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Abstract
In some image processing algorithms, such as those for image feature extraction and segmen-
tation, filtering is a significant pre-processing step to remove noises and improve image
quality. An improved quantum image median filtering approach is proposed, and its corre-
sponding quantum circuit is designed in this work. The main idea of the approach is that first
the classical image is converted into a quantum version based on the novel enhanced quantum
representation (NEQR) of digital images, and then a unique quantum module is designed to
realize the median calculation of neighborhood pixels for each pixel point in the image.
Finally, in order to improve the filtering effect, extremum detection is employed to distinguish
noises from true signals. The experimental results show that a competitive filtering perfor-
mance is obtained compared with previous methods. In addition, a network complexity
analysis of the quantum circuit suggests that the proposed filtering approach can perform
enormous speed-up over its corresponding classical counterparts.

Keywords Quantum image processing . Quantum image filtering .Median filtering . Extremum
detection

1 Introduction

The quantum computation model was proposed by Feynman in 1982 [1]. Moore’s law states
that computer performance will double roughly every 2–3 years [2]. However, this rule will no
longer work effectively when electronic components cannot continue to shrink. The
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emergence of quantum technology provides potential to solve this issue. This new technology
can help us design much smaller embedded electronic components to make computation more
efficient and faster [3], with several outstanding merits, such as quantum superposition and
entanglement. According to these merits, in 1994, Peter Shor designed a quantum algorithm to
achieve integer factoring in polynomial time [4]. This was followed closely by Grover’s
quadratic speed-up database searching algorithm [5]. These two representative quantum
algorithms provide strong evidence supporting quantum computers as being much more
powerful than classical computers.

In recent years, with the rapid development of quantum technology, quantum computation
has been applied in various fields of computer science, especially in image processing, which
is devoted to utilizing quantum computers to perform image processing tasks. Quantum image
processing is still in its early stage, and thus is facing several fundamental problems, such as
how to represent and store an image in quantum computers appropriately, and how to
implement image processing algorithms. In the past several decades, multiple quantum models
have been proposed to represent image information, including the Qubit Lattice [6], Entangled
Image [7], Real Ket [8], Flexible Representation of Quantum Images [9], Novel Enhanced
Quantum Representation (NEQR) [10], and Quantum Image Representation for Log-polar
Images [11]. Moreover, many quantum image processing algorithms based on these represen-
tation models have been proposed, such as quantum image scaling [12–14], quantum image
feature extraction [15, 16], quantum image transformation [17–19], quantum image matching
[20–22], quantum image compression [23], quantum image segmentation [23, 24], quantum
image watermarking [25–29], and quantum image encryption [30–32].

Owing to the rapid development of modern technology, digital images have become
ubiquitous in our daily life. During capture and transmission, however, digital images are
likely to be degraded by various noises, and filtering may be one of the best ways to remove
noises. Hence, filtering plays a crucial role in image processing, which is a significant pre-
processing step in image feature extraction and segmentation. Furthermore, filtering enables
some complex image processing to be realizable, such as image matching and image
searching.

Unfortunately, the current research achievements on quantum image filtering are still
scarce. This is because correlation or convolution operations are required in most filtering
approaches, but they have been demonstrated as impossible in quantum implementations due
to the constraint of linearity [33]. In 2013, Simona et al. [34] proposed the frequency domain
filtering of quantum images, in which the Fourier transform was used to turn a quantum image
from the spatial domain to the frequency domain; meanwhile, the inverse Fourier transform
was used to perform the transformation from the frequency domain to the spatial domain. In
order to avoid quantum convolution, they employed the quantum oracle to realize filtering
behavior, but the detailed circuit of the black box was lacking. Later, Yuan et al. [35] proposed
quantum image filtering in the spatial domain, and quantum addition was substituted for
quantum multiplication. Only a year later, two drawbacks of this method were pointed out by
[35]: (1) it is essential to know the specific filter coefficients before the filtering operation; and
(2) the method has a limitation on integer filter coefficients but not decimal ones. Yuan et al.
[35] also gave an improved version that takes full advantage of the quantum multiplication and
resolves these two problems. Additionally, Li et al. proposed three approaches related to
quantum image filtering, namely, quantum image weighted average filtering in the spatial
domain [36], quantum image median filtering in the spatial domain [37], and an improved
filtering method for the quantum color image frequency domain [38].
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Analogous to Ref. [37], the present paper also concentrates on image median filtering in the
spatial domain. However, the differences are as follows: (1) the proposed approach uses less
elementary quantum gates than that of [37]; (2) in order to store neighborhood pixels, Ref. [37]
employs a set of eight images based on NEQR, including position information and color
information, while our scheme stores only the color information of the neighborhood pixels
entangled with position information of the original image; and (3) we use the extremum
detection approach to distinguish between noises and normal signal points, which can improve
filtering effectiveness.

