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Abstract
Power dissipation problem is one of the most challenging problems in designing conventional
electronic circuits. One of the best approaches to overcome this problem is to design reversible
circuits. Nowadays, reversible logic is considered as a new field of study that has various
applications such as optical information processing, design of low power CMOS circuits,
quantum computing, DNA computations, bioinformatics and nanotechnology. Due to the
vulnerability of the digital circuits to different environmental factors, the design of circuits
with error-detection capability is considered a necessity. Parity preserving technique is known
as one of the most famous methods for providing error-detection ability. Multiplication
operation is considered as one of the most important operations in computing systems, which
can play a significant role in increasing the efficiency of such systems. In this paper, two
efficient 4-bit reversible multipliers are proposed using the Vedic technique. The Vedic
technique is able to increase the speed of multiplication operation by producing partial
products and their sums simultaneously in a parallel manner. The first architecture lacks the
parity preserving potential, while the second architecture has the ability parity preserving.
Since a 4-bit Vedic multiplier includes 2-bit Vedic multipliers and 4-bit ripple carry adders
(RCA), so in the first design, TG, PG and FG gates have been used to design an efficient 2-bit
reversible Vedic multiplier, as well as PG gate and HNG block have been applied as a half-
adder (HA) and full-adder (FA) in the 4-bit RCAs. Also, in the second design, 2-bit parity
preserving reversible Vedic multiplier has been designed using FRG, DFG, ZCG and PPTG
gates as well as ZCG and ZPLG blocks have been utilized as HA and FA in the 4-bit RCAs.
Proposed designs are compared in terms of evaluation criteria of circuits such as gate count
(GC), number of constant inputs (CI), number of garbage outputs (GO), quantum cost (QC),
and hardware complexity. The results of the comparisons indicate that the proposed designs
are more efficient compared to available counterparts.
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1 Introduction

One of the major challenges in conventional non-reversible circuits is the issue of internal
energy dissipation, which becomes more evident with increasing the number of transistors per
area unit. Landauer showed that in irreversible circuits, the loss of every bit of information
would generate at least KTLn2 Jules of heat energy in which K = 1.3806505 × 10−23 (Joules/
Kelvin) is Boltzmann constant and T is absolute temperature [1]. Afterwards, Bennett
proved that the design of the circuits should be reversible to avoid energy dissipation,
since the energy loss in the reversible circuits is zero. The reversible logic is
considered as a new way to reduce the amount of physical entropy [2]. Hence,
reversible logic is used in many areas such as low-power CMOS circuits, optical
information processing, quantum processing, etc. [3, 4].

A circuit is reversible if any input is mapped to a unique output. In the reversible circuits,
the number of inputs and outputs are equal. The design of reversible circuits is more
complicated than irreversible ones because fan-out and feed back is not permitted in these
circuits. In order to properly synthesize the reversible circuits, it is necessary to minimize the
criteria such as the number of gate count (GC), number of constant inputs (CI), number of
garbage outputs (GO) and hardware complexity (HC). One of the most important issues in the
reversible circuits is the error-detection capability. Parity preserving is recognized as one of the
low-cost approaches for creating error-detection potential in reversible circuits. A gate or block
is called parity preserving gate (or block), if Ex-or of inputs equals to Ex-or of outputs.

So far, several reversible computing circuits have been presented, such as adders, multi-
pliers, dividers, ALUs. Meanwhile, the multiplier circuit is considered as one of the most
important computational units that comprises many calculations. In the following, some of the
most important reversible multipliers will be reviewed.

In 2005, Thapliyal and Srinivas proposed a 4-bit Vedic multiplier using the FRG, NG and
TG gates [5]. Also, in 2006, they introduced another design of 4-bit multiplier in which the
partial product network consists of the FRG gates as well as TSG blocks is used as FA in the
summation network [6].

In 2008, Shams et al. suggested a 4-bit multiplier in which PG gate is used for generating
partial products and MKG block is utilized as FA in the summation network [7].

A 4-bit signed multiplier proposed by Pourali-akbar et al. in 2011 based on Wallace’s
technique. In its partial product network, the PG and TG gates are used, and in its summation
network, the HNG block is used as FA [8].

