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Abstract
We present an efficient protocol to securely compute the summation and multiplication of
the multiparty secure numbers via quantum states in MUBs. In our protocols, we assume
the third party Alice is semi-honest which means Alice might want to steal the secret mes-
sages of the participants but cannot be corrupted by the participants. The agents use decoy
photons which are randomly in one of 2dm nonorthogonal multiparticle states to prevent
the eavesdropper and potential dishonest agents from freely eavesdropping on the secure
information. The scheme requires the agents of computation to transmit fewer particles for
multiparty summation and multiplication, which makes the scheme more convenient to use
than others. Moreover, it has the advantage of having high information capacity per photon
for summation and multiplication in multiparty quantum computation.

Keywords Secure quantum summation · Secure quanum multiplication ·
Mutually unbiased bases

1 Introduction

The application of quantum state as an information carrier in quantum communication
enables some novel ways to transmit messages securely, such as quantum key distribu-
tion[1–12], quantum secret sharing [13–18], quantum secure direct communication [19–27],
deterministic secure quantum communication [28–31], quantum entanglement concentra-
tion [32, 33], quantum state transfer [34, 35], quantum Zeno effect [36], blind quantum
computation [37], quantum machine learning [38, 39] and secure multiparty quantum
computation [40–43].
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In secret sharing, the secret message M is split into two parts M = M1 ⊕ M2[13, 14]. The
agents can reconstruct the secret message if and only if all the agents cooperate. Quantum
secret sharing (QSS) has provided a secure way to share the secret message and it has pro-
gressed quickly since the original quantum secret sharing scheme was first proposed in 1999
by Hillery, Bužek and Berthiaume using three-particle entangled states[13]. Various proto-
cols for QSS have been proposed via different quantum entangled states [44–46]. In 2003,
Guo et al. presented a scheme for QSS without quantum entanglement and the efficiency
of QSS has been improved to 100% [44]. Now, theoretical and experimental protocols for
QSS have been studied by many groups [44–49].

Another important branch in cryptography is secure multiparty computation (SMC).
Secure multiparty summation and secure multiparty multiplication play important roles
in SMC. Similar to QSS, researchers have devoted much time to quantum secure multi-
party summation and multiplication based on quantum entanglement, or quantum secure
multiparty summation protocols based on single-particle states. For example, in 2006,
Hillery et al. presented a protocol for multiparty quantum summation with two-particle
high-dimensional entangled states [50]. Du et al. proposed a scheme for a quantum secure
addition module n + 1(n ≥ 2) based on non-orthogonal single-particle states [51]. Zhang
et al. proposed a protocol for quantum multiparty secure summation based on single pho-
tons in both polarization and spatial-mode degrees of freedom [52]. In 2010, Chen et al.
described a method for quantum summation between multiparties by using multiparticle
entangled states as the information carrier [53]. Zhang proposed a protocol for three-
party secure quantum summation with a six-qubit entangled state [54]. In 2016, Shi et al.
presented a scheme for multiparty quantum summation with a 2m-qubit entangled state

|ψ〉 = 1√
N

∑N−1
j=0 e

2πix1j
N |jj〉 [55]. Moreover, they proposed a scheme for multiparty quan-

tum multiplication with the 2m-qubit entangled state. In 2017, Liu et al. presented a protocol
for multiparty quantum secure summation with a two-particle Bell state [56]. Yang and
Ye presented a protocol for multiparty quantum summation based on quantum Fourier
transform [57]. Recently, the experimental realization of secure quantum summation via
five-qubit IBM quantum computers on a cloud has been reported [58].

Mutually unbiased bases (MUBs), have attached much interest since the concept was first
introduced by Ivanovic [59]. Wootters and Fields studied optimal state determination with
the measurements in mutually unbiased bases [60]. Yuan et al. showed that measurements
in MUB can be practically realized in the cavity quantum electrodynamics (QED) systems
by performing corresponding unitary transmissions [61]. The security of a quantum key
distribution with an MUB of d-dimensional system was discussed by Cerf et al. in 2002 [63].
Experimental realization of higher-dimensional quantum key distribution based on MUB
via photons carrying orbital angular momentum was studied in [62], which demonstrated
that the information capacity and key generation rate of quantum key distribution based
on MUB increases with the dimension of the quantum system. MUBs in arbitrary bipartite
spaces Cd ⊗ Cd are investigated via an unextendible maximally entangled basis [64].