This paper is organized as follows. Section 2 briefly introduces some necessary theoretical
basis, including NEQR model, median filtering, and noise detection. In Section 3, several core
quantum modules are introduced; these are used to design the integrate quantum circuit for
image filtering. Section 4 describes the proposed approach and quantum circuit in detail.
Section 5 gives the circuit complexity analysis and experimental results. Finally, the conclu-
sions are drawn in Section 6.

2 Preliminaries

2.1 NEQR

For a gray image with the size 2n × 2n and grayscale range 2q, NEQR encodes the position
information into 2n qubits and encodes the grayscale intensity into q qubits, as represented by
the following equation:

jI〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCYX 〉jYX 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCq−1

YX Cq−2
YX ⋯C0

YX 〉jYX 〉; ð1Þ

where |CYX〉 ∈ {0, 1,⋯2q − 1}, and Cq−1
YX ;Cq−2

YX ;⋯C0
YX∈ 0; 1f g. Figure 1 shows an example of a

22 × 22 gray image and its NEQR representation.

2.2 Median Filtering

Median filtering is an order-statistics filter, and has been widely used in image processing to
remove noises. The underlying principle of the filter is to use the median of the pixels
encompassed by the filtering window to replace the pixel value at the center of the filtering
window. The pixels encompassed by the filtering window also are known as neighborhood
pixels. The window size may be any n × n, where n is generally an odd number; the size of 3 ×
3 can usually meet filtering expectations.

Fig. 1 An example of a 22 × 22 gray image and its NEQR representation
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Sorting is deemed to be the most common method for obtaining the median of neighbor-
hood pixels, such as the bubble sorting used in [37]. However, this type of sorting is of high
network complexity. To avoid this issue, a unique algorithm to acquire the median of the
neighborhood pixels at a faster speed is proposed in Algorithm 1. The median, maximum, and
minimum of neighborhood pixels are easily obtained through this algorithm, which will play
key role in noise detection.

Algorithm 1. The median, maximum, and minimum calculation of neighborhood pixels
Input: the neighborhood pixels
Output: the median, maximum, and minimum of the neighborhood pixels
Step 1: Column sorting
Step 2: Row sorting
Step 3: Right diagonal sorting

To demonstrate the algorithm in detail, assume that the size of the filtering window is 3 × 3,
which includes nine pixels, namely Ai, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}; this is shown in Fig. 2(a).
The detailed process is described below.

Step 1. Perform column sorting based on ascending order. The new nine pixels are calculated
in Fig. 2(b), namely, Bi, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. The relationship between Bi and
Ai is as follows:

B1 ¼ min A1;A4;A7½ �
B2 ¼ min A2;A5;A8½ �
B3 ¼ min A3;A6;A9½ �
B4 ¼ median A1;A4;A7½ �
B5 ¼ median A2;A5;A8½ �
B6 ¼ median A3;A7;A9½ �
B7 ¼ max A1;A4;A7½ �
B8 ¼ max A2;A5;A8½ �
B9 ¼ max A3;A6;A9½ �

: ð2Þ

Step 2. Perform row sorting based on ascending order. The new nine pixels are calculated in
Fig. 2(c), namely, Ci, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. The relationship between Ci and Bi

is as follows:

C1 ¼ min B1;B2;B3½ �
C2 ¼ median B1;B2;B3½ �
C3 ¼ max B1;B2;B3½ �
C4 ¼ min B4;B5;B6½ �
C5 ¼ median B4;B5;B6½ �
C6 ¼ max B4;B5;B6½ �
C7 ¼ min B7;B8;B9½ �
C8 ¼ median B7;B8;B9½ �
C9 ¼ max B7;B8;B9½ �

: ð3Þ
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Step 3. Perform right diagonal sorting based on ascending order. The ascending order of C3,
C5, and C7 is denoted as D1, D2, and D3, as shown in Fig. 2(d). The relationship
between Di and Ci is as follows:

D1 ¼ min C3;C5;C7½ �
D2 ¼ median C3;C5;C7½ �
D3 ¼ max C3;C5;C7½ �

: ð4Þ

According to Steps 1,2, and 3, a conclusion can be drawn. Inspired from Ref. [39], the
supporting proofs are given here.

Conclusion C1 is the minimum of the nine pixels; C9 is the maximum of the nine pixels; D2 is
the median of the nine pixels; C2, C4 andD1 are in the interval (minimum, median); C6, C8 and
D3 are in the interval (median, maximum).

Proof (1) C1 is the minimum of the nine pixels, and C9 is the minimum of the nine pixels.

According to equations (2) and (3),

C1 ¼ min B1;B2;B3½ � ¼ min min A1;A4;A7½ �;min A2;A5;A8

� �
;min A3;A6;A9

� �� �
C9 ¼ max B7;B8;B9½ � ¼ max max A1;A4;A7½ �;max A2;A5;A8

� �
;max A3;A6;A9

� �� � : ð5Þ

Therefore, C1 is the minimum of the nine pixels, and C9 is the minimum of the nine pixels.

(2) C2, C4 in the interval (minimum, median); C6 and C8 are in the interval (median,
maximum).

Taking C2 for example, since C2 and C3 are both derived from the set of {B1, B2, B3}, assume
C2 = Bi, C3 = Bj, i, j ∈ {1, 2, 3}, i ≠ j. According to equation (2), for Bk, k ∈ {1, 2, 3}, there exists
at least two pixels larger than or equal to themselves, namely, Bk + 3, Bk + 6. For C3, C3 = Bj ≤ Bj +

3 ≤ Bj + 6, and for C2, C2 = Bi ≤ Bi + 3 ≤ Bi + 6. According to equation (3), C2 ≤C3, and thus for C2

there are at least five pixels larger than or equal to itself, namely Bj, Bj + 3, Bj + 6, Bi + 3, Bi + 6.
Hence, C2 is in the interval (minimum, median). Adopting a similar method, the result can be
proved that C4 is in the interval (minimum, median); C6 and C8 are in the interval (median,
maximum).

(3) D2 is the median of the nine pixels; D1 is in the interval (minimum, median); D3 is in the
interval (median, maximum).

A1 A2 A3

A4 A5 A6

A7 A8 A9

Column 

sorting

Row 

sorting
Minimum=C1

Median=D2

Maximum=C9

Step 2Step 1

(a)

B1 B2 B3

B4 B5 B6

B7 B8 B9

(b)

C1 C2 C3

C4 C5 C6

C7 C8 C9

(c)

Step 3

Right 

diagonal 

sorting

C1 C2 D1

C4 D2 C6

D3 C8 C9

(d)

Fig. 2 An example demonstrating Algorithm 1
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According to (1) and (2) described above, the six pixels of C1, C2, C4, C6, C8, and C9 cannot be
the median of the nine pixels and the median should be one of C3, C5, and C7. Then, according
to equation (4), D2 must be the median of the nine pixels, D1 should be in the interval
(minimum, median), and D3 should be in the interval (median, maximum).

To verify the correctness of the algorithm, an example is given in Fig. 3.
In Step 1 and Step 2 of the algorithm, nine comparisons and nine swaps are used,

respectively. In Step 3, three comparisons and three swaps are used. Hence, the whole
algorithm uses only 21 comparisons and 21 swaps, which is superior to bubble and selection
methods using 36 comparisons and 36 swaps.