In 2012, Babazadeh and Haghparast proposed a 4-bit parity preserving multiplier, which
the FRG gate has been used in its partial product network and MIG gate in its summation
network as FA [9].

A 5-bit parity preserving multiplier presented by Qi et al. based on Wallace’s technique in
2012, which its partial product consists of the FRG, MNFT and F2G gates, as well as the MIG
and F2PG blocks as FAs in the summation network [10].

In 2013, Saligram and Rakshith proposed a 4-bit parity preserving multiplier based
on Vedic technique, which its multiplication partial network consisted of the FG, PG,
BVPPG, and NFT gates, and in its summation network, the PG and HNG blocks have
been used as FA [11].

In 2013, Haghparast and Shams proposed a 4-bit parity preserving reversible Vedic
multiplier in which the FG, NFG and IG gates are used for designing 2-bit parity preserving
Vedic multiplier and the IG gate is used as FA in the summation network [12].
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In 2014, Panchal and Nayak provided a 4-bit parallel multiplier without parity preserving
potential based on Wallace’s technique, which the PG and TG gates have been used in its
partial product network and the DPG and PG gates have been used in its summation network
[13].

Parallel parity preserving multiplier provided in 2014 by Srikanth and Kumar based on the
Vedic technique that the PG and FG gates have been used in its partial product network and the
FRG gate has been used as FA in its summation network [14].

In 2014, Bhardwaj and Singh provided a parallel parity preserving multiplier based on
Wallace’s technique, that the FRG gate has been used in its partial product network and the IG
and PG gates have been used as HA and FA in its summation network [15].

A 4-bit parity preserving multiplier presented by A. Sahu and A.K. Sahu in 2014 based on
Vedic technique, that the NFT, DFG and IG gates have been used in its partial product network
and the NFT and F2G gates have been used in its summation network [16]. In addition, 8-bit,
16-bit, 32-bit and 64-bit multipliers have been realized by them in 2015 [17].

Valinataj proposed a parity preserving multiplier based on array technique in 2017, that the
FRG, F2G and LMH gates have been used in its partial product network and the ZCG, F2G
and ZPLG blocks have been used in its summation network [18].

In 2017, Babu and Surendra provided a multiplier without parity preserving potential based
on Vedic technique that the TG and PG gates have been used in its partial product network and
the HNG block has been used in its summation network [19].

In this paper, two effective 4-bit reversible multipliers are presented based on the Vedic
technique so that the first proposed design lacks error-detection capability, while the second
proposed design has error-detection capability using the parity preserving technique. A 4-bit
Vedic multiplier consists of four 2-bit Vedic multipliers and three 4-bitRCAs. In the first
multiplier, we have utilized the TG, PG and FG gates for designing an effective 2-bit reversible
Vedic multiplier as well as the PG gate and HNG block as HA and FA in the 4-bit RCAs. Also,
in the second design, 2-bit parity preserving reversible Vedic multipliers have been designed
using the FRG, DFG, ZCG and PPTG gates as well as ZCG and ZPLG blocks have been
utilized as HA and FA in the4-bit RCAs. Moreover, in the proposed designs, the FG and DFG
gates have been used as copy gates in the proposed multipliers.

This paper contains the following sections: in Section 2, primary definitions of the
reversible logic as well as the basis of Vedic multipliers are presented. The proposed Vedic
multipliers are presented in Section 3. In Section 4, the effectiveness of the proposed
multipliers is compared with the existing ones. Finally, the paper ends with the conclusion
section.

