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Abstract
Reversible logic has been considered as an important solution to the power dissipation
problem in the existing electronic devices. Many universal reversible libraries that include
more than one type of gates have been proposed in the literature. This paper proposes a
novel reversible n-bit gate that is proved to be universal for synthesizing reversible circuits.
Reducing the reversible circuit synthesis problem to permutation group allows Schreier-
Sims Algorithm for the strong generating set-finding problem to be used in the synthesize
of reversible circuits using the proposed gate. A novel optimization rules will be proposed
to further optimize the synthesized circuits in terms of the number of gates, the quantum
cost and the utilization of library to achieve better results than that shown in the literature.

Keywords Networks (circuits) · Universal Gate · Synthesis · Logic Gates · Group Theory

1 Introduction

Research in reversible logic circuits [1, 2] is motivated by the advances in quantum compu-
tation [3, 4] , low-power design CMOS [5, 6] and many more. Landauer [7] proved that any
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conventional, irreversible gate dissipates a certain amount of energy per operation. Bennett
[1] shows that the power dissipation can be avoided in a circuit if and only if the circuit is
synthesized using reversible gates.

Recently, the study of reversible logic synthesis problem using group theory is rising
rapidly. Investigation on the universality of the basic building blocks of reversible circuits
has been presented [8, 9]. A relation between the reversible logic synthesis problem and
Young subgroups has been discussed [10]. A difference between the decomposition of a
quantum circuit and a reversible circuit using group theory has been shown [11]. GAP-based
algorithms that is used to synthesize reversible circuits for various types of gates, and with
various gate costs have been proposed [12–14, 22]. GAP-based algorithms that is used to
synthesize reversible circuits for one type of gates have been proposed [15, 25].

The aim of the paper is to propose a novel reversible n-bit gate that is proved to be
universal for reversible circuit synthesis. The proposed gate is extendable according to the
number of bits in the circuit design. The proposed gate is important as it is a single type
of gate and using this technology might be cheaper to implement. All results shown in this
paper have been implemented and tested using the group theory algebraic software GAP
[16]. The experimental results using the proposed gate library show better quantum cost
and utilization of the gate library compared to the existing work in [15, 25]. Some obtained
results matches the results obtained by other methods such as [12, 17, 18, 22].

The paper is organized as follows: Section 2 reviews the required background for the
synthesis of reversible circuit problem. In addition, it shows that the problem can be reduced
to permutation group, and gives an analysis about the universality properties of the common
universal reversible libraries in the literature. Section 3 presents the proposed gate library
and its properties. Section 4 discusses the experimental results and shows a comparison with
relevant results obtained by others in the literature. The paper ends up with a summary and
conclusion in Section 5.

2 Preliminaries

This section will review the basic concepts of reversible circuits, terminologies used
for reversible circuit synthesis and the relationship between reversible logic circuits and
permutation group theory.

Let X = {0,1} and define a Boolean function fwith n input variables x1,. . . ,xn and n output
variables y1,. . . ,yn, to be a function f : Xn → Xn, where (x1,. . . ,xn) ∈ Xn is called the
input vector and (y1,. . . ,yn) ∈ Xn is called the output vector. An n-input n-output Boolean
function is reversible (n × n function) if it maps each input vector to a unique output vector,
i.e. bijection. There are 2n! reversible n × n Boolean functions. For n = 3, there are 40320
3-in/out reversible functions.

An n-input n-output (n-in/out) reversible gate (or circuit) is a gate that realizes an n × n
reversible function. A set of reversible gates that can be used to build a reversible circuit is
called a gate library L [15]. A universal reversible gate library Ln is a set of reversible gates
such that a cascading of gates in Ln can be used to synthesize any reversible circuit with n-
in/out [15]. A universal reversible gate sub library SLn is a set of reversible gates such that
SLn ⊆ Ln that can be used to build any reversible circuit with n-in/out [15]. Let |Ln| be the
number of gates in Ln and |SLn| be the number of gates in SLn, then the ratio 2|SLn|/2|Ln|
represents the utilization of gates in a universal sub library and the ratio 2min(|SLn|)/2|Ln|
represents the utilization of gates in the smallest universal sub libraries from a universal
library [15].
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Let a finite set A = {1,2,. . . ,2n} and a bijection δ : A → A, then can be written as,(
1 2 3 · · · 2n

δ(1)δ(2)δ(3)· · ·δ(2n)

)
, i.e. δ is a permutation of A. Let A be an ordered set, then the top

row can be eliminated and δ can be written as,(
δ(1)δ(2)δ(3)· · ·δ(2n)

)
. (1)

Any reversible circuit with n-in/out can be considered as a permutation and Eq..1 is called
the specification of this reversible circuit [15]. The set of all permutations on A forms a
symmetric group on A under composition of mappings [18], denoted by S2n [19]. A permu-
tation group G is a subgroup of the symmetric group S2n [18]. A universal reversible gate
library Ln is called the generators of the group. Another important notation of a permutation

is the product of disjoint cycles [19]. For example,

(
1, 2, 3, 4, 5, 6, 7, 8
8, 2, 6, 4, 5, 3, 1, 7

)
will be written

as (1,8,7)(3,6). The identity mapping “()” is called the unit element in a permutation group.
A product p ∗ q of two permutations p and q means applying mapping p then q, which is
equivalent to cascading p and q [20].