2.3 Noise Detection

In terms of salt and pepper noise, true signals like edge details are removed if we use the
median filtering to process all of the pixels in the image, which may cause blurring. To
alleviate this problem, extremum detection is employed to determine whether a pixel is a noise
point before filtering. In the extremum detection, the distinct criterion of the true signal S and
the noise N is given as follows: for a given image, if the grayscale value of a pixel is the
maximum or minimum of its neighborhood pixels, then the point is regarded as a noise;
otherwise, it is a true signal. This is illustrated by equation (6).

xij∈
N xij ¼ min W xij

� �� �
;max W X ij

� �� �
S min W xij

� �� �
< xij < max W X ij

� �� � :
�

ð6Þ

According to the above criterion, all of the pixels in the image are first classified into two sets,
N and S. Then, the median filtering is applied to process the pixels of category N while the
pixels in category S are maintained. This can be described as follows:

Y ij ¼ median W xij
� �� �

; xij∈N
xij; xij∈S

:

�
ð7Þ

3 Quantum Circuits of Modules

In this section, several modules used in this paper will be introduced. These modules are the
Comparator module [40], Cycle Shift module [18], Swap module [36], Parallel Controlled-
NOT module, Sort module, and Maximum-Median-Minimum module. The main function and
corresponding quantum circuits of these modules are presented below.

6 15 13

23 10 27

4 11 22

Column 

sorting

Row 

sorting
Minimum=4

Median=13

Maximum=27
Step 2Step 1

(a)

4 10 13

6 11 22

23 15 27

(b)

4 10 13

6 11 22

15 23 27

(c)

Step 3

Right 

diagonal 

sorting

4 10 11

6 13 22

15 23 27

(d)

Fig. 3 An example verifying the correctness of Algorithm 1
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3.1 Comparator Module

Comparator is used to compare two positive integers. This module was designed by Wang
et al. [40]. In this paper, it is applied to compare grayscale values of two pixels. In order to

compare two grayscale values of CYXandCY ′ X ′, whereCYX ¼ Cq−1
YX Cq−2

YX ⋯C1
YXC

0
YX ,

CY 0X 0 ¼ Cq−1
Y 0X 0C

q−2
Y 0X 0⋯C1

Y 0X 0C0
Y 0X 0 , Ci

YX ;C
i
Y 0X 0∈ 0; 1f g, and i = q − 1, q − 2,… , 0. Its quantum

circuit is shown in Fig. 4.
As shown in Fig. 4, the output qubits in the Comparator module |e1⟩ and |e0⟩ are used to

denote the comparison results as follows:

if e1e0 = 00, then CYX =CY ′ X′;
if e1e0 = 01, then CYX <CY ′ X′;
if e1e0 = 10, then CYX >CY ′ X′.

3.2 Cycle Shift Module

Le et al. [18] designed a quantum image Cyclic Shift transformation that can shift the whole
image along the X-axis or Y-axis. In this paper, this module is used to obtain neighborhood
pixels of the pixel point (Y, X). The transformation expressions on an NEQR image with the
size of 2n × 2n are shown in equation (8). For their corresponding quantum circuits and detailed
description, we kindly refer readers to reference [18]. Figure 5 presents an example demon-
strating the operations of CSx+, CSx−, CSY+, CSY−.

Fig. 4 Quantum circuit for the Comparator module
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CSXþjI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

2X¼0
jCYX 0 〉jY 〉j X þ 1ð Þmod2n〉;X

0 ¼ X−1ð Þmod2n

CSX−jI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

2X¼0
jCYX 0 〉jY 〉j X−1ð Þmod2n〉;X

0 ¼ X þ 1ð Þmod2n

CSYþjI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCY 0X 〉j Y þ 1ð Þmod2n〉jX 〉; Y 0 ¼ Y−1ð Þmod2n

CSY−jI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCY 0X 〉j Y−1ð Þmod2n〉jX 〉; Y 0 ¼ Y þ 1ð Þmod2n

ð8Þ

As shown in Fig. 5, neighborhood pixels are acquired after a sequence of Cycle
Shift operations, CSY+, CSx−, CSY−, CSY−, CSx+, CSx+, CSY+, CSY+, which includes the
nine pixels of (Y-1,X), (Y-1,X + 1), (Y,X + 1), (Y + 1,X + 1), (Y + 1,X), (Y + 1,X-1),
(Y,X-1), (Y-1,X-1), and (Y,X). Additionally, the original image must be restored
through successive shifts of CSY− and CSx−.