2 Preliminaries

2.1 An Introduction to Reversible Logic

A circuit is reversible if the number of inputs and outputs is equal and there is a one-
to-one correspondence between inputs and outputs [20]. Not only can outputs be
obtained in a unique way from inputs, but inputs can be obtained from the recovery
of outputs. Reversible circuits are evaluated based on various criteria such as gate
counts, number of constant inputs, number of garbage outputs, quantum cost, latency,
and hardware complexity.
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The total number of reversible gates required to analyze a reversible circuit is the number of
gates. The constant inputs are equal to the input lines, which are represented as 0 or 1 at the
input side of the circuit. Outputs that are not considered for further calculations are called
garbage outputs. The linear quantum cost of a quantum circuit is defined as the sum of the
initial quantum gates required for the analysis of a reversible circuit. The quantum cost of a 2 ×
2 basic gate such as CNOT, Controlled-V, and Controlled-V + is all equal to one. In addition,
V ×V=V+ ×V+ =NOT and V ×V+ =V+ ×V=I, where I is a unitary matrix. The NOT gate is a
basic 1 × 1 quantum gate and its quantum cost is equal to one. Latency or delay is considered
as the maximum number of gates in the critical path from the input to the output.

The total number of logic operators in a reversible circuit is defined as the hardware
complexity. In the hardware complexity, the parameters are as follows [21]:

α A 2-input XOR gate calculation
β A 2-input AND gate calculation
δ A NOT gate calculation

Therefore, computational complexity is introduced as follows:

Hardware Complexity ¼ N αð Þα þ N βð Þβþ N δð Þδ ð1Þ

in which N (.) is equal to the number of operators in the reversible circuit.
So far, several reversible gates and blocks have been introduced that can be used to design

reversible circuits. In the following, some of the most important of these gates and blocks will
be investigated.

FG Gate The FG gate is a 2 × 2 reversible gate with Iv input and Ov output as follows:

Iv (A, B)
Ov (P = A, Q =A⊕B)

The quantum realization and the circuit representation of the FG gate are shown in Fig. 1.
It should be noted, when the B input of FG gate is considered to be ‘0’, it is used as copy

gate (fan-out).
The quantum cost of the reversible FG gate is 1. Its hardware complexity is also as follows:

Hardware ComplexityFG ¼ 1α ð2Þ

Fig. 1 FG gate (a) circuit display and b quantum realization
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TG Gate The TG gate, also known as the CNOT gate, is a 3 × 3 reversible gate with Iv input
and Ov output as follows [22]:

Iv (A, B, C)
Ov (P = A, Q = B, R =AB⊕C)

The quantum realization and the circuit representation of the TG gate are shown in Fig. 2.
As can be seen in Fig. 3, when the C input of TG gate is considered to be ‘0’, the reversible

AND gate is obtained.
The quantum cost of the reversible TG gate is five. Its hardware complexity is also as

follows:

Hardware ComplexityTG ¼ 1α þ 1β ð3Þ

PG Gate The PG gate, also known as the new Toffoli gate (NTG), is a 3 × 3 reversible gate
with Iv input and Ov output as follows [23]:

Iv (A, B, C)
Ov (P = A, Q =A⊕B, R =AB⊕C)

The circuit representation and quantum realization of the PG gate are shown in Fig. 4.
As shown in Fig. 5, the reversible PG gate can be used as a half-adder (HA) and AND gate

in reversible circuits, when its input C is set to ‘0’.

Fig. 2 TG gate (a) circuit display and b quantum realization

Fig. 3 The generation of a
reversible AND gate by TG gate
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The quantum cost of a reversible PG gate is four. Also, its hardware complexity is
expressed as:

Hardware ComplexityPG ¼ 2α þ 1β ð4Þ

HNG Block The HNG block is a 4 × 4 reversible block with the input of the Iv and Ov output as
follows [24]:

Iv (A, B, C, D)
Ov (P = A, Q = B, R =A⊕B⊕C, S = (A⊕B)C⊕AB⊕D)

The quantum realization and the circuit representation of the HNG gate are shown in Fig. 6.
The quantum cost of this block is six. The hardware complexity of this block is calculated

from Eq. (4):

Hardware ComplexityHNG ¼ 5α þ 2β ð5Þ
If the input D of the HNG block is set as ‘0’, the HNG block will be used as a reversible full-
adder (FA) (Fig. 7).