2.1 Reversible Circuits

The CnNOT gate is a reversible gate that can be used to build any n-in/out reversible circuits.
It is denoted in [13] as,

CnNOT(x1, x2, · · · , xn−1; f ),

with n inputs:x1,x2,· · · ,xn− 1 (named control bits) and fin (named target bit), and n
outputs:y1,y2,· · · ,yn− 1 and fout. The operation of the CnNOT gate is defined as follows,

yi = xi, for1 ≤ i ≤ n − 1, fout = fin ⊕ x1, x2 · · · xn−1,

i.e. if the control bits are set to 1 then the target bit is flipped, otherwise the target bit is left
unchanged. The CnNOT gate is represented by the circuit shown in Fig. 1.

There exist three special cases of the CnNOT gate and are defined as, C1NOT gate with
no control bit is called NOT gate. C2NOT gate with one control bit is called CNOT. C3NOT
gate with two control bits is called Toffile gate. For the ease of readability C1NOT, C2NOT
and C3NOT can be written as N, C and T respectively where the control and/or target bits
will be shown in the subscript of the gate and the total number of bits will be shown in
the superscript. Many quantum gates have been studied but we focus on the elementary
quantum gatesNOT,CNOT, Controlled-V (v) and Controlled-V+ (u), also known as quantum
primitives. These gates have been widely used to synthesize reversible circuits [26]. The
Controlled-V (v) and the Controlled-V+ (u) gates are represented by the matrices as follows,

v = 1+i
2

(
1 −i

−i 1

)
and u = 1−i

2

(
1i

i1

)
, where vu = uv = I, vv = uu = N and I is the identity

gate [26].

Fig. 1 CnNOT gate.The control bit is denoted by , and the target bit is denoted by ⊕
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The quantum cost of a reversible circuit is measured by the number of elementary gates
required to build the CnNOT gate [26], which are considered as the number of 2-qubit gates
used in its implementation as a circuit. In this paper, we use the cost015 metric [12], the
quantum cost of NOT gate is 0 (zero), the quantum cost of any 2-qubit gate is 1 and the
quantum cost of the T3 gate is 5.

The NOT (N) gate acts on a 1-bit and it is defined as follows, it flips the input bit uncon-
ditionally with quantum cost equal zero [12]. A gate library with N3 gates is not universal
for 3-in/out reversible circuits since it can realize 8 circuits from the 40320 circuits [15].
There are 3 possible N3 gates for the 3-in/out reversible circuits as shown in Fig. 2, that
perform as follows:

N3
1 : (x1, x2, x3) → (x1 ⊕ 1, x2, x3) ≡ (1, 5)(2, 6)(3, 7)(4, 8),

N3
2 : (x1, x2, x3) → (x1, x2 ⊕ 1, x3) ≡ (1, 3)(2, 4)(5, 7)(6, 8),

N3
3 : (x1, x2, x3) → (x1, x2, x3 ⊕ 1) ≡ (1, 2)(3, 4)(5, 6)(7, 8). (2)

The Feynman (C) gate acts on two-bits and it is defined as follows, if the control bit is
set to 1 then the target bit line is flipped. A gate library with C3 gates is not universal for 3-
in/out reversible circuits, since it can realize 168 circuits from the 40320 reversible circuits
[15]. There are 6 possible C3 gates for the 3-in/out reversible circuits as shown in Fig. 3,
that perform as follows:

C3
12 : (x1, x2, x3) → (x1, x2 ⊕ x1, x3) ≡ (5, 7)(6, 8),

C3
13 : (x1, x2, x3) → (x1, x2, x3 ⊕ x1) ≡ (5, 6)(7, 8),

C3
23 : (x1, x2, x3) → (x1, x2, x3 ⊕ x2) ≡ (3, 4)(7, 8),

C3
21 : (x1, x2, x3) → (x1 ⊕ x2, x2, x3) ≡ (3, 7)(4, 8),

C3
32 : (x1, x2, x3) → (x1, x2 ⊕ x3, x3) ≡ (2, 7)(6, 8),

C3
31 : (x1, x2, x3) → (x1 ⊕ x3, x2, x3) ≡ (2, 6)(4, 8). (3)

The Toffile (T3) gate acts on three-bits and it is defined as follows, if the two control bits
are set to 1 then the third target bit line is flipped. The T3 gate is the smallest reversible gate
that is proved to be universal for non-reversible computation as it is proved to function as

Fig. 2 The 3 possible N gates
for 3-bit reversible circuits
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Fig. 3 The 6 possible C gates for 3-bit reversible circuits

