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Abstract
The entanglement-assisted quantum error correcting codes (EAQECCs) are a simple and
important class of quantum codes. The entanglement-assisted formalism can transform arbi-
trary classical linear codes into EAQECCs by using pre-shared entanglement between the
sender and the receiver. In this paper, by decomposing the defining set of negacyclic BCH

codes, we construct a class of new EAQECCs with length n = q4m−1
q2−1

.

Keywords Negacyclic codes · BCH codes · EAQECCs

1 Introduction

Quantum error-correcting codes (QECCs) play an important role in quantum information
and computation. As we all know, constructing good QECCs is a crucial subject of research
[1–8] all the time. Recently, such theory has been extended to EAQECCs. Customarily,
an entanglement-assisted quantum error correcting code (EAQECC) can be denoted as
[[n, k, d; c]]q , which encodes k information qubits into n channel qubits with the help of c

pairs of maximally entangled states and corrects up to � d−1
2 � errors, where d is the mini-

mum distance of the code. If c = 0, then it is called a q-ary standard [[n, k, d]] quantum
code. The performance of an EAQECC is measured by its rate k

n
and net rate k−c

n
.

Brun et al. [9] proposed an entanglement-assisted stabilized formalism, which overcame
the barrier of the dual-containing condition in constructing standard quantum codes from
classical codes. They proved that if shared entanglement is available between the sender
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and the receiver in advance, non-dual-containing classical quaternary codes can be used
to construct EAQECCs. Since then, more and more scholars begin to study EAQECCs
[10–14].

Hsieh et al. [15] constructed some EAQECCs with good parameters from quasicyclic
low-density parity-check codes. Fujiwara et al. [16] used low-density parity-check codes
to construct some good parameters’ EAQECCs with different lengths soon afterwards. In
Refs. [17] and [18], Li et al. proposed the concept about decomposing the defining set
of BCH cyclic codes, transformed the problem of calculating the number of share pairs
into determining a special subset of the defining set of a BCH code, and constructed some
EAQECCs with good parameters. Afterwards, Lü and Li made a further study on construct-
ing of EAQECCs by using primitive quaternary BCH codes with length n = 4m − 1 in Ref.
[19]. Recently, Chen et al. [20] generalized their method to apply in negacyclic codes, and
obtained four classes of optimal EAQECCs. Lü et al. [21] constructed six classes of q-ary
entanglement-assisted quantum MDS codes based on classical negacyclic MDS codes.

Most of them committed themselves to the construction of entanglement-assisted quan-
tumMDS codes, while the larger length case has received less attention. This reality inspires
us to construct EAQECCs with the larger length. In this paper, we obtain a class of new

EAQECCs by negacyclic BCH codes with length n = q4m−1
q2−1

, where q is odd and m ≥ 2.
Speaking specifically, we construct a class of EAQECCs with parameters as follows:

(1) (i) If δ ≤ q2m+3
2 ,

⎧
⎪⎪⎨

⎪⎪⎩

[[n, n − 4m

⌈

(δ − 3

2
)(1 − q−2)

⌉

+ 4mε − mq2 + 7m, ≥ δ; 4m]]q, if ε = 2or3,

[[n, n − 4m

⌈

(δ − 3

2
)(1 − q−2)

⌉

+ mq2 + m,≥ δ; 4m]]q , if ε = 4.

(ii) If q2m+5
2 ≤ δ ≤ q2m,

[[n, n − 4m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ mq2 + m, ≥ δ; 4m]]q ,

where q = 3 and m ≥ 2.
(2)

⎧
⎪⎨

⎪⎩

[[n, n − 4m�(δ − 3

2
)(1 − q−2)� + 4m, ≥ δ; 4m]]q , if ε < 6,

[[n, n − 4m�(δ − 3

2
)(1 − q−2)� + 4εm − mq2 + 7m, ≥ δ; 4m]]q, if 6 ≤ ε ≤ 11,

where q = 5 and m ≥ 2.
(3) [[n, n − 4m�(δ − 3

2 )(1 − q−2)� + 4m, ≥ δ; 4m]]q , where q ≥ 7 is a power of an odd
prime p and m ≥ 2.