3.3 Swap Module

According to Ref. [36], the function of this module is to swap two non-negative integers. In this
paper, it is used to exchange two grayscale values. For example, the qubit |CYX〉 stores the

grayscale value Cq−1
YX Cq−2

YX ⋯C1
YXC

0
YX and the qubit |CY ′X′〉 stores the other grayscale value

Cq−1
Y 0X 0C

q−2
Y 0X 0⋯C1

Y 0X 0C0
Y 0X 0 . After the module is executed, the values of CYX and CY ′ X′ are

interchanged. Its quantum circuit is shown in Fig. 6.

3.4 Parallel Controlled-NOT Module

Inspired by Ref. [14], in this paper, this module is used to make a copy of the grayscale value

CYXj i ¼ Cq−1
YX Cq−2

YX ⋯C1
YXC

0
YX

��� E
into the auxiliary qubits|0〉⊗q. This module consists of q

Controlled-NOT gates, as illustrated in Fig. 7.

Fig. 5 An example demonstrating the Cycle Shift operation
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3.5 Sort Module

The function of this module is to sort three integers to obtain the maximum, median, and
minimum of them. To this end, three Comparator modules and three Swapmodules are exploited.
Figure 8 illustrates an example sorting of three integers of A, B, and C. First, we use the
Comparator to compare A and B, and then we determine whether to swap A and B depending
on the value of e1e0. If it is 01, then swap A and B using the Swap module; else, do nothing. After
this process, A is larger than B. Later, the operation is used to perform sorting of A and C, and it is
also used to perform sorting of B and C. The outputs of this module are denoted as A′, B′, and C′

respectively, in which A′ is the maximum, B′ is the median, and C′ is the minimum.

3.6 Maximum-Median-Minimum Module

The function of this module is to calculate the maximum, median, and minimum of neigh-
borhood pixels. For this end, Ref. [37] employed bubble sorting using 30 Comparator modules
and 30 Swap modules. Based on the analysis presented in Section 2.2, we design an improved
quantum circuit utilizing lesser basic modules than that used in Ref. [37]. Figure 9 presents the
quantum circuit of this module, which consists of seven Sort modules. According to the circuit
of the Sort module, it is easy to see that there are 21 Comparator modules and 21 Swap

Fig. 6 Quantum circuit for the Swap module

Fig. 7 Quantum circuit for the Parallel Controlled-NOT module
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modules. On this point, this approach is superior to Ref. [37]. As shown in Fig. 8, the inputs of
|CY − 1, X〉, |CY − 1, X + 1〉, |CY, X + 1〉, |CY + 1, X + 1〉, |CY + 1, X〉, |CY + 1, X − 1〉, and |CY, X − 1〉, |CY − 1X − 1〉, |CY,

X〉 encode the neighborhood pixels, and the outputs of |Max〉, |Med〉 and |Min〉 denote the
maximum, median, and minimum of the neighborhood pixels, respectively. Here, it should be
noted that other garbage qubits of the output are ignored.

4 Improved Quantum Image Median Filtering

In this section, the operation process of the proposed scheme is explained in detail. Here, it is
assumed that the size of images is 2n × 2n and the grayscale range is 2q. Without loss of
generality, this scheme adopts the 3 × 3 filtering window. The workflow of this scheme is
given first, and then we give a detailed description and step-by-step design of the circuit.
Finally, the complete quantum circuit design is presented.

4.1 Scheme Workflow

For this scheme, the original image is first converted to the quantum version based on NEQR,
and then we use the Cycle Shift module and Parallel Controlled-NOT module to turn the
neighborhood pixels into 9q ancillary qubits. Next, we utilize extremum detection to determine
the noise points, and perform median filtering on the noise points. Finally, we restore the
filtered classical image through quantum measurements. The workflow of this scheme is
presented in Fig. 10.