DFG Gate The DFG gate is a 3 × 3 parity preserving reversible gate with Iv input and Ov

output as follows:

Iv (A, B, C)
Ov (P = A, Q =A⊕B, R =A⊕C)

Fig. 4 PG gate (a) circuit display and b quantum realization

Fig. 5 Generate a reversible half-
adder by the PG gate
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The quantum realization and the circuit representation of the DFG gate are shown in Fig. 8.
It should be noted, when the B or C inputs of DFG gate is considered to be ‘0’, it is used as

copy gate (fan-out).
The quantum cost of the parity preserving reversible DFG gate is 2. Its hardware complex-

ity is also as follows:

Hardware ComplexityDFG ¼ 2α ð6Þ

FRG Gate The FRG gate is a 3 × 3 parity preserving reversible gate with the input of the Iv and
Ov output as follows [25]:

Iv (A, B, C)
Ov (P = A, Q =AB⊕AC, R =AC⊕AB)

The quantum realization and the circuit representation of the FRG gate are shown in Fig. 9.
The quantum cost of this gate is five and its hardware complexity is calculated from the
following equation:

Hardware ComplexityFRG ¼ 2α þ 4βþ 2γ ð7Þ

As can be seen in Fig. 10, if the A input of FRG gate is considered to be ‘0’, this gate can
act as a buffer.

ZCG Gate The ZCG block is a 4 × 4 parity preserving reversible circuit with Iv input and Ov

output as follows [26]:

Iv (A, B, C, D)
Ov (P = AB’⊕C, Q =A⊕B, R =AB⊕C, S =A⊕C⊕D)

Fig. 6 HNG block (a) circuit display and b quantum realization

Fig. 7 HNG block as a reversible
full-adder
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The quantum realization and the circuit representation of the ZCG block are shown in
Fig. 11.

The quantum cost of this gate is six and its hardware complexity is calculated from the
following equation:

Hardware ComplexityZCG ¼ 5α þ 2βþ 1γ ð8Þ

As can be seen in Fig. 12, by setting the C and D inputs as ‘0’, it can be used to implement
parity preserving reversible half-adder.

ZPLG Block The ZPLG block is a 5 × 5 parity preserving reversible gate with Iv input and Ov

output as follows [26]:

Iv (A, B, C, D, E)
Ov (P = A⊕D, Q =A⊕B⊕D, R =A⊕B⊕C⊕D, S = (A⊕D)(B⊕C)⊕BC⊕D,

T = (A⊕D)(B⊕C)⊕BC’⊕D⊕ E)

The quantum realization and circuit representation of the ZPLG block is shown in Fig. 13.
The quantum cost of this gate is equal to eight, and its hardware complexity is calculated

from the following equation:

Hardware ComplexityZPLG ¼ 9α þ 3βþ 1γ ð9Þ

As shown in Fig. 14, by setting the D and E inputs as zero, it can be converted to a parity
preserving reversible full-adder:

Fig. 8 DFG gate (a) circuit display and b quantum realization

Fig. 9 FRG gate (a) circuit display and b quantum realization
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PPTG Gate The PPTG block is a 4 × 4 parity preserving reversible gate with Iv input and Ov

output as follows [27]:

Iv (A, B, C, D)
Ov (P = A, Q = B, R =AB⊕C, S =AB⊕D)

The quantum realization and the circuit representation of the PPTG block are shown in
Fig. 15.

The quantum cost of this gate is equal to seven, and its hardware complexity is calculated
from the following equation:

Hardware ComplexityPPTG ¼ 2α þ 1β ð10Þ

2.2 Vedic Multiplier

The Urdhva Tiryakbhayam (UM) algorithm is a method of multiplying numbers based on the
old Vedic mathematics, which is suitable for multiplying the hexadecimal, decimal, and binary
numbers [28]. The Sanskrit words of Urdhva and Tiryakbhayam are termed as “vertical” and
“crossed” respectively. This algorithm is used to multiply two “vertical” and “crossed”
operations. This method is based on the concept in which the production of partial product
and summations is performed simultaneously, which increases the speed of the multiplication.
This feature of UT algorithm is compatible with digital systems. The UT algorithm based
multipliers are also called Vedic multipliers.