This paper is organized as follows. In Section 2, some basic background and results about
negacyclic codes and BCH codes are reviewed. In Section 3, we briefly review some basic
definitions and results of EAQECCs. In Section 4, we construct a class of EAQECCs with
new parameters. In Section 5, we give an example to illustrate the significance of results in
this paper. Section 6 concludes the paper.
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2 Preliminaries

Let q be a power of an odd prime p and Fq2 be a finite field with q2 elements. For
any element a ∈ Fq2 , we denote the conjugate aq of a by a. Given two vectors a =
(a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) ∈ F

n
q2
, their Hermitian inner product is

defined as

〈a,b〉 = a0b0 + a1b1 + · · · + an−1bn−1 ∈ Fq2 .

The vectors a and b are called orthogonal with respect to the Hermitian inner product if
〈a, b〉 = 0. A q2-ary linear code C of length n is a nonempty subspace of the vector space
F

n
q2
. For a q2-ary linear code C, the Hermitian dual code of C is defined as

C⊥h = {a ∈ F
n
q2

|〈a, b〉 = 0 for all b ∈ C}.

A q2-ary linear code C of length n is called Hermitian self-orthogonal if C ⊆ C⊥h , and it
is called Hermitian self-dual if C = C⊥h . If a q2-ary linear code C of length n satisfies the
property that

(−cn−1, c0, . . . , cn−2) ∈ C, forall(c0, c1, . . . , cn−1) ∈ C,

then C is said to be a negacyclic code of length n over Fq2 . Customarily, a codeword c =
(c0, c1, . . . , cn−1) in C is identified with its polynomial representation c(x) = c0 + c1x +
· · · + cn−1x

n−1. It is well known that a q2-ary negacyclic code of length n is precisely an
ideal of the quotient ring Fq2 [x]/〈xn + 1〉 and C can be generated by a monic divisor g(x)

of xn + 1. The polynomial g(x) is called the generator polynomial of the code C and the
dimension of C is n − k, where k = deg(g(x)).

In the following, we assume q is a power of an odd prime p with gcd(n, p) = 1, where
n is a positive integer. Let β be a primitive 2n-th root of unity in some extension field of
Fq2 and η = β2. Then η is a primitive n-th root of unity. Hence,

xn + 1 =
n−1∏

j=0

(x − βηj ) =
n−1∏

j=0

(x − β1+2j ).

Let � = {1 + 2j |0 ≤ j ≤ n − 1}. For each i ∈ �, let Ci be the q2-cyclotomic coset
modulo 2n containing i,

Ci = {i, iq2, iq4, . . . , iq2(mi−1)},
where mi is the smallest positive integer such that iq2mi ≡ i mod 2n. Each Ci corresponds
to an irreducible divisor of xn + 1 over Fq2 . Let C be a negacyclic code of length n over Fq2

with generator polynomial g(x). Then the set Z = {i ∈ �|g(δi) = 0} is called the defining
set of C. Obviously, the defining set of C must be a union of some q2-cyclotomic cosets
modulo 2n and dim(C) = n − |Z|.

For a negacyclic code of length n over Fq2 , it is easy to verify that its Hermitian dual
code is still a negacyclic code. Therefore, the Hermitian dual code C⊥h of C is still an ideal
of Fq2 [x]/〈xn + 1〉. Hence, if Z is the defining set of C, then its Hermitian dual code C⊥h

has defining set Z⊥h = {z ∈ �| − qzmod2n /∈ Z}. Note that Z−q = {−qzmod2n|z ∈ Z}.
Then C contains its Hermitian dual code if and only if Z ∩ Z−q = ∅ from Lemma 2.2 in
Ref. [22].
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Let q be a power of an odd prime p with gcd(n, p) = 1 and β be a primitive 2n-th root of
unity. A negacyclic BCH code of length n over Fq2 with designed distance δ is a negacyclic
code with generator polynomial

g(x) =
∏

j∈Z

(x − βj ), where Z = ∪b+δ−2
j=b C1+2j and b is some integer .