Fig. 8 Quantum circuit for the Sort module

Fig. 9 Quantum circuit for the Maximum-Median-Minimum module
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4.2 Step-By-Step Description of the Algorithm

Here we provide a more explicit explanation of the scheme presented in Fig. 10. The proposed
scheme can be broken down into the following seven steps:

Step 1. We convert the classical grayscale image with noises to the quantum version |I〉 based
on NEQR, which encodes the grayscale value into eight qubits denoted as

jCYX 〉 ¼ ⊗
7

i¼0
jCi

YX 〉. The NEQR expression of a gray image with the size of 2n × 2n

is written as

jI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCYX 〉jYX 〉

¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jC7

YXC
6
YX⋯C0

YX 〉jYX 〉
; ð9Þ

where |YX〉 = |yn − 1yn − 2⋯y1y0〉|xn − 1xn − 2⋯x1x0〉, yi, xi ∈ {0, 1}. The first n-qubit |yn − 1yn −

2⋯y1y0〉 encodes the vertical coordinates, and the second n-qubit |xn − 1xn − 2⋯x1x0〉 encodes
the horizontal coordinates.

Step 2. Nine |0〉⊗q ancillary qubits are prepared to store the neighborhood pixels. To take full
advantage of the parallelism of quantum computation, the ancillary qubits are the
tensor product with the original quantum image states, expressed as follows:

jJ 〉 ¼ j0〉⊗9q⊗jI 〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
j0〉⊗9qjCYX 〉jYX 〉

¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
j0〉⊗q⋯j0〉⊗qjCYX 〉jYX 〉

ð10Þ

Step 3. We prepare the nine |0〉⊗q ancillary qubits with the neighborhood pixel values
through a sequence of Cyclic Shift transformations and Parallel Controlled-NOT
operations on |J〉. First, ten Cycle Shift modules are used to obtain the neighborhood
pixel values, and then nine Parallel Controlled-NOT modules are exploited to

Fig. 10 Workflow of the improved quantum image median filtering
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encode these pixel values into the qubits |0〉⊗q. To simplify the design of the
complete quantum circuits of this work, the function of this step is defined as a
module, which we call the Neighborhood Preparation module. The resulting image
|K〉 is represented by equation (11), and the corresponding quantum circuit design is
presented in Fig. 11.

jK〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCY−1;X 〉⊗jCY−1;Xþ1〉⊗jCY ;Xþ1〉⊗jCYþ1;Xþ1〉⊗jCYþ1;X 〉

⊗jCYþ1;Xþ1〉⊗jCY ;X−1〉⊗jCY−1;X−1〉⊗jCY ;X 〉⊗jCY ;X 〉jY 〉jX 〉
: ð11Þ

In equation (11), the nine auxiliary qubits of |CY− 1,X〉, |CY− 1,X+ 1〉, |CY,X+ 1〉, |CY+ 1,X+ 1〉, |CY+ 1,X〉,
|CY+ 1, X− 1〉, |CY, X− 1〉, |CY − 1, X− 1〉, |CY, X〉, store the nine neighborhood pixels of |CY, X〉.

Step 4. In this step we calculate the maximum, median, and minimum of the neighborhood
pixels using the Maximum-Median-Minimum module. The maximum and minimum
are the inputs for noise detection in Step 5. The median is the input for median
filtering in Step 6.

Step 5. This step is devoted to noise detection, as is depicted as a Noise Detec-
tion module. As discussed in Section 2.3, filtering is performed only on
the detected noise points rather than on all pixel points; this allows us to
avoid the blurring issue caused by the standard median filtering. In the
proposed approach, if the pixel value is same to the maximum or mini-
mum of the neighborhood pixels, this pixel will be determined as a noise
point. Its quantum circuit is shown in Fig. 11, in which some garbage
output qubits are ignored for circuit simplicity. As denoted in Fig. 12, the
output qubit |e20〉 is essential to this module, which encodes the result of
noise detection. If e20=1, then the current pixel is a noise point; otherwise
it is not a noise point.

Step 6. According to Step 5, if e20=1, the current pixel value is the maximum or
minimum of its neighborhood pixels, that is to say, it is a noise point and it
will be replaced by the median of its neighborhood pixels through a Swap
module.

Fig. 11 Quantum circuit for the preparation of the ancillary qubits
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Step 7. The last step of image processing is usually image retrieval. As is well known, the
quantum measurement is the only way to recover the classical image from the
quantum version, and it is still difficult to convert the quantum image to the classical
image by one measurement. However, image filtering is usually used as a pre-
processing stage for other image processing algorithms, such as those employed in
image feature extraction and segmentation. That is to say, image retrieval is not
necessary after filtering. The result of filtering can be used as input to the next
quantum image processing algorithms. To conclude, the quantum measurement can
be regarded as an unnecessary step. If it is necessary to perform image retrieval, we
kindly refer readers to reference [10], which presents a detailed retrieval approach.

