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Abstract
The privacy of digital contents plays an important role in digitally advanced era. The transmission
of digital information over public networks have extraordinary impact and gradually imperative
due to theft and manipulation in contents. In this article, we have suggested a new encryption
scheme based on Kramer’s arbitrary spinning in order to provide the confidentiality to digital
contents. We have implemented our offered scheme on standard digital images and performed the
security performance analyses to authentic the robustness against cryptographic attacks.

Keywords Kramer’s spin . Arbitrary spin . Privacy

1 Introduction

There are numerous environments in everyday existence, when the secret contents conveyed over
apprehensive line of communication. Most of the outmoded cryptosystems are utilized in literature
to accomplish the security of confidential information [1]. Digital contents are transferred over
communication medium, such as documents, advertisements and law enforcement constituents
very extensively and security of information is vibrant issue. Due to thoughtful events of hackers,
these contents can easily end up in the hands of unauthorized individuals. They can excerpt or alter
the data without knowledge of appropriate receiver [2]. The research is going over the years in
information theory and cryptology to offer the protection for digital contents. The vibrant issue in
line of communication to shelter the privacy of appropriate users [3–17].

Modern ages of cryptography point out around 1950’s, when Claude Shannon
produced an article ‘A mathematical theory of cryptography’ published in the Bell
System Technical Journal in 1949 [18]. He was inspired during the World War II,
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when electromechanical cipher machines used very widely. He then identified the two
main goals of cryptography: Confidentiality and Authenticity and wrote an article “A
mathematical theory of communication” which highlights one of the most significant
aspects of cryptography’s importance [19].

Different algorithms proposed in different times and DES of 56-bit long key approved and
adopted by US agencies and considered to be secure, but improvements in technology have
made it trivial to defeat. Although DES replaced by AES, but the fact is if powerful computers
may crack DES in few hours, the area of risk in public key cryptography vulnerable to the
future developments. This uncertainty provides potential threat to perfect security required at
national and intellectual property level.

Various schemes produced in different ages to secure the communication in public chan-
nels. In this article, we developed a novel structure based on ‘Kramer’s arbitrary spin’ to
provide security for digital contents.

In the light of quantum mechanics, Kramer’s theorem states that the time reversal
symmetric system with half integer total spin for every energy eigenstate, there is at least
one more eigenstate with the same energy. In simple words, each energy level is at least
degenerate double if it has half integer spin. If we operate Hamiltonian operator with time
reversal, then the time reversed state also act as an eigenstate with the same energy for
every energy eigenstate and this state might be identical to the original state. In half integer
spin systems, it reverses all angular momenta and cannot produce the same state as the
magnetic quantum number can never be zero. The energy levels for a system with odd
numbers of fermions, such as electrons, protons and neutrons, at least degenerate double in
the presence purely electric field [20].

This article is organized in 5 sections. The preliminaries of this article including derivations
presented in section 2. The proposed cryptosystem and its implementation on standard images
followed in section 3. Experimentation and performance analyses for the proposed scheme
conveyed in section 4 and section 5 comprises the concluding remarks.

2 Basic Terminologies

This section demonstrates the fundamental concepts of orthogonal codes, Redheffer codes and
the derivations of Kramer’s arbitrary spin matrices.

2.1 Orthogonal Codes

Orthogonal codes introduced by Jacques Hadamard in 1893 and has a remarkable
attention in coding theory. Code word set Hkcan be constructed in dimension of 2k ×
2kand can also be entitled as Hadamard matrix. k-bit data set from Hk − 1 matrix as
follows [21]:

Hk ¼ Hk−1 Hk−1

Hk−1 Hk−1

� �
ð1Þ

One-bit data set can be encoded by using orthogonal code words of 2 digits each, described by
the rows of matrix and the 2-bit data set can be transformed by extending the one-bit set both
horizontally and vertically given as follows [21]:
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2.2 Bi-Orthogonal Codes

Bi-Orthogonal set of total code words ‘M’ can be obtained from orthogonal set of code words
M/2 by supplementing it with negative of each as follows [21]:

Bk ¼ Hk−1

Hk−1

� �
: ð2Þ

2.3 Redheffer Matrices

A Redheffer matrix is n × n square (0,1) matrix with elements ai j = 1, if j = 1 or i ∣ j (i
divides j) and 0 otherwise. For n = 1, 2, ..., k, the first few matrices are:

1½ �; 1 1
1 1

� �
;

1 1 1
1 1 0
1 0 1

2
4

3
5;

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1

2
664

3
775;

1 1 1 1 1
1 1 0 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

2
66664

3
77775; ::::

Determinant of n × nmatrix equal to Mertens function M(n) [22]. For n = 1, 2, 3, …, first few
values for the function are 1, 0, −1, −1, −2, −1, −2, −2, …. Eigenvalues of n × nRedheffer
matrix for n > 1 equals to a(n) = n − ⌊lgn⌋ − 1 [23].

2.4 Kramer’s Spin Matrices

Kramer’s method gives high degree of naturalness. Let us introduce 2 spinor components u

and v, i.e. ξ ¼ u
v

� �
is a complex vector by nature [24]. The spinor components in Euclidean

space represented as:

U
V

� �
¼ α β

−β* α*

� �
u
v

� �
; ð3Þ

where U∗ U + V∗ V = u∗ u + v∗ v, u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1−ia2

p
, v ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ ia2

p
and α = cos θ + i k3 sin θ,

β = (k2 + i k1) sin θ assign as rotational interpretations in Euclidean space. These are so called
Cayley-Klein parameters [25].