Let C(n,q2,b,δ) denote the negacyclic BCH codes of length nwith generator polynomial g(x).
If b = 0, then we abbreviate C(n,q2,b,δ) as C(n,q2,δ). Similarly to BCH codes, negacyclic
BCH codes have the following property.

Theorem 1 [24] (The BCH bound for negacyclic codes) Assume that gcd(n, q) = 1. Let
C be a negacyclic code of length n over Fq2 , and let its generator polynomial g(x) have

elements {β1+2j |0 ≤ j ≤ d − 2} as the roots, where β is a primitive 2n-th root of unity.
Then the minimum distance of C is at least d.

3 Review of EAQECCs

In this section, we give some basic definitions and results of EAQECCs. For more details
about EAQECCs theory, please refer to Refs. [9–21] therein.

Suppose that H is an (n − k) × n parity check matrix of C over Fq2 . Then C⊥h has an
n×(n−k) generator matrix H †, where H † is the conjugate transpose matrix of H over Fq2 .

Similarly to the CSS construction of stabilizer quantum codes, there is the following
construction method for EAQECCs in Refs. [9] and [10].

Theorem 2 [9, 10] If C = [n, k, d]q2 is a classical code over Fq2 and H is its parity check

matrix, then C⊥h stabilizes an entanglement-assisted code with parameters [[n, 2k − n +
c, d; c]]q , where c = rank(HH †) is the number of maximally entangled states required
and H † is the conjugate matrix of H over Fq2 .

4 Construction of Entanglement-Assisted Quantum BCH Codes

In Ref. [20], the authors gave the following definition and lemma which can determine the
number of entangled states by decomposing the defining set of negacyclic codes.

Definition 1 [20] Let C be a negacyclic code of length n with defining set Z. Assume that
Z1 = Z ∩ (−qZ) and Z2 = Z \ Z1, where −qZ = {n − qx|x ∈ Z}. Then Z = Z1 ∪ Z2 is
called a decomposition of the defining set of C.

Lemma 1 [20] Let C be a negacyclic code of length n over Fq2 , where gcd(n, q) = 1.
Suppose that Z is the defining set of the negacyclic code C and Z = Z1 ∪ Z2 is a decompo-
sition of Z. Then the number of entangled states required is c = |Z1|. In order to construct
the entanglement-assisted quantum BCH codes, we firstly give two lemmas below.

Lemma 2 [23] C⊥h

(n,q2,δ)
⊆ C(n,q2,δ) if and only if 2 ≤ δ ≤ δmax , where δmax = q2m+1−q

q2−1
.
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Lemma 3 [23] Let n = q4m−1
q2−1

and m ≥ 2. Let i be an integer such that 0 ≤ i ≤ q2m and

i �≡ q2−1
2 mod q2. If q2 ≡ 1 mod 4, then

|C1+2i | =
{

m, i = q2m−1
4 ,

3q2m+1
4 ,

2m, otherwise.

In addition, 1 + 2i is not a coset leader in the following cases:

i ∈
{

b · q2m − 1

q2 − 1
: b ∈

[
q2 + 3

4
,
q2 − 3

2

]} ⋃{
q2m + 1

2
+ b · q2m − 1

q2 − 1
: b ∈

[
q2 + 3

4
,
q2 − 1

2

]}

.

4.1 The Number of Entangled States

Theorem 3 Let n = q4m−1
q2−1

, where q is a power of an odd prime p and m ≥ 2. Then we

have |C
1+2( q2m+1−q

q2−1
−1)

| = |C 2q2m+1−q2−2q+1
q2−1

| = 2m and |C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

| = 2m.