NAND gate by initializing the target bit to 1 [21]. A gate library with T3 gate is not universal
for 3-in/out reversible circuits, since it can realize 24 circuits from 40320 reversible circuits
[15]. There are three possible T3 gates for the 3-in/out reversible circuits as shown in Fig. 4,
that perform as follows:

T 3
123 : (x1, x2, x3) → (x1, x2, x3 ⊕ x1x2) ≡ (7, 8),

T 3
132 : (x1, x2, x3) → (x1, x2 ⊕ x1x3, x3) ≡ (6, 8),

T 3
321 : (x1, x2, x3) → (x1 ⊕ x2x3, x2, x3) ≡ (4, 8). (4)

The Fredkin (F) gate acts on three-bits and it is defined as follows, it performs a condi-
tional swap on two of its inputs if the third input is set to 1. A gate library of F3 gates is
not universal for 3-in/out reversible circuits, since it can realize 6 circuits from the 40320
reversible circuits [15]. There are three possible F3 gates for 3-in/out reversible circuits as
shown in Fig. 5, that perform as follows:

F 3
123 : (x1, x2, x3) → (x1, x3, x2) ≡ (6, 7),

F 3
132 : (x1, x2, x3) → (x3, x2, x1) ≡ (4, 7),

F 3
321 : (x1, x2, x3) → (x2, x1, x3) ≡ (4, 6). (5)

The Peres (P) gate acts on three-bits and it is defined as follows, it combines the function
of T gate and C gate in a one gate. A gate library of P3 gates is not universal for 3-in/out
reversible circuits, since it can realize 5040 circuits from the 40320 reversible circuits [15].

Fig. 4 The 3 possible T3 gates
for 3-bit reversible circuits
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Fig. 5 The 3 possible F3 gates
for 3-bit reversible circuits

There are six possible P3 gates for 3-in/out reversible circuits as shown in Fig. 6, that
perform as follows:

P 3
23 : (x1, x2, x3) → (x1, x2 ⊕ x1, x3 ⊕ x1x2) ≡ (5, 7, 6, 8),

P 3
32 : (x1, x2, x3) → (x1, x2 ⊕ x1x3, x3 ⊕ x1) ≡ (5, 6, 7, 8),

P 3
13 : (x1, x2, x3) → (x1 ⊕ x2, x2, x3 ⊕ x1x2) ≡ (3, 7, 4, 8),

P 3
31 : (x1, x2, x3) → (x1 ⊕ x2x3, x2, x3 ⊕ x2) ≡ (3, 4, 7, 8),

P 3
12 : (x1, x2, x3) → (x1 ⊕ x3, x2 ⊕ x1x3, x3) ≡ (2, 6, 4, 8),

P 3
21 : (x1, x2, x3) → (x1 ⊕ x2x3, x2 ⊕ x3, x3) ≡ (2, 4, 6, 8). (6)

The (R3) gate acts on three-bits and it is defined as follows, it combines the action of
N, C and T3 in a single gate. A gate library of R3 gates is universal for 3-in/out reversible
circuits, since it can realize all the 40320 reversible circuits [25]. There are six possible R3

gates for 3-in/out reversible circuits as shown in Fig. 7, that perform as follows:

R3
j,k,l : yi = xj ⊕ xk ⊕ xj · xl ⊕ 1,

yk = xk ⊕ xj · xl ⊕ 1,

yl = xl ⊕ xj ,

R3
123 : (x1, x2, x3) → (1, 7, 6, 5, 4, 2, 8, 3),

R3
321 : (x1, x2, x3) → (1, 4, 6, 2, 7, 5, 8, 3),

R3
312 : (x1, x2, x3) → (1, 4, 7, 3, 6, 5, 8, 2),

R3
132 : (x1, x2, x3) → (1, 6, 7, 5, 4, 3, 8, 2),

R3
231 : (x1, x2, x3) → (1, 6, 4, 2, 7, 3, 8, 5),

R3
213 : (x1, x2, x3) → (1, 7, 4, 3, 6, 2, 8, 5). (7)

where j,k and l ∈ {1, 2, 3} in any order.

Fig. 6 The 6 possible P3 gates for 3-bit reversible circuits
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Fig. 7 The 6 possible R3 gates for 3-bit reversible circuits

Many suggested universal reversible libraries consist of more than one type of gates such
as NOT(N), Feynman(C), Toffoli(T3), Fredkin(F) and Peres(P) gates. Different combina-
tions of universal reversible libraries have been studied [12, 14, 17, 23]. For examples, there
exist 6-universal reversible libraries NCT, NCP, NCF, NCPT, NCTF and NCPF. Recently
some universal reversible libraries consist of one type of gate such as G gate and R gate
have been proposed [15, 25].

3 The ProposedM-Gate Library

This section proposes a reversible n-bit gate Mn for n-bits input/output reversible cir-
cuits. The proposed M-gate is extendable according to the number of bits in the circuit
design.