In quantum secure communication, it’s long been understood that the agents can uti-
lize single-particle states in mutually unbiased bases (MUBs) or quantum entangled states
to guarantee the security of communication. But there is still no general method to per-
form multiparty secure summation and multiplication via single-particle states in MUBs
[53–56]. In this work, we will present a protocol for multiparty secure quantum summation
and multiplication via two MUBs of a high-dimensional quantum system. In our protocols,
we assume the third party Alice is semi-honest which means Alice might want to steal the
secret messages of the participants but cannot be corrupted by the participants. The agent
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uses decoy photons randomly chosen from d2m nonorthogonal states to prevent eavesdrop-
ping and dishonest agents freely stealing the secret messages. Quantum entanglement is not
necessary in our protocol for multiparty summation and multiplication, which makes this
protocol more convenient to use than others. Moreover, the protocol has the advantage of
having high efficiency since the information capacity and key generation rate per photon
of quantum secure summation and multiplication increase with the dimensionality of the
quantum system.

2 Secure Multiparty Quantum Summation Based onMutually
Unbiased Bases of D-Dimensional Quantum System

To present the principle of our scheme clearly, we first discuss a secure multiparty quantum
summation based on the MUB of d-dimensional quantum system, then propose the protocol
for secure multiparty quantum multiplication via d-dimension MUB.

Similar to Ref. [62], two orthonormal bases of N-dimensional quantum system
{|ψj1〉, j1 = 0, · · · , N − 1}, {|ϕj2〉, j2 = 0,· · · ,N − 1} are said to be MUBs if and only if
they satisfy:

|〈ψj1 |ϕj2〉| = 1√
N

. (1)

The two MUBs of N-dimensional quantum system can be written as [63]:

|ψl1〉 = |l1〉

|ϕl2〉 = 1√
N

N−1∑

j=0

e

2πi

N
jl2 |j〉 (2)

where l1,l2 = 0,1,· · · ,N − 1. Similar to Ref. [65], the states |ψl1〉, |ϕl2〉 in the two MUBs
can be written as a tensor product of m qudits (N = dm).

|ψl1〉 = |l1,m−1〉 ⊗ |l1,m−2〉 ⊗ · · · ⊗ |l1,0〉

|ϕl2〉 =
⎛

⎝ 1√
d

d−1∑

jm−1=0

e

2πi

N
dm−1jm−1l2 |jm−1〉

⎞

⎠

⊗
⎛

⎝ 1√
d

d−1∑

jm−2=0

e

2πi

N
dm−2jm−2l2 |jm−2〉

⎞

⎠

⊗ · · · ⊗
⎛

⎝ 1√
d

d−1∑

j0=0

e

2πi

N
j0l2 |j0〉

⎞

⎠ , (3)

where

l1 = l1,m−1d
m−1 + l1,m−2d

m−2 + · · · + l1,0

j = jm−1d
m−1 + jm−2d

m−2 + · · · + j0. (4)

Here l1, m− 1,· · · , l1,0, jm− 1,· · · , j0 = 0,· · · , d − 1.
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The unitary operation

U1
x =

N−1∑

l=0

e

2πi

N
xl|l ⊕ x〉〈l| (5)

flips the m-qudit states into two mutually unbiased bases:

U1
x |ψl〉 = |ψl⊕x〉

U1
x |ϕl〉 = |ϕl⊕x〉. (6)

Suppose there are n participants Alice1, Alice2,· · · , Alicen. Each participant Alicei(i
= 1,2,· · · ,n) has a string of secret numbers Xi.