0

B FRG

P=0

Q=B

R=CC

Fig. 10 FRG gate as a buffer

Fig. 11 ZCG block (a) circuit representation and b quantum realization
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Consider two n-bit numbers of A = (an-1, …. a1, a0) and B = (bn-1, …, b1, b0). The
multiplication result of these two binary numbers can be expressed by the binary sequence
of P = (p2n-1,…,p1,p0) so that we have:

pj ¼
∑ j

i¼0aib j−1 if j ¼ 0; 1
C j−1 þ ∑ j

i¼0aib j−i if j ¼ 2:⋯⋅⋅:n−1
C j−1 þ ∑2n− j−2

i¼0 aiþ j−nþ1bn−1−i if j ¼ 2:⋯⋅⋅:2n−2
C j−1 if j ¼ 2n−1

8
>><

>>:

ð11Þ

That Cj represents the carry of the j-th step.

Fig. 12 Parity preserving
reversible half-adder by the ZCG
block

Fig. 13 ZPLG block (a) circuit representation and b quantum realization
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According to the presented relations in Eq. (11), the operation of a 2-bit Vedic multiplier
with A = (a1,a0) and B = (b1,b0) is as follows:

p0 ¼ a0b0
p1 ¼ a0b1⊕a1b0

p2 ¼ C1⊕a1b1 ¼ a0b1a1b0⊕a1b1
p3 ¼ C2 ¼ a0b1a1b0

ð12Þ

Hardware implementation of 2-bit Vedic multiplier requires two half-adder (HA) and four
AND gate, as shown in Fig. 16.

Moreover, block diagram of a 4-bit Vedic multiplier is shown in Fig. 17 [29].

3 Proposed Reversible Vedic Multipliers

As shown in Fig. 17, a modular design of a 4-bit Vedic multiplier is made up of three levels, in
which four 2-bit Vedic multipliers have been used in the first level, two 4-bit RCAs in the
second level, and one 4-bit RCA in the third level. In the following, two proposed 4-bit
reversible Vedic multipliers are described.

3.1 Proposed 4-Bit Reversible Vedic Multiplier

In order to implement the reversible Vedic multiplier provided in Fig. 17, it is necessary to
implement all the used modules in it with reversible circuits. The implementation of proposed
reversible for the 2-bit Vedic multiplier module is shown in Fig. 18.

Fig. 14 parity preserving
reversible full-adder by ZPLG
block

Fig. 15 PPTG block (a) circuit display and b quantum realization
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Half Adder

Half Adder

a0b0a0a1a1 b1b0b1

p0p1p2

C1

p3

C2

Fig. 16 The structure of 2-bit
Vedic multiplier

[1:0]

p[0]

a[1:0]b[1:0]

p[1]

4-bit RCA

[3:0] [3:0]

4-bit RCA

[3:2]00[3:0]

4-bit RCA
[3:2]

C2

[3:0]

p[2]p[3]p[4]p[5]p[6]p[7]

C3

C1

0

a[1:0]b[1:0] b[3:2]a[3:2]b[3:2] a[3:2]

2-bit Vedic Multiplier 2-bit Vedic Multiplier2-bit Vedic Multiplier2-bit Vedic Multiplier

Fig. 17 Architecture of a 4-bit Vedic multiplier [29]
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As can be seen, the proposed circuit is composed of a reversible TG gate and five reversible
PG gates. The number of its constant input and its garbage outputs is equal to 5. In addition, its
quantum cost is 22.

Also, implementation of a reversible 4-bit RCA using the HNG block and PG gate is shown
in Fig. 19.

Therefore, the 4-bit reversible RCA has constant input number equal to 4, the garbage
output of 7 and the quantum cost of 22.

Block diagram of the proposed 4-bit reversible Vedic multiplier is shown in Fig. 20.
Therefore, the quantum cost of the proposed reversible Vedic multiplier is calculated as

follows:

QC proposed 4−bit reversible Vedic multiplierð Þ
¼ 8QC FGð Þ þ 4QC proposed 2−bit reversible Vedic multiplierð Þ

þ 3QC 4−bit reversible RCAð Þ ¼
¼ 8 1ð Þ þ 4 22ð Þ þ 3 22ð Þ ¼ 162

3.2 Proposed Parity Preserving Reversible 4-Bit Vedic Multiplier

The proposed circuit is shown in Fig. 21 for implementing reversible 2-bit Vedic multiplier
module with the parity preserving ability.