3.1 Single-Bit Gate

M1 gate performs as N gate which inverts the input bit unconditionally. For 1-bit reversible
circuits built using M-gate library, there is one M1 gate with quantum cost equal zero as
shown in Fig. 8, that perform as follows:

M1
1 : (x1) → (x1 ⊕ 1) ≡ (1, 2). (8)

3.2 Two-Bit Gate

M2 gate performs as a combination of N gate and C gate. For 2-bit reversible circuits built
using M gate library, there are two possible M2 gates with quantum cost equal 1 as shown
in Fig. 9, that perform as follows:

M2
i,j : yi = xi ⊕ 1,

yj = xj ⊕ yi = xj ⊕ xi ⊕ 1,

M2
1,2 : (x1, x2) → (1, 4, 2, 3),

M2
2,1 : (x1, x2) → (1, 4, 3, 2). (9)

Fig. 8 The one possible M1 gate for 1-bit reversible circuit
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Fig. 9 The two possible M2 gate for 2-bit reversible circuit

3.3 Three-Bit Gate

M3 gate combines the action of the three gates N, C and T3. It acts on an arbitrary 3-bits xi,
xj and xk in any order. For 3-bit reversible circuits built using M-gate library, there are six
possibleM3 gates with quantum cost equal 5 as shown in Fig. 10, that perform as follows:

M3
i,j,k : yi = xi ⊕ (xk ⊕ xj ),

yj = (xj ⊕ 1) ⊕ (xk ⊕ xj ) · (xi ⊕ (xk ⊕ xj ),

yk = xk ⊕ xj ,

M3
1,2,3 : (x1, x2, x3) → (1, 3, 8, 5, 7, 2, 6, 4),

M3
1,3,2 : (x1, x2, x3) → (1, 2, 8, 5, 6, 3, 7, 4),

M3
2,1,3 : (x1, x2, x3) → (1, 5, 8, 3, 7, 2, 4, 6),

M3
2,3,1 : (x1, x2, x3) → (1, 2, 8, 3, 4, 5, 7, 6),

M3
3,1,2 : (x1, x2, x3) → (1, 5, 8, 2, 6, 3, 4, 7),

M3
3,2,1 : (x1, x2, x3) → (1, 3, 8, 2, 4, 5, 6, 7). (10)

where i,j and k ∈ {1, 2, 3} in any order.
The quantum cost of the M3

123 gate is 4, Fig. 11 shows the decomposition of the gate.
Figure 11a shows the gate representation of gate, Fig. 11b shows the four component gates
of M3

123, and Fig. 11c shows the representation of the M3
123 gate into its five elementary

gates (one of themwith cost zero). The optimization is done by applying new Toffoli decom-
position techniques [24] and applying the moving rules in [22]. The first gate [C23v32],
which is merging gate between C23 and v32 in order, as shown in Fig. 12. To improve the

Fig. 10 The 6 possible M3 gates for 3-bit reversible circuits
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Fig. 11 The circuit representation for the decomposition of M3
123 gate, where: a The gate representation, b

The decomposition of the M3
123 gate into its four components and c The optimized decomposition of M3

123
gate into its five elementary quantum gates

quantum cost of the circuits synthesized with M3 gate, N gate added to form a new library
called NM3 which is also universal. The main NM3 library consist of nine gates (generators)
as shown in Figs. 13 and 14.

3.4 Four-Bit Gate

M4 gate combines the action of the four gates N,C,T3 and T4. It acts on an arbitrary 4-bits
xi,xj,xk and xl in any order. Figure 15 shows the decomposition of the gate, Fig. 15a shows
the representation of the M4

1234, and Fig. 15b shows the decomposition of the M4
1234 gate

into its five components. There 24 gates are sufficient to realize the (24)! reversible circuits.
For 4-bits reversible circuits built using M-gate library, there are 24 possible M4 gate, that
perform as follows:

M4
i,j,k,l : yi = xi ⊕ (xk ⊕ xj ),

yj = (xj ⊕ 1) ⊕ (xk ⊕ xj ) · (xi ⊕ (xk ⊕ xj ),

yk = xk ⊕ xj ,

yl = xl ⊕ yi · yj · yk, (11)

M4
1,2,3,4 : (x1, x2, x3, x4) → (1, 5, 16, 10, 14, 4, 12, 8, 2, 6, 15, 9, 13, 3, 11, 7),

M4
1,3,2,4 : (x1, x2, x3, x4) → (1, 3, 16, 10, 12, 6, 14, 8, 2, 4, 15, 9, 11, 5, 13, 7),

M4
2,1,3,4 : (x1, x2, x3, x4) → (1, 9, 16, 6, 14, 4, 8, 12, 2, 10, 15, 5, 13, 3, 7, 11),

M4
2,3,1,4 : (x1, x2, x3, x4) → (1, 3, 16, 6, 8, 10, 14, 12, 2, 4, 15, 5, 7, 9, 13, 11),