Xi = (xi1, · · · , xip), (7)
where xij ∈{0,1,· · · , N − 1}, N = dm and j = 1, 2,· · · ,p. Similar to Ref. [55], all the partic-
ipants want Alice to calculate the summation

∑n
i=1 XimodN without revealing the secret

number Xi.

n∑

i=1

XimodN =
(

n∑

i=1

xi1modN, · · · ,

n∑

i=1

xipmodN

)

. (8)

Similar to Ref. [52], the initiator Alice prepares a sequence of ordered p m-qudit states
S which are randomly in one of two MUBs {|ψlj 〉, lj = 0, 1, · · · , N − 1}, {|ϕlj 〉, lj =
0, 1, · · · , N − 1} (j = 1,2,· · · ,p). To prevent potential eavesdroppers and dishonest agents
from stealing the secret information freely, Alice prepares the decoy photons which are
randomly in one of two MUBs {|ψ l〉, l = 0, 1,· · · , N − 1}, {|ϕl〉, l = 0, 1,· · · , N − 1} and
inserts them randomly into the sequence to form a new sequence S1[52]. Since the position
of decoy photons are unknown by the potential eavesdropper and dishonest agent, their
eavesdropping will disturb the state of decoy photons and be detected by Alice in the secure
check process. Alice sends the sequence S1 to Alice1.

After confirming that Alice1 has received all the m-qudit states sent by Alice, Alice pub-
lishes the positions of the decoy photons. Similar to Refs. [52, 66], Alice1 first measures the
decoys randomly in one of two MUBs, then publishes the information about this measure-
ment, including the measurement basis and the measurement results. Alice can determine
the error rate by comparing Alice′

1s measurement results with the initial states of decoy
photons. If the error rate exceeds the threshold, Alice aborts the secret communication.
Otherwise, the protocol continues.

Alice1 removes the decoy photons and applies unitary operation U1
x1j

(j = 1,2,· · · ,p) on
the jth m-qudit state in the ordered m-qudit sequence S according to his secret message X1.
Similar to Ref. [55], unitary operation U1

x1j
transforms the jth m-qudit state |ψlj 〉, |ϕlj 〉 in

the ordered sequence S to the corresponding state |ψlj ⊕x1j 〉, |ϕlj ⊕x1j 〉. After performing
the unitary operations, Alice1 prepares the decoy photons in a way similar to Alice and then
randomly inserts them into sequence S to form a new sequence S2. Alice1 sends the sequence
S2 to the next agent Alice2. Alice2 performs the process similar to Alice1, then sends the
particles to the next agent, and so on. After the last agent Alicenapplies the unitary opera-
tion U1

xnj
on the jth m-qudit state according to his secret message Xn, the jth m-qudit state

in the ordered m-qudit sequence S transforms to the corresponding state |ψlj ⊕x1j ⊕···⊕xnj〉,
|ϕlj ⊕x1j ⊕···⊕xnj〉. Since the unitary operations U1

xij
(i = 1,2,· · · ,n and j = 1,2,· · · ,p) do not

change the measurement basis [67], Alice can deterministic get the value l ⊕ x1 ⊕· · · ⊕
xn by performing projective measurement on the each m-qudit state returned with the same
MUB as he prepares it.
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To perform the multiparty secure quantum summation protocol securely, Alicen prepares
decoy photons in a similar way to the previous agents and then inserts the decoy photons into
the ordered sequence to form the new m-qudit sequence named Sn+ 1. Alicen sends Sn+ 1back
to Alice. After confirming that Alice has received all the m-qudit states sent from Alicen,
Alicen announces the positions of the decoy photons. Alice measures the decoy photons
randomly in one of the two MUBs and publishes the information of this measurement,
including measurement bases and measurement results. Alicen analyzes the error rate. If the
error rate exceeds the threshold, they abort the communication.

After the security check, Alice can deterministically obtain the value of l1j ⊕ x1j ⊕· · · ⊕
xnj(j = 1,2,· · · ,p) by performing a projective measurement on each m-qudit state returned
with the same MUB as it is prepared. According to his knowledge of lj, Alice can compute
the summation

∑n
i=1 xijmodN.

n∑

i=1

xijmodN = lj ⊕ x1j ⊕ x2j ⊕ · · · ⊕ xnj ⊕ (N − lj ), (9)

where j = 1,2,· · · ,p.

