 �f(x · y) = �f(x) · �f(y)
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It was already proved that EAQCPτ
+ RSP + RDP + CFAR + QRN1-QRN4 (same as

EACPτ + RSP + RDP + CFAR + QRN1-QRN4) is complete for ACPτwith guarded lin-
ear recursion and renaming operators modulo rooted branching bisimulation equivalence,
that is, s↔rbt implies s = t. 〈s, �〉↔rb〈t, σ 〉 with � = σ means that s↔rbt with � =
σ and �′ = σ ′, where � evolves into �′ after execution of s and σ evolves into σ ′ after
execution of t, according to the definition of quantum rooted branching bisimulation equiv-
alence. The completeness of EAQCPτ

+ RSP + RDP + CFAR + QRN1-QRN4 for ACPτwith
guarded linear recursion and renaming operators modulo rooted branching bisimulation
equivalence determines that EAQCPτ

+ RSP + RDP + CFAR + QRN1-QRN4 is complete
for AQCPτwith guarded linear recursion and renaming operators modulo quantum rooted
branching bisimulation equivalence.

We can see that qACP with renaming operator and ACP with renaming operator can also
be unified under the framework of quantum process configuration 〈p,�〉.

11 Conclusions

In this paper, we extend the traditional structural operational semantics under the frame-
work of quantum process configuration 〈p,�〉 to support quantum processes. Based on the
relationship between quantum bisimilarity and classical bisimilarity, we establish a series of
axiomatization for quantum processes called qACP. We also unify qACP and classical ACP
under the framework of quantum process configuration 〈p,�〉. It makes qACP can adapt to
all quantum communication protocols.

Now, we point out some future directions. (1) Quantum entanglement makes the process-
ing of the silent step τ somewhat strange. The nature of influence of quantum entanglement
for computation, especially for parallelism and concurrency, should be considered carefully
and deeply in future, because quantum entanglement is unique for quantum mechanics. (2)
Other novel framework representing quantum processes should be proposed, not only the
quantum process configuration 〈p,�〉. New framework will unify quantum computing and
classical computing in a new way, which maybe capture the nature of quantum computing
more naturally. (3) qACP inherits the modularity of ACP and makes it can be extended in an
elegant fashion, in future, more properties can be extended in qACP. (4) The axiomatization
of qACP can be used to verify most quantum communication protocols easily and widely in
future.
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