Fig. 12 The circuit representation for the decomposition of [C23v32] gate [25], where: a The gate
representation, and b The decomposition of the gate into its two component C23 gate and v32 gate
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Fig. 13 The circuit representation for the decomposition of [C31C13] gate [25], where: a The gate
representation, and b The decomposition of the gate into its two component C13 gate and C31 gate

M4
3,1,2,4 : (x1, x2, x3, x4) → (1, 9, 16, 4, 12, 6, 8, 14, 2, 10, 15, 3, 11, 5, 7, 13),

M4
3,2,1,4 : (x1, x2, x3, x4) → (1, 5, 16, 4, 8, 10, 12, 14, 2, 6, 15, 3, 7, 9, 11, 13),

M4
1,2,4,3 : (x1, x2, x3, x4) → (1, 5, 16, 11, 15, 4, 12, 8, 3, 7, 14, 9, 13, 2, 10, 6),

M4
1,3,4,2 : (x1, x2, x3, x4) → (1, 3, 16, 13, 15, 6, 14, 8, 5, 7, 12, 9, 11, 2, 10, 4),

M4
2,1,4,3 : (x1, x2, x3, x4) → (1, 9, 16, 7, 15, 4, 8, 12, 3, 11, 14, 5, 13, 2, 6, 10),

M4
2,3,4,1 : (x1, x2, x3, x4) → (1, 3, 16, 13, 15, 10, 14, 12, 9, 11, 8, 5, 7, 2, 6, 4),

M4
3,1,4,2 : (x1, x2, x3, x4) → (1, 9, 16, 7, 15, 6, 8, 14, 5, 13, 12, 3, 11, 2, 4, 10),

M4
3,2,4,1 : (x1, x2, x3, x4) → (1, 5, 16, 11, 15, 10, 12, 14, 9, 13, 8, 3, 7, 2, 4, 6),

M4
1,4,2,3 : (x1, x2, x3, x4) → (1, 2, 16, 11, 12, 7, 15, 8, 3, 4, 14, 9, 10, 5, 13, 6),

M4
1,4,3,2 : (x1, x2, x3, x4) → (1, 2, 16, 13, 14, 7, 15, 8, 5, 6, 12, 9, 10, 3, 11, 4),

M4
2,4,1,3 : (x1, x2, x3, x4) → (1, 2, 16, 7, 8, 11, 15, 12, 3, 4, 14, 5, 6, 9, 13, 10),

M4
2,4,3,1 : (x1, x2, x3, x4) → (1, 2, 16, 13, 14, 11, 15, 12, 9, 10, 8, 5, 6, 3, 7, 4),

M4
3,4,1,2 : (x1, x2, x3, x4) → (1, 2, 16, 7, 8, 13, 15, 14, 5, 6, 12, 3, 4, 9, 11, 10),

M4
3,4,2,1 : (x1, x2, x3, x4) → (1, 2, 16, 11, 12, 13, 15, 14, 9, 10, 8, 3, 4, 5, 7, 6),

M4
4,1,2,3 : (x1, x2, x3, x4) → (1, 9, 16, 4, 12, 7, 8, 15, 3, 11, 14, 2, 10, 5, 6, 13),

M4
4,1,3,2 : (x1, x2, x3, x4) → (1, 9, 16, 6, 14, 7, 8, 15, 5, 13, 12, 2, 10, 3, 4, 11),

M4
4,2,1,3 : (x1, x2, x3, x4) → (1, 5, 16, 4, 8, 11, 12, 15, 3, 7, 14, 2, 6, 9, 10, 13),

M4
4,2,3,1 : (x1, x2, x3, x4) → (1, 5, 16, 10, 14, 11, 12, 15, 9, 13, 8, 2, 6, 3, 4, 7),

Fig. 14 The main NM3 library consist of 9 gates (generators)
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Fig. 15 The circuit representation for the decomposition of M4
1234 gate, where: a The gate representation,

b The decomposition of the M4
1234 gate into its five components

M4
4,3,1,2 : (x1, x2, x3, x4) → (1, 3, 16, 6, 8, 13, 14, 15, 5, 7, 12, 2, 4, 9, 10, 11),

M4
4,3,2,1 : (x1, x2, x3, x4) → (1, 3, 16, 10, 12, 13, 14, 15, 9, 11, 8, 2, 4, 5, 6, 7).

where i,j,k and l ∈ {1, 2, 3, 4} in any order.

3.5 n-Bit Gate

It can be shown using GAP that a permutation group with two generators M2
12 and M2

21
is of size 24, i.e. a cascade of these two gates are sufficient to implement any of the 24 2-
in/out reversible circuits. It can be shown using GAP that a permutation group with the six
generators ofM3 is of size 40320, i.e. a cascade of these six gates are sufficient to implement
any of the 40320 3-in/out reversible circuits. Extending the M gate for n-bits is trivial as
shown in Fig. 16. It can be shown using GAP that a permutation group with the n! of Mn is
of size 2n!, i.e. a cascade of these n! gates are sufficient to implement any of the 2n! n-in/out
reversible circuits. The Mn gate is universal of n-bit gate.