3 Multiparty Secure QuantumMultiplication Based onMUBs

Similar to the case for multiparty secure quantum summation, suppose there are n partici-
pants Alice1, Alice2,· · · , Alicen, each participant Alicei (i = 1,2,· · · ,n) has a string of secret
numbers Xi = (xi1, xi2,· · · , xip), where xij ∈{1, 2,· · · , N − 1}, N = dm and j = 1, 2,· · · ,p. All
the participants want to Alice compute the multiplication

∏n
i=1XimodN without revealing

their secret numbers.

n∏

i=1

XimodN =
(

n∏

i=1

xi1modN, · · · ,

n∏

i=1

xipmodN

)

. (10)

The arbitrary dimension of quantum system d can be factorized and expressed as:

d = qk1

1 qk2

2 · · · qkr

r , (11)

where q1,· · · ,qr are prime numbers, k1,· · · ,kr are r integers. Similar to Ref. [55], each
secret number xij(i = 1,· · · ,n;j = 1,· · · ,p) can be expressed as:

xij = sijq
k1
ij

1 q
k2
ij

2 · · · qkr
ij

r . (12)

Here, sij is coprime with dmsince sij is coprime with d. Similar to multiparty secure
quantum multiplication with entangled states, the multiplication of n secret numbers∏n

i=1xijmodN can be written as:

n∏

i=1

xijmodN =
(

q

∑n
i=1 k1

ij
1 · · · q

∑n
i=1 kr

ij
r

n∏

i=1

sij

)

modN (13)

If we get the results of
∑n

i=1 k1
ijmodN, · · · ,

∑n
i=1 kr

ij modN and
∏n

i=1sij modN, we can
easily compute

∏n
i=1xijmodN. Therefore, the computation of

∏n
i=1xij modN can be trans-

lated into the computations of
∑n

i=1 k1
ijmodN, · · · ,

∑n
i=1 kr

ij modN and
∏n

i=1sij modN. The

method of computing
∑n

i=1 k1
ijmodN, · · · ,

∑n
i=1 kr

ij modN has been proposed previously.
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Below, we only discuss the method of computing
∏n

j=1sj modN via two MUBs of based
on high-dimensional quantum systems.

Similar to the case for multiparty secure quantum summation, The initiator Alice pre-
pares a sequence of ordered p m-qudit states R randomly in one of two nonorthogonal states
|ψlj 〉, |ϕlj 〉 (j = 1,2,· · · ,p) and lj is coprime with N. To prevent the potentially dishonest
agents from stealing the secret information freely, Alice prepares decoy photons in one of
two MUBs {|ψ l〉, l = 0, 1,· · · , N − 1}, {|ϕl〉, l = 0, 1,· · · , N − 1} and inserts them randomly
into the m-qudit sequence to form the new sequence R1. Alice sends R1 to Alice1.

After confirming that Alice1 has received all the particles sent by Alice, Alice announces
the positions of the decoy photons. To check the security of the communication Alice1 mea-
sures the decoy photons randomly in one of two MUBs and publishes the measurement
results. Alice compares the measurement results with the initial states of decoy photons. If
the error rate exceeds the threshold, they abort the communication. Otherwise, the protocol
continues.

Alice1 removes decoy photons and applies unitary operation U2
s1j

according to his private
secret number s1j(j = 1,2,· · · ,p) on the jth m-qudit state of the ordered sequence R.

U2
s1j

=
N−1∑

l=0

|ls−1
1j modN〉〈l|. (14)

Similar to Ref. [55], since s1j is coprime with N and therefore its modulo-N multiplica-
tion inverse s−1

ij exists. The unitary operation flips the m-qudit states in the two MUBs and
transforms the jth m-qudit state in the ordered sequence to the corresponding state

U2
s1j

|ψlj 〉 = |ψlj s−1
1j modN〉

U2
s1j

|ϕlj 〉 = |ϕlj s1jmodN〉. (15)

To prevent the eavesdropper from stealing the secret information freely, Alice1 prepares
decoy photons in one of two MUBs by a method similar to Alice and inserts the decoy pho-
tons randomly into the ordered sequence R to form the new sequence R2. Alice1 sends the
sequence R2 to the next agent Alice2. Similar to the case for multiparty secure summation,
Alice2 performs the process similar to Alice1, then sends the particles to the next agent,
and so on. The jth m-qudit state in the ordered m-qudit sequence R transform to the corre-

sponding state |ψlj s−1
1j ···s−1

nj modN〉, |ϕlj s1j ···snjmodN〉 after the last agent Alicen applies unitary
operation U2

snj
on the jth m-qudit state according to his secret message Xn.