4.3 Complete Quantum Circuit of the Proposed Scheme

According to the principle of the proposed filtering method and the algorithm description in
Section 4.2, the complete quantum circuit is shown in Fig. 13. The circuit is composed of one
Neighborhood Preparation module, one Maximum-Median-Minimum module, one Noise
Detection module, and one Swap module.

The output of ĈYX
�� �

encodes the pixel values in the image after the filtering process, and
the filtered image can be represented as follows:

jL〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jĈYX 〉jYX 〉: ð12Þ

Fig. 12 Quantum circuit for the Noise Detection module
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Fig. 13 Complete circuit for the improved quantum image median filtering
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5 Circuit Complexity and Simulation Experiments Analysis

In this section, we will first discuss the circuit complexity of the proposed method. Then, we
analyze the results of simulation experiments and compare them those of other image filtering
algorithms.

5.1 Circuit Complexity

In quantum image processing, the network complexity lies mainly on the number of elemen-
tary gates used [41], such as the NOT gate, Hadamard gate, Controlled-NOT gate, and other
basic unitary operators. Here, the complexity analysis will be discussed by module first, and
the complexity of the entire quantum circuit is calculated afterward. It needs to be noted that
the complexity of quantum image preparation is not considered.

(1) Comparator module. According to the analysis in [41], the computational complexity of
this module is no more than O(q2). For the detailed calculation, readers can refer to [41].

(2) Cycle Shift module. For an image with a size of 2n × 2n, the Cycle Shift transformation
will cost a time of O(n2) [15].

(3) Swap module. As is well known, a swap gate can be broken down into three Controlled-
NOT gates. Hence, the quantum Swap module requires 3q Controlled-NOT gates and
will cost a time of O(3q).

(4) Quantum Parallel Controlled-NOT module. As seen in Fig. 7, this module consists of q
Controlled-NOT gates. Hence, the complexity of this module is O(q).

(5) Sort module. As shown in Fig. 8, this module is composed of three Comparator modules
and three Swap modules. Hence, the complexity of the module is O(3q2 + 9q).

(6) Preparation Neighborhood module. As shown in Fig. 11, ten Cycle Shift modules and
nine Parallel Controlled-NOT modules are employed to form the Preparation Neighbor-
hood module. Hence, the complexity of this module is O(10n2 + 9q).

(7) Maximum-Median-Minimum module. As seen in Fig. 9, this module consists of seven
Sort modules. According the analysis of equation (5), this module will cost a time of
O(21q2 + 63q).

(8) NoiseDetectionmodule. As presented in Fig. 12, thismodule ismade up of twoComparator
modules and three basic logical gates. Hence, this module’s complexity is O(6q).

Finally, as shown in Fig. 13, the entire quantum circuit consists of four modules: Neighbor-
hood Preparation module, Maximum-Median-Minimum module, Noise Detection module,
and Swap module. According to equations (1) to (8), it is easy to find that the complexity of
the whole quantum circuit is no more than O(10n2 + 9q + 21q2 + 63q + 9q + 3q) ≈O(10n2 +
21q2). At this point, the investigated scheme is superior to that proposed in Ref. [37].

5.2 Simulation Experiments and Analysis

Since a practical and useful quantum computer is not in our grasp right now, the simulation
experiments are performed on a classical computer with an Intel (R) Core (TM) i5-7200U
CPU@2.70GHz 8.00GB RAM, 64-bit operating system, and MATLAB 2016b. To simulate
the Hilbert space, quantum states are denoted by vectors, and unitary transforms are denoted
by unitary matrices. A detailed analysis of the experimental results is presented below.

2128 International Journal of Theoretical Physics (2019) 58:2115–2133



The three gray images named “Cameraman,” “Lena,” and “Woman_darkhair” are used in
the experiment and the size of each image is 512 × 512. The filtering effects for salt and pepper
noise are given in Fig. 14.