Fig. 16 The circuit representation for the decomposition of Mn
1234...n gate, where: a The gate representation,

b The decomposition of the Mn
1234...n gate into its main components
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For n ≥ 3, Mn combines the action of the n-gate N,C,T3,T4,. . . ,Tn− 1,Tn as shown in
Fig. 16. The total number of possible gates for the general Tn is computed in [15] as follows:

n

n−1∑
r=0

(
n − 1

r

)
(12)

where n is the number of bits and r ≥ 0 is the number of controls per gate. There are n!
possible Mn gates which are sufficient to realize any n-bits reversible circuit, that perform
as follows:

Mn
a1,a2,a3,a4,a5,...,an−1,an

: ya1 = xa1 ⊕ (xa3 ⊕ xa2),

ya2 = (xa2 ⊕ 1) ⊕ (xa3 ⊕ xa2) · (xa1 ⊕ (xa3 ⊕ xa2),

ya3 = xa3 ⊕ xa2 ,

ya4 = xa4 ⊕ ya1 · ya2 · ya3 ,

ya5 = xa5 ⊕ ya1 · ya2 · ya3 · ya4 ,

. . .

. . .

yan−1 = xan−1 ⊕ ya1 · ya2 · ya3 · ya4 . . . yan−2 ,

yan = xan ⊕ ya1 · ya2 · ya3 · ya4 · ya5 . . . yan−1 , (13)

where a1,a2,a3,. . . and an ∈{1,2,3,. . . ,n} in any order.

Algorithm 1 Generate all 3-bit reversible circuits.

Input: is the set of all sub libraries to be generated
and is the set of all specification for 3-in/out reversible circuits.

Output: is the set of all possible specifications to be represented as reversible circuits.

for 1 to do
for 1 to do

if then

else

end if
end for

end for

Given the proposed NM3 gate library with nine generators as shown in Fig. 14 and
the 40320 specifications for all 3-in/out reversible circuits. All sub-libraries of NM3 gate
library are generated, that is 511 sub-libraries after excluding the identity mapping. Using
each sub-library to attempt to synthsize a reversible circuit for the 40320 specifications, if
possible, using Schreier-Sims Algorithm. The term “if possible” here means that if a spec-
ification does not belong to the group generated by a sub-library, then it is impossible for
this specification to be represented as a reversible circuit using this sub-library. The process
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Fig. 17 a The circuit representation for [ M3
123,M

3
213], b Decompose the circuit into Toffoli gates, c Decom-

pose the circuit into its elementary quantum gates, d Optimization is done by applying moving rules, e The
optimized decomposition of the circuit[ M3

123,M
3
213] into its 9 elementary gates with QC equal 7
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Table 1 Utilization of the different universal libraries

Lib Lib size Num of sub lib Num of universal sub lib Utilization

NT 6 64 4 6.250%
NP 9 512 333 65.039%
NCT 12 4096 1960 47.852%
NCF 12 4096 2460 60.059%
NCP 15 32768 26064 79.541%
NCTF 15 32768 23132 70.593%
NCPT 18 262144 217384 82.925%
NCPF 18 262144 220188 83.995%
G3 6 64 51 79.688%
R3 6 64 55 85.938%
M3 6 64 55 85.938%
NR3 9 512 340 66.406%
NM3 9 512 475 92.773%

of synthesizing all possible 3-bit reversible circuits using the proposed NM3 gate is shown
in Algorithm 1.

4 Experimental Results

This section discusses and compares the performance of the proposed two gate librariesM3

and NM3, with the known libraries in [12–15, 18, 25]. It can be shown using GAP [17] that
a permutation group of M3 generators is of size 40320, thus the six generators in M3 gate
library are universal. There are 64 possible sub libraries from the main M3 gate library, 55
of them are universal for the 3-bits reversible circuits. It can be shown using GAP [17] that a
permutation group of NM3 generators is of size 40320, thus the nine generators in NM3 gate
library are universal. There are 512 possible sub libraries from the main NM3 gate library,
475 of them are universal for the 3-bits reversible circuits (Fig. 17).

Table 1 compares the utilization of the different libraries, it can be seen that the NM3

gate library gives the utilization of 92.773%, which is better than the utilization of libraries
NT, NP, NCT, NCF, NCP, NCTF, NCPT, NCPF, G3, M3, R3 and NR3. The size of the
minimum universal sub libraries from the main M3 gate library and NM3 gate library

Table 2 Utilization of gates in
the smallest universal sub
libraries

Lib Size of min Num of universal Num of universal Utilization
universal sub lib sub lib with
sub lib min size