TG

PG

PG

PG

PG

FG

a0

b0

0

0

0

0

0

g

g

g

g

ga1

b1

b0

a0 b1

a1

a0b1

a1b0
a1b1

p1

p3

p2

p0

Fig. 18 The proposed reversible circuit for implementing 2-bit Vedic multiplier

PGHNGHNGHNG

a0a1a2a3 b0b1b2b3 0000

S0S1S2S3 gg gggggCout

Fig. 19 Implementation of 4-bit reversible RCA using the HNG block and PG gate
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[1:0]

p[0]

FGFGFGFGFGFGFGFG

a[0]0a[1]0a[2]0a[3]0b[0]0b[1]0b[2]b[3] 00

a[0]a[0]a[1]a[1]a[2]a[2]a[3]a[3]b[0]b[0]b[1]b[1]b[2]b[2]b[3]b[3]

p[1]

4-bit Reversible RCA

[3:0] [3:0]

4-bit Reversible RCA

[3:2]00[3:0]

4-bit Reversible RCA
[3:2]

C2

[3:0]

p[2]p[3]p[4]p[5]p[6]p[7]

C3

C1

0

Proposed 2-bit Reversible 
Vedic Multiplier

Proposed 2-bit Reversible 
Vedic Multiplier

Proposed 2-bit Reversible 
Vedic Multiplier

Proposed 2-bit Reversible 
Vedic Multiplier

Fig. 20 Architecture of the proposed 4-bit reversible Vedic multiplier
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0
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p2
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Fig. 21 The proposed reversible circuit to implement 2-bit parity preserving reversible Vedic multiplier

International Journal of Theoretical Physics (2019) 58:2556–2574 2569



The proposed circuit consists of a PPTG block, three FRG gates and two ZCG blocks, all of
which are capable of parity preserving. The number of constant inputs as well as garbage
outputs is equal to 8. In addition, the quantum cost is 30.

Also, the reversible implementation of a 4-bit RCA using ZCG and ZPLG blocks is shown
in Fig. 22.

ZCGZPLGZPLGZPLG

a0a1a2a3 b0b1b2b3 00000000

S0S1S2S3C3 ggg gggggggg

Fig. 22 The reversible implementation of a 4-bit parity preserving reversible RCAwith ZCG and ZPLG blocks

[1:0]

p[0]

DFGDFGDFGDFGDFGDFGDFGDFG

a[0]0a[1]0a[2]0a[3]0b[0]0b[1]0b[2]b[3] 00

a[0]a[0]a[1]a[1]a[2]a[2]a[3]a[3]b[0]b[0]b[1]b[1]b[2]b[2]b[3]b[3]

p[1]

4-bit Parity Preserving Reversible RCA

[3:0] [3:0]

4-bit Parity Preserving Reversible RCA

[3:2]00[3:0]

4-bit Parity Preserving Reversible RCA
[3:2]

C2

[3:0]

p[2]p[3]p[4]p[5]p[6]p[7]

C3

C1

0

Proposed 2-bit Parity 
Preserving Reversible Vedic 

Multiplier

00000000

gggggggg

Proposed 2-bit Parity 
Preserving Reversible Vedic 

Multiplier

Proposed 2-bit Parity 
Preserving Reversible Vedic 

Multiplier

Proposed 2-bit Parity 
Preserving Reversible Vedic 

Multiplier

Fig. 23 Architecture of the proposed 4-bit parity preserving reversible Vedic multiplier
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As can be inferred from Fig. 22, the number of constant inputs and garbage outputs of the
4-bit parity preserving reversible RCA are equal to 8 and 11, respectively. Moreover, its
quantum cost is [(3 × 8) + 6] =30.

Block diagram of the proposed 4-bit parity preserving reversible Vedic multiplier is shown
in Fig. 23.