By applying Kramer’s method on Eq. (3), the result as follows:

UU
UV
VV

0
@

1
A ¼

αuþ βvð Þ αuþ βvð Þ
αuþ βvð Þ −β*uþ α*v

� �
−β*uþ α*v
� �

−β*uþ α*v
� �

0
@

1
A ¼

α2 2αβ β2

−αβ* αα*−ββ* βα*

β*� �2 −2α*β* α*� �2
0
@

1
A uu

uv
vv

0
@

1
A: ð4Þ

Since in this case, α2
1 þ α2

2 þ α2
3 ¼ 0; which implies

α3 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 þ iα2ð Þ α1−iα2ð Þ

p
: ð5Þ
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From the results of u, v and Eq. (5), we have

α1 ¼ 1

2
u2−v2
� �

; α2 ¼ i
1

2
u2 þ v2
� �

; α3 ¼ −i uv:

2.4.1 Spin S (1)

By using Eq. (4) to develop S (1) as follows:

S 1ð Þ ¼
α2

ffiffiffi
2

p
αβ β2

−
ffiffiffi
2

p
αβ* αα*−ββ*

ffiffiffi
2

p
βα*

β*� �2 −
ffiffiffi
2

p
α*β* α*� �2

0
B@

1
CA ð6Þ

Extract the matrices σ from Eq. (6) with respect to the results of α1, α2 andα3. The matrices
are given as:

σx ¼
0 þ

ffiffiffi
2

p
0ffiffiffi

2
p

0 þ
ffiffiffi
2

p
0

ffiffiffi
2

p
0

0
@

1
A; σy ¼ i

0 −
ffiffiffi
2

p
0ffiffiffi

2
p

0 −
ffiffiffi
2

p
0

ffiffiffi
2

p
0

0
@

1
A; σz ¼

2 0 0
0 0 0
0 0 −2

0
@

1
A :

These 3 × 3 matrices σi, j are manifestly traceless hermitian. They are, unlike the Pauli’s
matrices, not closed under multiplication, but closed under commutation [24]. The case is
unitary and unimodular, St(1) S(1) = I and det S(1) = 1.In Pauli’s ½ spin case, σ2x þ σ2

y þ σ2
z

¼ 3 I ; while in the above case of Kramer spin σ2
x þ σ2

y þ σ2
z ¼ 8 I . From the above results, we

can calculate (2 l + 1) dimension traceless hermitian tuples.

S lð Þ ¼ σx lð Þ;σy lð Þ;σz lð Þ
	 


; for l ¼ 3=2; 2; 5=2; ::::

2.4.2 Spin S (3/2)

By applying Kramer’s method for S (3/2) on Eq. (3), the result as follows:

UUU
UUV
UVV
VVV

0
BB@

1
CCA ¼

α3 3α2β 3αβ2 β3

−α2β* α2α*−2αββ* 2αα*β−β2β* α*β2

α β*� �2 −2αα*β* þ β β*� �2
α α*� �2−2α*ββ* α*� �2

β

− β*� �3
3α* β*� �2 −3 α*� �2

β* α*� �3

0
BBB@

1
CCCA

uuu
uuv
uvv
vvv

0
BB@

1
CCA;

S 3=2ð Þ ¼
α3

ffiffiffi
3

p
α2β

ffiffiffi
3

p
αβ2 β3

−
ffiffiffi
3

p
α2β* α2α*−2αββ* 2αα*β−β2β*

ffiffiffi
3

p
α*β2ffiffiffi

3
p

α β*� �2 −2αα*β* þ β β*� �2
α α*� �2−2α*ββ*

ffiffiffi
3

p
α*� �2

β

− β*� �3 ffiffiffi
3

p
α* β*� �2 −

ffiffiffi
3

p
α*� �2

β* α*� �3

0
BBB@

1
CCCA:
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The case is unitary and unimodular, St(3/2) S(3/2) = I and det (S(3/2)) = 1.By using values of α
and β, we can transform the matrix S (3/2) as follows [26]:

S 3=2ð Þ ¼
α3

ffiffiffi
3

p
β 0 0

−
ffiffiffi
3

p
β* α2α* 2β 0

0 −2β* α α*� �2 ffiffiffi
3

p
β

0 0 −
ffiffiffi
3

p
β* α*� �3

0
BBB@

1
CCCA ð7Þ

Extract σx, σy and σz from Eq. (7) as follows:

σx ¼
0 þ

ffiffiffi
3

p
0 0ffiffiffi

3
p

0 þ2 0
0 2 0 þ

ffiffiffi
3

p
0 0

ffiffiffi
3

p
0

0
BB@

1
CCA; σy ¼ i

0 −
ffiffiffi
3

p
0 0ffiffiffi

3
p

0 −2 0
0 2 0 −

ffiffiffi
3

p
0 0

ffiffiffi
3

p
0

0
BB@

1
CCA; σz ¼

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

0
BB@

1
CCA ;

where σ2x þ σ2
y þ σ2

z ¼ 15 I :.