NT 5 6 3 50%
NP 3 84 18 21.429%
NCT 4 495 21 4.242%
NCF 4 495 60 12.121%
NCP 3 455 30 6.593%
NCTF 4 1365 105 7.692%
NCPT 3 816 36 4.412%
NCPF 3 816 42 5.147%
G3 2 15 9 60%
R3 2 15 13 86.667%
M3 2 15 13 86.667%
NR3 2 36 8 22.222%
NM3 2 36 17 47.222%
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Table 3 The proposed Rules of decomposing 3-bit M-reversible circuits

Rule No Gate Adjacent Gate 3-bit M-circuits decomposition Quantum cost

R1 M3
123 M3

213 [C3
23v

3
32]N3

2u312[C3
31C

3
13][v312u321]N3

1 v331C
3
32v

3
21 7

R2 M3
132 M3

312 [C3
32v

3
23]N3

3u313[C3
21C

3
12][v313v331]N3

1u321C
3
32v

3
21 7

R3 M3
312 M3

132 [C3
12v

3
21]N3

1u331[C3
23C

3
32][v331u313]N3

3 v323C
3
21v

3
13 7

R4 M3
213 M3

123 [C3
13v

3
31]N3

1u321[C3
32C

3
23][v321u312]N3

2 v332C
3
31v

3
12 7

R5 M3
321 M3

231 [C3
21v

3
12]N3

2u332[C3
13C

3
31][v332u323]N3

3 v313C
3
12v

3
23 7

R6 M3
231 M3

321 [C3
31v

3
13]N3

3u323[C3
12C

3
21][v323u332]N3

2 v312C
3
13v

3
32 7

is two. For M3 gate library, there are 12 universal sub libraries of size two, such as
{M3

123,M
3
213}, {M3

132, M
3
231} and {M3

213, M
3
321}. For NM3 gate library, there are 16 universal

sub libraries of size two, such as {M3
132,M

3
321}, {M3

123, M
3
213} and {M3

231, M
3
312}.

Table 2 compares the utilization of gates in the smallest universal sub libraries. The
utilization of the universal sub libraries with minimum size for M3 is 86.667%, while
for NM3 is 47.222%. It shows that NM3 gives a utilization better than NP, NCT, NCF,
NCP, NCTF, NCPT, NCPF and NR3. Table 4 compares the minimum length for the 3-bits
reversible circuits using different libraries. It shows that the average minimum length for
M3 is 6.425, while for NM3 the average minimum length is 5.325, which is better than
NT,NCT,NCF,NCTF,G3,R3 andM3 (Table 3).

Table 4 shows that the minimum length forM3 is 6.42 and the minimum length for NM3

is 5.32. These results are identical with the minimum length for R3 and NR3, but our results
are different with the minimum quantum cost. For example, it can be shown using GAP [17]
that a cyclic permutation equal (5, 8, 7, 6) can be realized by NR3-based reversible circuit
[N3

1 , R3
231, R

3
123, N

3
3 , R3

231, N
3
1 ] with minimum quantum cost equal 12 and minimum length

equal 6 as shown in Fig. 18, while the same cyclic permutation equal (5, 8, 7, 6) can be
realized by NM3-based reversible circuit [M3

231, N
3
1 ,M3

123,M
3
213, N

3
1 , N3

3 ] with minimum
quantum cost equal 11 and minimum length equal 6 as shown in Fig. 19.

The optimization rules will be used to identify and classify similarity of gates among a
circuit when decomposed to a sequence of quantum gates. Decomposition of 3-bit reversible
circuits can be used to decrease the quantum cost. Optimization is done by removing and/or

Table 4 Minimum length of 3-bits reversible circuits using using the proposed M3-gate library and the
existing work in [25]

Min NT NP NCT NCP NCTF NCPT NCPF G3 R3 NR3 M3 NM3

Len

0 1 1 1 1 1 1 1 1 1 1 1 1
1 6 9 12 15 15 18 18 6 6 9 6 9
2 24 69 102 174 143 228 248 36 33 72 33 72
3 88 502 625 1528 1006 1993 2356 207 180 541 180 541
4 296 3060 2780 8968 5021 10503 12797 1097 960 3774 960 3774
5 870 13432 8921 23534 15083 23204 22794 4946 4686 18027 4686 18027
6 2262 21360 17049 6100 17261 4373 2106 13819 14611 17556 14611 17556
7 5097 1887 10253 0 1790 0 0 14824 15257 340 15257 340
8 9339 0 577 0 0 0 0 5208 4555 0 4555 0
9 12237 0 0 0 0 0 0 0 31 0 31 0
10 8363 0 0 0 0 0 0 0 0 0 0 0
11 1690 0 0 0 0 0 0 0 0 0 0 0
12 47 0 0 0 0 0 0 0 0 0 0 0
Avg 8.50 5.51 5.86 4.83 5.33 4.73 4.59 6.40 6.42 5.32 6.42 5.32
Size 6 9 12 15 15 18 18 6 6 9 6 9
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Fig. 18 The circuit representation for the cyclic permutation equal (5, 8, 7, 6), where: a The NR3-based
reversible circuit realize the cyclic permutation b The optimized decomposition of the NR3-based reversible
circuit into its 18 elementary quantum gates with QC equal 12

combing (merging) adjacent gates act on same qubit [23] and applying new decomposi-
tion techniques defined in [24]. For example, the cost of the sequence of reversible gates
[M3

123,M
3
213] is 7 instead of 8 as shown in Fig. 17. The first gate is [C23v32], which is merg-

ing gate between C23 and v32 in order, as shown in Fig. 12. The fourth gate is[C31C13],
which is merging gate between C31 and C13 in order, as shown in Fig. 13. Applying the
novel optimization rules as shown in Table 3 to reduce the quantum cost of 3-bit reversible
circuits built using M3 gate library.