Proof On the one hand, since

(q2m − 1)(q2 − 1) − 4(q2m+1 − q2 − q + 1) = q2m+2 − 4q2m+1 − q2m + 3q2 + 4q − 3,

if q = 3, then (q2m−1)(q2−1) < 4(q2m+1−q2−q+1); if q ≥ 5, then (q2m−1)(q2−1) >

4(q2m+1 − q2 − q + 1). Therefore, q2m+1−q

q2−1
− 1 �= q2m−1

4 .
On the other hand,

3q2m + 1

4
− (

q2m+1 − q

q2 − 1
− 1) = 3q2m+2 − 4q2m+1 − 3q2m + 5q2 + 4q − 5

4(q2 − 1)
,

if q = 3, then 3q2m+1
4 <

q2m+1−q

q2−1
− 1; if q ≥ 5, then 3q2m+1

4 >
q2m+1−q

q2−1
− 1. Therefore,

q2m+1−q

q2−1
− 1 �= 3q2m+1

4 . From Lemma 3, we have |C
1+2( q2m+1−q

q2−1
−1)

| = 2m immediately.

From 2q4m−2q2m+2+q3+2q2−q−2
q2−1

= 2n − q(1+ 2( q2m+1−q

q2−1
− 1)) and |C

1+2( q2m+1−q

q2−1
−1)

| =
2m, we have |C 2q4m−2q2m+2+q3+2q2−q−2

q2−1

| = 2m immediately.

4.2 The Dimension of EAQECCs with δ = q2m+1−q
q2−1 + t

Lemma 4 [23] Let n = q4m−1
q2−1

, where q is odd and m ≥ 2.

(i) If δ ≤ q2m+3
2 , then we define ε =

⌊
(δ−2)(q2−1)

q2m−1

⌋
and C(n,q2,δ) has dimension

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

, if ε <
⌊

q2−1
4

⌋
,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(2ε − q2−3
2 ), if

⌊
q2−1
4

⌋
≤ ε ≤ q2−3

2 ,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 , if ε >

q2−3
2 .
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(ii) If q2m+5
2 ≤ δ ≤ q2m, then we define ε =

⌊
(δ− q2m+5

2 )(q2−1)
q2m−1

⌋

and C(n,q2,δ) has

dimension

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 , if ε <

⌊
q2−1
4

⌋
,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ 2mε, if
⌊

q2−1
4

⌋
≤ ε ≤ q2−3

2 ,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(q2 − 3), if ε >
q2−3
2 .

In order to calculate the dimension of EAQECCs with n = q4m−1
q2−1

and δ = q2m+1−q

q2−1
+ t ,

where q is a power of an odd prime p, m ≥ 2 and 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) , we need to

determine the range of δ for distinct q from Lemma 4. So we give the following theorem
firstly.

Theorem 4 Let n = q4m−1
q2−1

and δ = q2m+1−q

q2−1
+ t , where q is a power of an odd prime p,

m ≥ 2 and 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

(i) If q = 3, then δmin <
q2m+3

2 and q2m+5
2 < δmax < q2m.

(ii) If q ≥ 5, then δmax <
q2m+3

2 .

Proof Since δ = q2m+1−q

q2−1
+ t and 1 ≤ t ≤ (q2m−1+1)(q+3)

2(q+1) , we have

q2m+1 − q

q2 − 1
+ 1 ≤ δ ≤ 3q2m+1 + 2q2m − 3q2m−1 + q2 − 3

2q2 − 2
.

From

q2m + 3

2
− δmax = q2m + 3

2
− 3q2m+1 + 2q2m − 3q2m−1 + q2 − 3

2q2 − 2
= q2m−1(q3 − 3q2 − 3q + 3) + 2q2

2q2 − 2
,

if q = 3, then q2m+3
2 − δmax < 0; if q ≥ 5, then q2m+3

2 − δmax > 0.
When q = 3, we have

q2m − δmax = q2m − 3q2m+1 + 2q2m − 3q2m−1 + q2 − 3

2q2 − 2
= q2m−1(2q3 − 3q2 − 4q + 3) − q2 + 3

2q2 − 2
> 0,

and

q2m + 3

2
− δmin = q2m + 3

2
− (

q2m+1 − q

q2 − 1
+ 1) = q2m+2 − 2q2m+1 − q2m + q2 + 2q − 1

2(q2 − 1)
> 0,

i.e., δmin <
q2m+3

2 and q2m+5
2 < δmax < q2m.