2.4.3 Spin S (2)

By applying Kramer’s method on Eq. (3), S (2) is given as:

S 2ð Þ ¼

α4 2β 0 0 0
−2β* α3α*

ffiffiffi
6

p
β 0 0

0 −
ffiffiffi
6

p
β* α2 α*

� �2 ffiffiffi
6

p
β 0

0 0 −
ffiffiffi
6

p
β* α α*� �3

2β

0 0 0 −2β* α*� �4

0
BBBBB@

1
CCCCCA ð8Þ

E x t r a c t σ x , σ y a n d σ z f r o m E q . ( 8 ) a s f o l l o w s :

σx ¼ 1

2

0 þ2 0 0 0
2 0 þ

ffiffiffi
6

p
0 0

0
ffiffiffi
6

p
0 þ

ffiffiffi
6

p
0

0 0
ffiffiffi
6

p
0 þ2

0 0 0 −2 0

0
BBBB@

1
CCCCA;σy ¼ i

1

2

0 −2 0 0 0
2 0 −

ffiffiffi
6

p
0 0

0
ffiffiffi
6

p
0 −

ffiffiffi
6

p
0

0 0
ffiffiffi
6

p
0 −2

0 0 0 −2 0

0
BBBB@

1
CCCCA;σz ¼

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

0
BBBB@

1
CCCCA;w h e r e

σ2
x þ σ2

y þ σ2
z ¼ 6 I .

2.4.4 Spin S (5/2)

By applying Kramer’s method on Eq. (3) and extraction of σx, σy and σz from S (5/2) as
follows:

σx ¼ 1

2

0 þ
ffiffiffi
5

p
0 0 0 0ffiffiffi

5
p

0 þ
ffiffiffi
8

p
0 0 0

0
ffiffiffi
8

p
0 þ

ffiffiffi
9

p
0 0

0 0
ffiffiffi
9

p
0 þ

ffiffiffi
8

p
0

0 0 0
ffiffiffi
8

p
0 þ

ffiffiffi
5

p
0 0 0 0

ffiffiffi
5

p
0

0
BBBBBB@

1
CCCCCCA
; σy ¼ i

1

2

0 −
ffiffiffi
5

p
0 0 0 0ffiffiffi

5
p

0 −
ffiffiffi
8

p
0 0 0

0
ffiffiffi
8

p
0 −

ffiffiffi
9

p
0 0

0 0
ffiffiffi
9

p
0 −

ffiffiffi
8

p
0

0 0 0
ffiffiffi
8

p
0 −

ffiffiffi
5

p
0 0 0 0

ffiffiffi
5

p
0

0
BBBBBB@

1
CCCCCCA
; σz ¼

5

2
0 0 0 0 0

0
3

2
0 0 0 0

0 0
1

2
0 0 0

0 0 0 −
1

2
0 0

0 0 0 0 −
3

2
0

0 0 0 0 0 −
5

2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

where σ2x þ σ2
y þ σ2

z ¼ 35
4 I :.
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3 Proposed Algorithm

We develop arbitrary spin matrices by using Kramer’s transformation. In this section, we
transformed these matrices to encrypt the data as well as key with the help of Hadamard and
Redheffer matrices. Orthogonal or biorthogonal and Redheffer codes use to encrypt the key
with respect to key length. Hadamard codes are singular, convert it into nonsingular by taking
compliment before encryption. Redheffer matrix of order 2 × 2 and spin (1, 2, 3, ..., n, where n ∈
ℕ)matrices cannot be used because of following the singular property, while spin (1/2, 3/2, 5/
2, ..., n/2), where n is odd number are nonsingular matrices and can be used to encrypt the data.

3.1 Spin S (1/2)

I ¼ 1 0
0 1

� �
¼ a; σx ¼ 0 1

1 0

� �
¼ b; iσy ¼ 0 −1

1 0

� �
¼ c; σz ¼ 1 0

0 −1

� �
¼ d:

3.2 Spin S (3/2)

I ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA ¼ a; σx ¼

0 þ
ffiffiffi
3

p
0 0ffiffiffi

3
p

0 þ2 0
0 2 0 þ

ffiffiffi
3

p
0 0

ffiffiffi
3

p
0

0
BB@

1
CCA ¼ b; iσy ¼

0 −
ffiffiffi
3

p
0 0ffiffiffi

3
p

0 −2 0
0 2 0 −

ffiffiffi
3

p
0 0

ffiffiffi
3

p
0

0
BB@

1
CCA ¼ c; σz ¼

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

0
BB@

1
CCA ¼ d:

3.3 Spin S (5/2)

I ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

¼ a; σx ¼ 1

2

0 þ
ffiffiffi
5

p
0 0 0 0ffiffiffi

5
p

0 þ
ffiffiffi
8

p
0 0 0

0
ffiffiffi
8

p
0 þ

ffiffiffi
9

p
0 0

0 0
ffiffiffi
9

p
0 þ

ffiffiffi
8

p
0

0 0 0
ffiffiffi
8

p
0 þ

ffiffiffi
5

p
0 0 0 0

ffiffiffi
5

p
0

0
BBBBBB@

1
CCCCCCA

¼ b;

iσy ¼ 1

2

0 −
ffiffiffi
5

p
0 0 0 0ffiffiffi

5
p

0 −
ffiffiffi
8

p
0 0 0

0
ffiffiffi
8

p
0 −

ffiffiffi
9

p
0 0

0 0
ffiffiffi
9

p
0 −

ffiffiffi
8

p
0

0 0 0
ffiffiffi
8

p
0 −

ffiffiffi
5

p
0 0 0 0

ffiffiffi
5

p
0

0
BBBBBB@

1
CCCCCCA

¼ c; σz ¼

5

2
0 0 0 0 0

0
3

2
0 0 0 0

0 0
1

2
0 0 0

0 0 0 −
1

2
0 0

0 0 0 0 −
3

2
0

0 0 0 0 0 −
5

2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ d:

Let entangle these n × n matrices to form a set ‘A’ of 2n × 2n matrices [1].