Since the unitary operations U2
sij

(i = 1,2,· · · ,n and j = 1,2,· · · ,p) do not change

the measurement basis, Alice can deterministically get the value lj s
−1
1j · · · s−1

nj modN or
ljs1j· · · snjmodN by performing projective measurement on each m-qudit state returned with
the same MUB that they prepared.

To perform the multiparty quantum multiplication protocol securely, Alicen prepares the
decoys photons in the same way as the previously agents and then inserts the decoy photons
randomly into the ordered sequence Rn to form the new m-qudit sequence Rn+ 1.The last
agent Alicen sends the new sequence Rn+ 1 back to Alice. After conforming that Alice has
received all the m-qudit states sent from Alicen, Alicen announces the positions of the decoy
photons. Similar to the case for multiparty secure quantum summation, Alice measures
the decoy photons randomly in one of two MUBs and publishes the information of this
measurement. Alicen analyzes the error rate. If the error rate exceeds the threshold, they
abort the communication.
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After the security check, Alice can deterministically obtain the value of lj s
−1
1j · · · s−1

nj
modN(j = 1,2,· · · ,p) or ljs1js2j· · · snjmodN by performing projective measurement on each
m-qudit state returned with the same MUB that they prepared. According to his information
on lj, Alice can compute the multiplication

∏n
i=1sijmodN

n∏

i=1

sijmodN = lj�
−1
1 modN,

n∏

i=1

sijmodN = l−1
j � 2modN (16)

where

� 1 = lj s
−1
1j · · · s−1

nj modN,

� 2 = lj s1j · · · snjmodN (17)

and j = 1,2,· · · ,p.
It is interesting to notice that the agents can prepare an N-dimensional (N = dm) single-

qudit state for multiparty secure summation and multiplication. This method has the
advantage of transmitting fewer particles for multiparty secure summation and multiplica-
tion via the arbitrary number N at the expense of preparing and manipulating a quantum
system with a higher dimension.

4 Security Analysis

In this section, we will analyze the security of our protocols for multiparty quantum summa-
tion and multiplication via MUBs. In contrast to quantum key distribution, in the multiparty
quantum summation protocol, the attacks from the outside and the attacks from the all the
participants should be considered in security analysis. Not only do eavesdroppers from out-
side want to steal the participants’ secret information but also some dishonest agents may
try to steal other agents’ private secret information. The security task in a quantum summa-
tion protocol is to prevent the eavesdropper and dishonest agents from freely eavesdropping
on the participants’ private secret inputs. To save the space, we only analyze the secu-
rity of multiparty quantum summation protocol, since the security of multiparty quantum
multiplication protocol is the same as that of multiparty quantum summation protocol.

In our protocol, the agents use decoy photon technique to prevent the eavesdropper
from eavesdropping freely on the secret information. The principle of the decoy technique
according to Li et al. is that the sender prepares some photons which are randomly in one
of N2 nonorthogonal states {|ψ l〉, l = 0, 1,· · · , N − 1}, {|ϕl〉, l = 0, 1,· · · , N − 1}, and then
inserts them into the photon sequences [66]. As the states and the positions of decoy pho-
tons are unknown for the outside eavesdropper, the eavesdropper will inevitably disturb the
state of decoy photons and will be caught during the detection procedure. Thus, the outside
eavesdropper’s different kinds of attacks, such as intercept-resend attack, measurement-
resend attack and the denial-of-service attack, will be detected during the check procedure.
Let us take the intercept-resend attack as an example. Suppose the state of decoy photon is
|0〉, the eavesdropper measures the photon randomly in one of two MUBs since he does not
know the initial state of the decoy photon. After the measurement, he prepares and sends
the fake single photon according to his measurement result. Therefore, the probability of his
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eavesdropping being detected during the check procedure is N−1
2N

. The probability of the

eavesdropper being detected will be 1−
(

N+1
2N

)k

when the sender uses k decoy photons for

checking the eavesdropping. The eavesdropper will be detected in a secure check procedure
and our protocol is secure against outside attack.