The quantum cost of all the 40320 3-bit reversible circuits synthesized by the M3 and
NM3 gate libraries are calculated and compared with different universal libraries as shown
in Table 5. For 3-bits reversible circuits built using M3-gate library, the maximum quantum
cost is 36 and average quantum cost is 25.70 before optimization. After adding the N gate

Fig. 19 The circuit representation for the cyclic permutation equal (5, 8, 7, 6), where: a The NM3-based
reversible circuit realize the cyclic permutation b The optimized decomposition of the NM3-based reversible
circuit into its 17 elementary quantum gates with QC equal 11
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Table 5 Minimum cost of 3-bits reversible circuits using the proposedM3-gate library and the existing work
in [25]

Min Spc# Spc# Spc# Spc# Spc# Spc# Spc# Spc#
Cost R3 M3 NT NT NR3 NR3 NM3 NM3

aft aft aft
optm optm optm

0 1 1 8 8 8 8 8 8
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 6 6 0 0 192 192 192 192
5 0 0 96 94 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 851 0 2136
8 33 33 0 16 3442 2591 3436 1300
9 0 0 0 340 0 0 0 0
10 0 0 648 288 0 636 0 0
11 0 0 0 32 0 6050 0 11916
12 180 180 0 179 16040 9354 15980 4064
13 0 0 0 790 0 396 0 0
14 0 0 0 1487 0 2829 0 3294
15 0 0 2694 324 0 7175 0 7242
16 960 960 0 574 16676 6331 16673 6137
17 0 0 0 2052 0 344 0 0
18 0 0 0 3616 0 1200 0 1117
19 0 0 0 1462 0 1278 0 1484
20 4686 4686 7640 1041 3928 1053 3988 1387
21 0 0 0 3405 0 9 0 0
22 0 0 0 5357 0 14 0 0
23 0 0 0 2894 0 2 0 0
24 14611 14611 0 1435 34 7 43 43
25 0 0 12881 3191 0 0 0 0
26 0 0 0 4369 0 0 0 0
27 0 0 0 2436 0 0 0 0
28 15257 15257 0 806 0 0 0 0
29 0 0 0 1444 0 0 0 0
30 0 0 11502 1482 0 0 0 0
31 0 0 0 761 0 0 0 0
32 4555 4555 0 125 0 0 0 0
33 0 0 0 126 0 0 0 0
34 0 0 0 109 0 0 0 0
35 0 0 4489 60 0 0 0 0
36 31 31 0 6 0 0 0 0
37 0 0 0 0 0 0 0 0
Min Spc# Spc# Spc# Spc# Spc# Spc# Spc# Spc#
Cost R3 M3 NT NT NR3 NR3 NM3 NM3

aft aft aft
optm optm optm

38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 362 0 0 0 0 0
Avg 25.70 25.70 22.77 22.32 14.06 13.39 14.07 13.29

to theM3-gate library, the maximum quantum quantum cost has been reduced to 24, having
an average cost 13.29 after apply optimization rules are shown in Table 3, giving 48.3% of
improvement. The quantum cost of the circuits built using NR3-gate library have improved
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by 44.1% and the quantum cost of the circuits built using NT-gate library have improved by
13.4% [25].

5 Conclusion

The paper proposed a novel reversible n-bit gate that is proved to be universal for synthe-
sizing reversible circuits using the algebraic software GAP. The proposed gate is extendable
according to the number of bits in the circuit design and is important as it a single type
of gate and using this technology might be cheaper to implement. All experimental results
shown in this paper have been obtained using GAP. For 3-bits reversible circuits built using
the proposed M3-gate library, it shown that:

• The average minimum quantum cost for reversible circuits based onM3 library is 25.70
with minimum length is 6.403.

• The average minimum quantum cost for reversible circuits based on NM3 library is
13.29 with the minimum length is 5.325. (adding the N gate to the M3-gate library
giving 48.3% of improvment).

The reversible circuits based on NM3 library give better results than that the reversible
circuits based on NR3 library and NT3 library with respect to the quantum cost. The
reversible circuits based on NM3 library give the utilization of 92.773%, which is better than
the utilization of different libraries achieved by other in the literature. The analysis of uni-
versal sub libraries for the proposed gate to find the optimal sub library with exact minimal
number of gates that generate an efficient quantum circuit is an extension to this work.
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