A ¼ A1;A2;A3; :::;A24½ �;where A1 ¼ a b
c d

� �
;A2 ¼ a b

d c

� �
; :::;A23 ¼ d b

c a

� �
;A24 ¼ d b

a c

� �
:
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3.4 Experimentation of Proposed Scheme

We have performed experimentation with key [00110 10,100] on standard images of size
512 × 512. The entangled matrices with respect to key are A6 and A14 and performed
experiment on spin systems S (3/2) and S (5/2) respectively.

4 Performance Analyses for Anticipated Structure

Different standard performance analyses accomplished in this section on standard digital
contents to assert the performance and security of anticipated algorithm (see Figs. 1, 2 and
3). These outcomes contain the factual investigation, sensibility examination and loophole test
for encrypted data. Different analyses discussed in subsection of 4 in detail to examine the
sensitivity of offered encryption mechanism.

4.1 Randomness Analyses

With a specific end goal to justify the prerequisites of long period, uniform scattering,
high complexity and efficiency for proposed cryptosystem, we execute NIST SP 800–
22 analysis to testify the randomness of digital contents [27]. The enciphered Lena
image at S (5/2) is employed to accomplish the NIST tests and the aftereffects results
presented in Tables 1, 2 and 3.

By analyzing the outcomes, the anticipated encryption scheme effectively passes all the
NIST tests. The production of random ciphers using projected scheme are irregular in the light
of accomplished outcomes.

4.2 Uniformity Analyses

Histograms uniformity of enciphered images estimates the security of encryption framework
[28]. We have computed the histograms of 256 dark level original and encrypted images of
size 512 × 512, that have different contents. The plain image histograms contain sharp
upsurges took after sharp decline, while both enciphered images contain uniformity shown
in Figs. 4, 5, 6, 7, 8 and 9, which makes statistical attacks tough.

4.3 Pixels’ Correlation Analyses

The neighboring pixels of an image are tremendously associated in horizontal, vertical
and diagonal directions. The encrypted data must unrestraint this affiliation to improve

Fig. 1 Proposed encryption strategy
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the barrier contrary to quantifiable analysis. To testify the association among nearby
pixels in plain and enciphered images, 10,000 sets of two nearby pixels from each
digital content initially selected [29]. It is demonstrated by the following expression:

rx;y ¼ σx;yffiffiffiffiffiffiffiffiffiffi
σ2xσ

2
y

q ; ð9Þ

where x and y are values of two nearby pixels at gray scale, while σx
2 and σ2

y

represents the variances and σx, y is the covariance of random variables x and y.

Fig. 2 Plain and encrypted layer wise contents of Lena image. (a-d) Plain image and its corresponding layer wise
contents, (e-h) Encrypted image and its corresponding layer wise contents at S (3/2), (i-l) encrypted image and its
corresponding layer wise contents at S (5/2)
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The coefficients of correlation for plain and encrypted images having dissimilar contents
conveyed in Table 4. The association among various couples of original and encrypted images
evaluated by calculating the two dimensional correlation coefficients among the original
encrypted images [30]. The succeeding calculation is employed to compute the correlation
coefficients. The mathematical expression for correlation coefficient is given below:

r ¼
∑
M ;N

i; j¼1
Pij−P
� �

Cij−C
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M ;N

i; j¼1
Pij−P
� �2 !

∑
M ;N

i; j¼1
Cij−C
� �2 !vuut

; ð10Þ

Fig. 3 Plain and encrypted layer wise contents of Pepper image. (a-d) Plain image and its corresponding layer
wise contents, (e-h) Encrypted image and its corresponding layer wise contents at S (3/2), (i-l) encrypted image
and its corresponding layer wise contents at S (5/2)
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where P and C signifies the plain and cipher images, P and Crepresents the mean values of P
and C, M and N demonstrates the height and width of original / cipher images.

The plain and cipher contents are significantly dissimilar from each other as the coefficients
of cipher images are very close to zero. The valuation for coefficients of correlation for
anticipated design with recent approaches using standard images specified in Tables 5 and 6.

The outcomes of our proposed structure have inferior values coefficients, which meet the
necessities for competent technique in real time application for enciphering.