From the discussion above, we can determine the dimension of the negacyclic BCH

codes with length n = q4m−1
q2−1

, where q is a power of an odd prime p and m ≥ 2.
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Theorem 5 Let n = q4m−1
q2−1

and δ = q2m+1−q

q2−1
+ t , where q = 3, m ≥ 2 and 1 ≤ t ≤

(q2m−1+1)(q+3)
2(q+1) .

(i) If δ ≤ q2m+3
2 , then ε =

⌊
(δ−2)(q2−1)

q2m−1

⌋
and C(n,q2,δ) has dimension

k =
⎧
⎨

⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(2ε − q2−3
2 ), if ε = 2 or 3,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 , if ε = 4.

(ii) If q2m+5
2 ≤ δ ≤ q2m, then ε =

⌊
(δ− q2m+5

2 )(q2−1)
q2m−1

⌋

and C(n,q2,δ) has dimension

k = n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 .

Proof From Lemma 4 and Theorem 4, we have the following results:

(i) If q2m+1−q

q2−1
+ 1 ≤ δ ≤ q2m+3

2 , then ε =
⌊

(δ−2)(q2−1)
q2m−1

⌋
. Therefore, we have

q2m+1 − q2 − q + 1

q2m − 1
≤ ε ≤ 4.

Since q2−1
4 − εmin = q2m+2−4q2m+1−q2m+3q2+4q−3

4(q2m−1)
< 0, then εmin >

⌊
q2−1
4

⌋
. From

q2−3
2 −εmin = q2−3

2 − q2m+1−q2−q+1
q2m−1

= q2+2q+1
2(q2m−1)

> 0, we have εmin <
q2−3
2 . Besides,

εmax = 4 >
q2−3
2 = 3. Therefore, C(n,q2,δ) has dimension as below:

k =
⎧
⎨

⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(2ε − q2−3
2 ), if ε = 2 or 3,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 , if ε = 4.

(ii) If q2m+5
2 ≤ δ ≤ q2m+2+q2m+6

2(q2−1)
, then ε =

⌊
(δ− q2m+5

2 )(q2−1)
q2m−1

⌋

. Therefore, we have

0 ≤ ε ≤ 2q2m − 5q2 + 11

2(q2m − 1)
.

From q2−1
4 − εmax = q2−1

4 − 2q2m−5q2+11
2(q2m−1)

= q2m+1+q2m+q4−21
4(q2m−1)

> 0, we have εmax <

q2−1
4 .

Therefore, C(n,q2,δ) has dimension k = n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m
q2−3
2 .

Theorem 6 Let n = q4m−1
q2−1

, ε =
⌊

(δ−2)(q2−1)
q2m−1

⌋
and δ = q2m+1−q

q2−1
+ t , where q ≥ 5 is odd,

m ≥ 2 and 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

(i) If q = 5, then C(n,q2,δ) has dimension

k =
⎧
⎨

⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

, if ε < 6,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(2ε − q2−3
2 ), if 6 ≤ ε ≤ 11.
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(ii) If q ≥ 7, then C(n,q2,δ) has dimension k = n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉
.

Proof From Lemma 4 and Theorem 4, we can define δ = q2m+1−q

q2−1
+ t and 1 ≤ t ≤

(q2m−1+1)(q+3)
2(q+1) . Then we have

q2m+1 − q

q2 − 1
+ 1 ≤ δ ≤ 3q2m+1 + 2q2m − 3q2m−1 + q2 − 3

2q2 − 2
.

From ε =
⌊

(δ−2)(q2−1)
q2m−1

⌋
, we have

q2m+1 − q2 − q + 1

q2m − 1
≤ ε ≤ 3q2m+1 + 2q2m − 3q2m−1 − 3q2 + 1

2(q2m − 1)
.