We now discuss the participant attacks in our protocol for multiparty quantum secure
summation, which are more complicated in secure analysis than outside attacks. As we
know, there are two sorts of participant attacks: individual attack and collusion attack. We
first analyze the security of our protocol against an individual attack, then analyze the secu-
rity of the protocol against a collusion attack. Suppose one of the participants wants to steal
the other participant’s secret information. Without loss of generality, suppose Alice1 wants
to steal Alicej’s (j = 2,3,· · · , n) secret key Xj, then Alice1 has to intercept the sequence Sjsent
from Alicej, and measures the photons sequence. Alice1’s eavesdropping will disturb the
state of the decoy photons in the sequence Sj since Alice1 does not know the states and the
positions of the decoy photons. Therefore, the eavesdropping will be detected during the
security check procedure. Our protocol is secure against an individual attack. However, if
the agents Alicel− 1 and Alicel+ 1 are dishonest agents, they can collude to get Alicel’s secret
information. To resist the collusion of fewer than n-1 agents, we can use a random order
communication model instead of the fixed order communication, as suggested by Shi et al.
[55]. That is, the method to choose the next agent is randomly determined by Alicel, and
not predetermined by other agents. Similar to Refs. [54, 55], since any eavesdropping done
by an eavesdropper or dishonest agent will inevitably disturb the state of decoy photon and
will be detected in security check process [66], the agents can exploit the decoy-photon
technique and the random order communication model to prevent outside and participant
attacks.

5 Discussion and Summary

If we set p = 1 for all the agents, the vectors Xi is composed of single numbers. All agents can
jointly compute the summation of n single numbers

∑n
i=1 XimodN and the multiplication

of n single numbers
∏n

i=1XimodN without revealing their secret information. Moreover,
if we set m = 1, the m-qudit state is randomly in one of d2 nonorthogonal states, which
means the agents can calculate the multiparty quantum summation and multiplication with
an arbitrary general number d. Similar to Ref. [55], our protocols have the advantage of
performing multiparty summation and multiplication in the N-dimension (N = dm) space by
using qudits as the quantum information carriers. The agents can obtain the desired results
with the general number d without revealing their respective secret information. From the
perspective of entropy, the summation of n single numbers

∑n
i=1 XimodN (N = dm) and

the multiplication of n single numbers
∏n

i=1XimodN with qudits contain more information
than the summation of n single numbers

∑n
i=1 XimodN (N = 2m) and the multiplication of

n single numbers
∏n

i=1XimodN with qubits.
In Ref. [55], the agents can exploit the nonlocal correlation of 2m-particle quantum

entangled state |ψ〉 = 1√
N

∑N−1
j=0 |jj〉 to avoid the requirement of the application of decoy

photons technique to prevent eavesdropper or dishonest agent from freely eavesdropping on
the secure information. However, when the agents perform the multiparty secure quantum
computation via m-particle state |ψ〉 = 1√

N

∑N−1
j=0 |j〉, the approach in Ref. [55] does not

work. To compute multiparty quantum summation
∑n

i=1 XimodN with the general number
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N, the protocol for multiparty quantum summation based on the qubit system has to trans-
mit logN

2 qubits to accomplish the computation. However, in the protocol for multiparty
quantum summation based on qudit system, the agents only need to transmit the single
qudit. Similar to Refs. [54, 62]. the protocols for multiparty quantum summation and mul-
tiplication with the high-dimensional quantum system have the advantage of having high
information capacity and communication efficiency.

In summary, we have presented a protocol for multiparty secure quantum summation
based on a high-dimensional quantum system. The agents utilize the decoy photons, which
are randomly in one of two MUBs, to prevent the dishonest agents or the eavesdropper
form eavesdropping freely on the secure information. The protocol is more convenient to
use since it not require a 2m-particle entangled state for multiparty secure summation.
We also discuss the protocol for multiparty secure quantum multiplication based on high-
dimensional quantum system which is rarely considered in previous papers. Compared with
previous protocols, our protocols for multiparty secure quantum summation and multiplica-
tion based on high-dimensional quantum system have the advantage of having high quantum
communication efficiency.
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