4.4 Pixels’ Resemblance Analyses

The resemblance measures primarily reveal the similarity among diverse digital contents. The
normalized cross correlation (NCC) and structural contents (SC) values are quite closed to 1

Table 1 Orthogonal code words set

Orthogonal set Code words Data bits

H1 0 0
0 1

� �
0
1

� �

H2 ¼ H1 H1

H1 H1

� �
0 0
0 1

0 0
0 1

0 0
0 1

1 1
1 0

2
64

3
75

0 0
0 1
1 0
1 1

2
64

3
75

H3 ¼ H2 H2

H2 H2

� �
0 0
0 1

0 0
0 1

0 0
0 1

1 1
1 0

0 0
0 1

0 0
0 1

0 0
0 1

1 1
1 0

0 0
0 1

0 0
0 1

0 0
0 1

1 1
1 0

1 1
1 0

1 1
1 0

1 1
1 0

0 0
0 1

2
6666666664

3
7777777775

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

2
66666666664

3
77777777775

.

.

.

.

.

.

.

.

.

Table 2 Bi-Orthogonal code words set

Bi-Orthogonal set Code words Data bits

B2 ¼ H1

H1

� �
0 0
0 1
1 1
1 0

2
64

3
75

0 0
0 1
1 0
1 1

2
64

3
75

B3 ¼ H2

H2

� �
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

2
66666666664

3
77777777775

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

2
66666666664

3
77777777775

.

.

.

.

.

.

.

.

.
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Table 3 NIST test results for enciphered Lena image at S (5/2)

Tests Layer wise enciphered image p - values Remarks

Gray Red Green Blue

Frequency 0.36110 0.16410 0.46703 0.25495 Pass
Block frequency 0.24862 0.64862 0.53145 0.17988 Pass
Rank 0.39181 0.29191 0.29191 0.29191 Pass
Runs (M = 10,000) 0.51765 0.21762 0.90595 0.54043 Pass
Long runs of ones 0.64524 0.67514 0.71270 0.71270 Pass
Overlapping templates 0.74489 0.85988 0.85988 0.85988 Pass
No overlapping templates 0.99289 0.92285 0.54825 0.99989 Pass
Spectral DFT 0.78464 0.88464 0.38399 0.02952 Pass
Approximate entropy 0.36074 0.16074 0.33744 0.69469 Pass
Universal 0.99892 0.99445 0.99292 0.99659 Pass
Serial p values 1 045133 0.17143 0.03998 0.65972 Pass
Serial p values 2 0.77835 0.87464 0.00606 0.98104 Pass
Cumulative sums forward 0.45823 0.36470 0.34767 0.35256 Pass
Cumulative sums reverse 0.66215 0.35221 0.89099 0.77967 Pass
Random excursions X=−3 0.99314 0.77296 0.00446 0.066231 Pass

X=−2 0.98624 0.61069 0.054643 0.2397 Pass
X=−1 0.97465 0.78256 0.4719 0.69271 Pass
X= 1 0.97465 0.97787 0.53038 0.91026 Pass
X= 2 0.14465 0.72112 0.52621 0.032984 Pass
X= 3 0.0000082 0.59346 0.33854 0.091826 Pass

Fig. 4 Plain and enciphered layer wise histograms of Lena image. (a-d) Plain image and its corresponding layer
wise histograms, (e-h) Encrypted image at S (3/2) and its corresponding layer wise histograms, (i-l) Encrypted
image at S (5/2) and its corresponding layer wise histograms
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for digital contents structure similarity [29]. There are different types of resemblance coeffi-
cient are consumed in order to quantitatively find the structure dissimilarity in digital contents.
We have analyzed the structural similarity index, normalized cross correlation and structural
content between plain (Pi, j ) and cipher (Ci, j) images in order to estimate the structure
dissimilarity among different digital contents from reference. Structural similarity index metric
(SSIM) used to compare the assembly, luminance and divergence between original and
enciphered images.

SSIM ¼
2μpμc þ C1

� �
2σpc þ C2

� �
μ2
p þ μ2

c þ C1

� �
σ2
p þ σ2

c þ C2

� � ; ð11Þ

Fig. 5 Plain and enciphered layer wise histograms of Pepper image. (a-d) Plain image and its corresponding
layer wise histograms, (e-h) Encrypted image at S (3/2) and its corresponding layer wise histograms, (i-l)
Encrypted image at S (5/2) and its corresponding layer wise histograms

Fig. 6 Three dimensional surface plots for normalized cross-correlation of Lena image. a 3-D surface plot for
Lena image, b 3-D surface plot for encrypted Lena image, c 3-D surface plot for cross-correlation between a-b
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where μp and μc are the mean values,σpc is the standard deviation of Pi, j and Ci, j. The
approximation of Eq. 11 approaches 1, if there is any resemblance between plain and cipher
images. NCC measures the resemblance and traces of correlation between plain and
enciphered images. We perform this test at the original and the encrypted images to analyze
the similarity between them.

NCC ¼ ∑
M−1

i¼0
∑
N−1

j¼0

Pi; j � Ci; j

∑
M−1

i¼0
∑
N−1

j¼0
P2

i; j

: ð12Þ

SC determines the structural details and quality of an image in terms of sharpness and noise
level. The quality of an image assessed by the following equation and if the value of SC is
higher, the quality of an image is poor.