As illustrated in Fig. 14, there are few differences between the classical environment and
quantum environment for the proposed method. However, the filtering effect of the proposed
method is better than that of [37]. To illustrate the visual effectiveness of the filtered image, the
peak signal-to-noise ratio (PSNR) is used:

PSNR ¼ 10log10
2552

1

22n
∑
2n

i¼0
∑
2n

j¼0
Iori i; jð Þ−INF i; jð Þ½ �2

0
BBB@

1
CCCA; ð13Þ

where Iori and INF denote the original image and the noise or filtered image, respectively. PSNR
values of the noise images and filtered image are shown Table 1.

From Table 1, we can see that the proposed filtering approach is more effective than
standard median filtering used in [37]. Additionally, compared to the classical counterpart, the
PSNR obtained by the proposed method is larger modestly. However, according to the network
complexity analysis presented in Section 5.1, the computational complexity of the proposed
filtering approach is the second-order polynomial function of image size n, which can achieve
an exponential speed-up than the classical counterpart with a time complexity of O(22n).

(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Fig. 14 De-noising effects of filtering on salt and pepper noise with a density of 0.10. (a–c) Original images, (d–
f) images after superimposing the salt and pepper noise, (g–i) filtering results for (d–f) using the method proposed
in [37], (j–l) filtering results for (d–f) using the proposed scheme, and (m–o) respective filtering results for (d–f)
on the classical counterpart
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Figure 15 shows histograms of the three original images and the corresponding filtered
images using the proposed scheme. It is clear that the proposed filtering method does not cause
much damage to the quality of the original image.

According to the description of the median filtering in Section 2.2, the main function of the
median filtering is to replace those pixels that are of significant difference from the surround-
ing pixels with values closest to those of the surrounding pixels. Therefore, the median filtering
is efficient for removing isolated noise, such as salt and pepper noise. For other noises, such as
Gaussian noise and Speckle noise, the result of filtering is that some noises fail to be removed,
as shown in Fig. 16.

Table 1 PSNR values of the noise image and filtered images (dB)

Test images Noise image Reference
[37]

Proposed method Classical counterpart

Cameraman 15.0900 34.3407 38.6905 37.4579
Lena 15.4662 33.6405 37.6166 36.5337
Woman_darkhair 14.9723 38.3772 42.0368 39.2694

Fig. 15 Histograms of the images: histograms of the original images are depicted in the second column; and
histograms of the filtered images are depicted in the third column
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As illustrated in Fig. 16, for Gaussian noise and Speckle noise, neither the
standard median filtering [37] nor the proposed scheme can remove noises
completely. Therefore, the median filtering is not appropriate to remove these two
kinds of noise.

6 Conclusions

Image filtering has been widely applied in image processing. It is used to eliminate
noises to improve the quality of images, and is considered as a significant pre-
processing step before other image processing algorithms are used, such as those
utilized for image feature extraction and segmentation. This paper presents an im-
proved quantum image median filtering in the spatial domain, implemented mainly to
remove isolated noise such as salt and pepper noise. As is well known, the median
filtering can effectively filter these impulse noises, but if all pixels in the image are
processed using the median filtering, the original image can be damaged. Hence, this
scheme adopts extremum detection to distinguish noises and true signals as much as
possible before using the filtering operation. Moreover, we design a more efficient
quantum circuit for obtaining the median of the neighborhood pixels; this circuit uses
less quantum elementary gates than other existing methods.

Acknowledgments This work is supported by National Key R&D Plan under Grant No. 2018YFC1200200;
the National Natural Science Foundation of China under Grant No.61463016 and No.61763014; Science and
technology innovation action plan of Shanghai in 2017 under Grant No.17510740300.

(a) (d) (g) (j) (m) (p)

(b) (e) (h) (k) (n) (q)

(c) (f) (i) (l) (o) (r)

Fig. 16 De-noising effects of filtering on Gaussian noise and Speckle noise. a–c images after superimposing the
Gaussian noise with mean 0 and variance of 0.05, (d–f) images after superimposing the Speckle noise with mean
0 and variance of 0.05, (g–i) filtering results for (a–c) using the standard median filtering [37], (j–l) filtering
results for (a–c) using the proposed scheme, (m–o) filtering results for (d–f) using the standard median filtering
[37], and (p–r) filtering results for (d–f) using the proposed scheme
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