Therefore, the quantum cost of the proposed 4-bit parity preserving reversible Vedic
multiplier is calculated as follows:

QC proposed 4−bit parity preserving reversible Vedic multiplierð Þ
¼ 8QC DFGð Þ þ 4QC proposed 2−bit Vedicð Þ

þ 3QC 4−bit parity preserving reversible RCAð Þ ¼
¼ 8 2ð Þ þ 4 30ð Þ þ 3 30ð Þ ¼ 226

4 Evaluation and Comparison Results

In this section, the proposed 4-bit reversible Vedic multipliers are compared with previous
works in terms of gate counts, number of constant inputs, number of garbage outputs, quantum
cost and hardware complexity.

Table 1 The comparison results of the 4-bit reversible multipliers

Designs GC CI GO QC HC

In [5] 12FG+ 16FRG+ 12NG + 12TG= 52 43 56 224 92α + 100β + 68γ
In [6] 24FG+ 16FRG+ 13TSG = 53 58 58 286 134α + 103β + 71γ
In [7] 24FG+ 16PG + 12MKG= 52 56 56 244 116α + 52β + 36γ
In [19] 8FG + 16TG+ 8PG+ 12HNG= 44 44 48 192 100α + 48β
Proposed 12FG+ 19PG + 4TG+ 9HNG= 44 40 41 162 99α + 41β

[5][6][7][19]

Gate Count 18.1820.4518.180

Constant Input 7.5454010

Garbage Output 36.5841.4636.5817.07

Quantum Cost 50.6176.5450.6118.51
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Fig. 24 Improvement of the proposed reversible Vedic multiplier compared to other designs
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The evaluation results of the proposed 4-bit reversible multiplier in comparison with
previous designs are provided in Table 1. It should be noted that in the most of the previous
designs, the issue of copying of the inputs (fan out) is not met. Therefore, in order to make a
fair comparison, the designs which this issue has not been seen in them, have been modified
using the FG gate and, accordingly, the results of the evaluations, have been reported which in
some cases, the results are different from the presented values in their papers.

As shown in Table 1, the proposed reversible Vedic multiplier is superior to the other
available designs in terms of the number of gates, number of constant inputs, the number of
garbage outputs and quantum cost. In addition, the improvement percentage of proposed
reversible Vedic multiplier is shown in Fig. 24.

Moreover, the evaluation results of the proposed 4-bit parity preserving reversible multi-
plier in comparison with the existing designs are shown in Table 2.

As can be seen in Table 2, although the proposed parity preserving reversiblemultiplier is close
to the proposed designs in [9, 12] in terms of number of constant inputs and garbage output,
however, is superior to all designs in terms of the gate counts and quantum cost (Fig. 25).

5 Conclusion

In this paper, two efficient 4-bit reversible Vedic multipliers were presented. The first
multiplier was a reversible multiplier without parity preserving capability in which the FG,
TG and PG gates were used to design 2-bit reversible Vedic multiplier as well as the PG gate

Table 2 Comparison results of 4-bit parity preserving reversible multipliers

Designs GC CI GO QC HC

In [9] 12DFG+ 16FRG + 20MIG= 48 64 68 244 116α + 104β + 52γ
In [12] 24DFG+ 32IG+ 16NFT = 72 102 110 352 224α + 144β + 64γ
Proposed 12DFG+ 12FRG + 4PPTG+ 7ZCG + 9ZPLG= 44 72 73 226 172α + 93β + 40γ

[9][12]

Gate Count 9.0963.12

Constant Input -11.1141.66

Garbage Output -6.8450.68

Quantum Cost 7.9455.75
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Fig. 25 Improvement of the 4-bit proposed parity preserving reversible Vedic multiplier in comparison with
existing design
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and HNG block were used as HA and FA in the summation network. The second design was a
4-bit parity preserving reversible Vedic multiplier, in which the DFG, FRG and PPTG gates
were utilized to design 2-bit parity preserving reversible Vedic multiplier and the ZCG and
ZPLG blocks were used as HA and FA in the summation network. The comparison results
show that the proposed reversible multipliers are superior in term of criteria such as gate count,
number of constant inputs, number of garbage output and quantum cost compared to other
existing designs. In the future, we plan to develop efficient designs of signed reversible
multipliers and then apply them in the more complex reversible circuits such as adaptive
digital filter and ALU.
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