Fig. 7 Three dimensional surface plots for normalized cross-correlation of Pepper image. a 3-D surface plot for
Pepper image, b 3-D surface plot for encrypted Pepper image, c 3-D surface plot for cross-correlation between a-b

Fig. 8 Correlation between pixels’ pairs for Lena image. (a-c) Correlation of Horizontal, Vertical and Diagonal
directions of original image, (d-f) Correlation of Horizontal, Vertical and Diagonal directions of encrypted image
at S (3/2), (g-i) Correlation of Horizontal, Vertical and Diagonal directions of encrypted image at S (5/2)
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SC ¼ ∑
M−1

i¼0
∑
N−1

j¼0

P2
i; j

∑
M−1

i¼0
∑
N−1

j¼0
C2

i; j

: ð13Þ

4.5 Pixels’ Discrepancy Analyses

The eminence assessment of an image based on pixels’ discrepancy process analyzed here by
evaluating the mean absolute error (MAE), mean square error (MSE) and peak signal to noise ratio

Fig. 9 Correlation between pixels’ pairs for Pepper image. (a-c) Correlation of Horizontal, Vertical and Diagonal
directions of original image, (d-f) Correlation of Horizontal, Vertical and Diagonal directions of encrypted image
at S (3/2), (g-i) Correlation of Horizontal, Vertical and Diagonal directions of encrypted image at S (5/2)

Table 4 Plain and enciphered images correlation coefficients at gray scale

Image Plain Encrypted at S (3/2) Encrypted at S (5/2)

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9737 0.9869 0.9610 −0.0024 0.0007 −0.0065 −0.0005 −0.0007 0.0003
Pepper 0.9814 0.9833 0.9665 −0.0009 0.0003 −0.0047 −0.0008 0.0005 0.0001
Baboon 0.8534 0.7598 0.7300 −0.0003 −0.0045 0.0034 0.0005 −0.0002 −0.0008
Airplane 0.9662 0.9639 0.9368 0.0040 0.0018 −0.0086 −0.0006 −0.0009 0.0002
House 0.9479 0.957 0.9132 0.0011 0.0065 −0.0074 −0.0008 0.0007 −0.0004
Jelly beans 0.9787 0.982 0.9646 −0.0019 0.0028 −0.0063 0.0007 −0.0003 −0.0003
Sail boat 0.9737 0.9700 0.9569 0.0004 −0.0057 0.0025 0.0002 −0.0003 −0.0004
Splash 0.9840 0.9915 0.9773 0.0008 −0.0023 −0.0048 −0.0004 0.0007 0.0006
Tree 0.9669 0.9441 0.9294 −0.0007 0.0015 0.0023 0.0006 −0.0004 −0.0005
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(PSNR) [29]. MAE is the most communal method used to measure the accuracy for continues
variables. The average absolute difference between original and encrypted images calculated by
MAE and its esteem must be greater to enhance the encryption security and defined as:

MAE ¼ 1

M � N
∑
M−1

i¼0
∑
N−1

j¼0
jPi; j−Ci; jj: ð14Þ

Essentially encrypted digital contents have dissimilarity concerning the plain image. Both
MSE and PSNR used to relate the image encryption quality, while MSE signifies the
cumulative square error measure and PSNR indicates the peak error measurement between
the original and ciphered image. By higher the MSE esteem and lower the PSNR values or
vice versa signifies the better encryption quality.

MSE ¼
∑
M

i¼1
∑
N

j¼1
Pij−Cij
� �2

M � N
; ð15Þ

where Pij and Cij refers the pixels position at ith row and jth column of plain and ciphered
images distinctly. Superior the MSE esteem represents the enhancement of encryption strategy
[30]. PSNR ratio determines the quality measure between plain and enciphered image
described by the succeeding expression:

Table 5 Comparisons for coefficients of correlation of proposed scheme with modern approaches

Image Proposed encryption at S (5/2) Ref. [31] Ref. [32]

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena −0.0005 −0.0007 0.0003 – – – 0.0009 0.0021 −0.0007
Pepper −0.0008 0.0005 0.0001 – – – 0.0007 −0.0012 0.0001
Baboon 0.0005 −0.0002 −0.0008 0.0039 −0.0045 0.0039 −0.0001 0.0003 0.0008
Airplane −0.0006 −0.0009 0.0002 −0.0016 0.0008 0.0033 0.0007 0.0003 −0.0005
House −0.0008 0.0007 −0.0004 −0.0028 −0.0041 0.0045 0.0009 0.0051 0.0001
Jelly beans 0.0007 −0.0003 −0.0003 −0.0033 0.0018 −0.0045 – – –
Sail boat 0.0002 −0.0003 −0.0004 −0.0040 −0.0051 0.0001 – – –
Splash −0.0004 0.0007 0.0006 0.0017 −0.0041 0.0015 – – –
Tree 0.0006 −0.0004 −0.0005 0.0019 −0.0021 0.0036 – – –

Table 6 Pixels resemblance analyses between plain and enciphered images and comparison with existing
approach

Image Similarity analyses for S (3/2) Similarity analyses for S (5/2) Ref. [29]

SSIM SC NCC SSIM SC NCC SSIM SC NCC

Lena 0.00308 0.0051 0.0205 0.00108 0.0009 0.0030 0.0047 0.0020 0.0041
Pepper 0.00699 0.0016 0.0160 0.00018 0.0002 0.0029 0.0030 0.0029 0.0044
Baboon 0.00438 0.0094 0.0381 0.00060 0.0053 0.0061 0.0010 0.0019 0.0070
Airplane 0.00221 0.0011 0.0219 0.00008 0.0006 0.0015 0.0016 0.0017 0.0011
House 0.00046 0.0187 0.0164 0.00013 0.0001 0.0068 0.0112 0.0018 0.0062
Jelly beans 0.00119 0.0021 0.0460 0.00041 0.0009 0.0036 0.0154 0.0081 0.0046
Sail boat 0.00264 0.0012 0.0153 0.00045 0.0007 0.0012 0.0030 0.0020 0.0026
Splash 0.00121 0.0170 0.0484 0.00048 0.0008 0.0077 0.0114 0.0089 0.0088
Tree 0.00563 0.0003 0.0411 0.00190 0.0002 0.0068 0.0019 0.0072 0.0032
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PSNR ¼ 20log10
IMAXffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

; ð16Þ

where IMAX is the utmost pixel’s estimation of image. On comparing with immense difference
between the plain and ciphered images, PSNR should be low esteem. The feasibility of proposed
approach assessed for MSE and PSNR for standard digital images presented in Table 7.

4.6 Entropy Analyses

The leading feature for specifying the randomness quantified by Entropy. Specified an
independent source of random trials from set of probable distinct trials {x1, x2, x3, ..., xn} with
allied possibilities, the average output of source evidence called entropy [33]. Entropy of an
image can be calculated as:

H ¼ − ∑
2N−1

n¼0
p xnð Þlog2p xnð Þ; ð17Þ

where xi is the source image and 2N is the aggregate of data. For perfectly indiscrimination in
digital contents, the ideal Shannon entropy is 8. The entropies of different standard plain
images and their encrypted contents accounted in Table 8.

The entropy esteems of encrypted images are very close to ideal Shannon esteem, which
implies the leakage of data in proposed encryption algorithm is inappropriate and the mech-
anism is secure upon entropy attacks [34]. The information entropies of suggested scheme for
encrypted images have superior results, when compared with existing approaches. Table 9
demonstrate the comparison of proposed technique with existing approaches for standard
images.

4.7 Gray Level Co-Occurrence Matrix (GLCM) Analyses

The visual strength of anticipated scheme analyzed here by homogeneity, contrast and energy
assessments [35]. The image assessed by homogeneity defined as:

Hg ¼ ∑
i; j

ρ i; jð Þ
1þ ji− jj ; ð18Þ

Table 7 Pixels’ discrepancy analyses between plain and enciphered images and comparison with existing
approach

Image Difference analyses for S (3/2) Difference analyses for S (5/2) Ref. [29]

MAE MSE PSNR MAE MSE PSNR MAE MSE PSNR

Lena 86.66 7666.51 9.4409 87.84 8715.76 8.8570 85.48 8992.82 8.8917
Pepper 81.25 6839.19 10.5672 86.45 9392.82 8.5917 87.97 8853.77 8.8954
Baboon 87.11 6201.74 10.7934 88.56 9219.66 8.6865 79.88 8765.76 8.9570
Airplane 76.38 7984.73 9.2165 89.95 9553.77 8.2954 81.53 8619.66 8.9865
House 76.72 6215.08 10.7212 89.22 8978.88 8.7195 89.23 8924.86 8.8919
Jelly beans 75.38 6438.93 10.7211 84.89 8896.29 8.8854 66.83 8566.12 8.8954
Sail boat 78.28 7656.78 9.4939 88.32 9142.86 8.6962 88.34 8142.86 9.1162
Splash 75.23 6998.14 10.4904 82.11 8106.73 8.9852 78.17 9106.73 8.1152
Tree 81.34 6578.77 10.6685 87.98 9436.10 8.4345 78.99 7436.10 9.4345
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where i, j indicates the row and column position of image’s pixel. This analysis performs the
closeness of distribution in GLCM to GLCM diagonally. Its range lies in between 0 and 1. The
identification of an object in texture of image observed by contrast analysis and it is defined as:

C ¼ ∑
i; j

i− jj j2ρ i; jð Þ: ð19Þ

The contrast test range lies in between 0 and (size (image) − 1)2. Greater the contrast value
illustrates the large number of variations in the pixels of an image while constant image has 0
contrast value. The energy analysis of an image returns the sum of squared elements in GLCM
and defined as:

E ¼ ∑
i; j
ρ i; jð Þ2: ð20Þ

The constant image has 1 energy, while range of energy lies in-between 0 and 1. GLCM
analyses for plain and enciphered images for S (3/2) and S (5/2) demonstrated in Table 10.

4.8 Linear Attacks Analyses

To perform linear attacks, cryptanalyst has to identify the linear relation between some bits of
plain image, cipher image and key. By considering this relation, cryptanalyst can easily
understand the structure used in encryption and decryption [36]. The analyst decrypts each
cipher using all possible keys to predict the sequence similarity in ciphers, but in our case, the
analyst has no idea what spin system used for encryption. Either the message pass by one or
multiple spin systems and each spin system has 24! states, and in each state there are infinite
positions for encryption. All the spin matrices create confusion and also have infinite possi-
bilities to create the keys. The analyst can focus on statistical analyses against multiple rounds
of decryption but each time the results produced with proposed structure has no relation with
any previous outcome.

4.9 Differential Attacks Analyses

To testify the robustness against differential attacks for anticipated scheme, an adjust-
ment of one pixel in plain image modifies the encrypted image for comparing, with a
probability of half pixel altering. For a change in ith chunk of permuted digital image
affects the ith chunk of ciphered image directly. We certify that our structure has suitable
affectability to plain images to affirm the impact of altering a single pixel in a plain
image and the whole enciphered image. For a specific objective to measure the impact of
minor alteration in plain image on its encrypted one, the number of pixels changing rate
(NPCR) bound together to originate the unified average change intensity (UACI) [37,
38]. The NPCR and UACI can be assessed by utilizing the succeeding expressions for
two encoded images C1(i, j) and C2(i, j), in which one have source image just varied by
one pixel. The expression for NPCR and UACI are given below:

NPCR ¼ ∑i; j
D i; jð Þ
W � H

� 100%; ð21Þ
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where

D i; jð Þ ¼
n
0; C1 i; jð Þ¼C2 i; jð Þ
1; C1 i; jð Þ≠C2 i; jð Þ

UACI ¼ ∑
M−1

i¼0
∑
N−1

j¼0
j

C1 i; jð Þ−C2 i; jð Þ =

255j
W � H � 100%:

ð22Þ

To evaluate the sensitivity of plain image, encrypt the plain image and randomly
choose and altered one pixel in plain image. Tables 11, 12 and 13 provides the
experimental outcomes for encrypted results of NPCR and UACI and their comparison
with existing latest approaches.

Table 11 validates the NPCR esteems are correspondent to the perfect estimation of
1, while Table 12 correspond the UACI esteems which have better results than
existing approaches. These outcomes show that projected technique has great degree
sensitive to minor change in plane image, irrespective of whether the two ciphered
images have one-bit alteration [30]. The anticipated structure has superior ability to
hostile the differential assaults in investigation with alternative approaches.

Table 11 NPCR analyses between original and encrypted images and comparison with existing approach

Image NPCR for S (3/2) NPCR for S (5/2) Ref. [29]

Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue

Lena 99.86 99.76 99.81 99.89 99.96 99.94 99.91 99.89 99.92 99.72 99.82 99.61
Pepper 99.92 99.82 99.83 99.81 99.94 99.92 99.92 99.91 99.84 99.81 99.86 99.77
Baboon 99.88 99.89 99.82 99.87 99.95 99.95 99.92 99.97 99.86 99.86 99.81 99.89
Airplane 99.84 99.81 99.86 99.87 99.94 99.91 99.96 99.95 99.88 99.85 99.72 99.87
House 99.79 99.75 99.66 99.88 99.97 99.95 99.93 99.96 99.79 99.65 99.68 99.86
Jelly beans 99.85 99.85 99.85 99.84 99.98 99.89 99.89 99.89 99.81 99.82 99.83 99.77
Sail boat 99.89 99.86 99.81 99.83 99.92 99.96 99.92 99.91 99.89 99.86 99.78 99.81
Splash 99.75 99.72 99.77 99.79 99.91 99.92 99.88 99.92 99.74 99.62 99.72 99.58
Tree 99.87 99.78 99.72 99.89 99.92 99.86 99.87 99.90 99.82 99.76 99.67 99.87

Table 12 UACI analyses between original and encrypted images and comparison with existing approach

Image UACI for S (3/2) UACI for S (5/2) Ref. [29]

Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue

Lena 33.58 34.97 33.16 33.81 33.68 35.32 34.32 33.42 33.58 36.39 33.14 35.26
Pepper 33.48 36.39 33.14 34.26 33.59 37.16 35.17 35.23 33.44 38.33 34.26 34.21
Baboon 33.64 35.48 33.29 34.11 33.84 35.02 34.16 33.51 33.68 34.97 33.06 33.81
Airplane 33.44 35.33 33.26 34.21 33.71 36.33 33.24 34.26 33.64 35.48 33.06 34.81
House 33.33 33.34 33.19 32.89 33.53 33.37 34.11 33.92 33.25 32.37 33.21 32.41
Jelly beans 33.24 32.99 32.95 33.11 33.57 33.92 32.98 33.46 33.21 32.94 31.85 33.18
Sail boat 33.52 32.92 34.06 33.09 33.66 34.16 34.32 33.23 33.47 32.56 34.11 32.25
Splash 33.18 34.56 32.93 33.04 33.54 33.72 32.93 33.18 33.04 34.42 30.14 32.29
Tree 33.11 33.81 32.65 33.36 33.58 33.21 33.68 34.19 33.31 33.64 31.55 33.23
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4.10 Noise Attacks Analyses

It is possible that encrypted data affected by noises during transmission. The robustness of the
proposed structure against Gaussian noise considered here. The normalized intensities of noise
are set as 0.000001, 0.000003, 0.000005 and 0.000007 respectively.

As the intensity of noise change from 0.000001 to 0.000007, the PSNR value has very
minute change or we can say its approximately same to the original, which depicts the
proposed design has good robustness against noise attacks.

5 Conclusion

The proposed scheme is appropriate for real time applications due to small processing time and
superior capacity to hostile the attacks and appropriate performance than other encryption
systems. The Kramer’s spin system not only valid for RGB contents but it can be applied at
variety of digital contents like audio, video, medical images and satellite images. In future, we
would like to use quantum iterative maps instead of Redheffer and orthogonal codes to
enhance security level.
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