On the one hand, q2−1
4 − εmin = q2m+2−4q2m+1−q2m+3q2+4q−3

4(q2m−1)
> 0, then εmin <

⌊
q2−1
4

⌋
;

on the other hand,

εmax − q2 − 1

4
= −q2m−1(q3 − 6q2 − 5q + 6) − 5q2 + 1

4(q2m − 1)
.

If q = 5, then εmax >
q2−1
4 ; if q ≥ 7, then εmax <

q2−1
4 . Therefore, when q ≥ 7, we have

ε <
q2−1
4 , then C(n,q2,δ) has dimension k = n − 2m

⌈
(δ − 3

2 )(1 − q−2)
⌉
.

As for q = 5, from q2−3
2 − εmax = q2m−1(q3−3q2−5q+3)+2q2+2

2(q2m−1)
> 0, we have εmax <

q2−3
2 . Then C(n,q2,δ) has dimension:

k =
⎧
⎨

⎩

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

, if ε < 6,

n − 2m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ m(2ε − q2−3
2 ), if 6 ≤ ε ≤ 11.

4.3 The Construction of EAQECCs

Based on the discussions above, we give a theorem below.

Theorem 7 Let n = q4m−1
q2−1

, q ≥ 7 is a power of an odd prime p, m ≥ 2 and δ =
q2m+1−q

q2−1
+ t , where q2 ≡ 1 mod 4 and 1 ≤ t ≤ (q2m−1+1)(q+3)

2(q+1) . If C is a q2-ary negacyclic

code of length n with defining set Z = ⋃
q2m+1−q

q2−1
−2+t

i=0 C1+2i , then there exist EAQECCs
with parameters [[n, n − 4m�(δ − 3

2 )(1 − q−2)� + 4m, ≥ δ; 4m]]q .

Proof From Lemma 2, we can assume that the defining set of the negacyclic code C is

Z = ⋃δ−2
i=0 C1+2i , where δ = q2m+1−q

q2−1
+ t , q ≥ 7, m ≥ 2 and 1 ≤ t ≤ (q2m−1+1)(q+3)

2(q+1) .
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Then C is a negacyclic code with parameters [n, n − 2m�(δ − 3
2 )(1 − q−2)�,≥ δ]q2 from

Theorems 1 and 6. Therefore, we have the following result:

Z1 = Z ∩ (−qZ)

= ((∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∪ (∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ))

∩(−q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∪ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ))

= ((∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ))

∪((∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ))

∪((∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ))

∪((∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ))

= C 2q2m+1−q2−2q+1
q2−1

∪ C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

. (1)

In order to get the result of (1), we have to show that

(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = C 2q2m+1−q2−2q+1
q2−1

∪ C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

,

(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅,

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = ∅,

and

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅.

Firstly, we demonstrate that

(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = C 2q2m+1−q2−2q+1
q2−1

∪ C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

.

From Lemma 2, C⊥h

(n,q2,δmax)
⊆ C(n,q2,δmax) means that

(∪
q2m+1−q

q2−1
−2

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2

i=0 C1+2i ) = ∅.
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And from C⊥h

(n,q2,δmax+1)
� C(n,q2,δmax+1) in the proof of Lemma 2 in Ref. [23], we can get

C1+2(δmax−1) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = C1+2(δmax−1) immediately, where C1+2(δmax−1) =
C 2q2m+1−q2−2q+1

q2−1

, i.e.,

C 2q2m+1−q2−2q+1
q2−1

∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = C 2q2m+1−q2−2q+1
q2−1

.

From the equation above, we can get

−qC 2q2m+1−q2−2q+1
q2−1

∩ (∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = −qC 2q2m+1−q2−2q+1
q2−1

= C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

.

Thus, the desired result (∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) =
C 2q2m+1−q2−2q+1

q2−1

∪ C 2q4m−2q2m+2+q3+2q2−q−2
q2−1

follows.

Secondly, we testify

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

If (∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) �= ∅, for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) , i.e.,

(∪t
i=2C1+2(i+ q2m+1−q

q2−1
−2)

) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) �= ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) , then there exist two integers l and j , where 2 ≤ l ≤

(q2m−1+1)(q+3)
2(q+1) , 0 ≤ j ≤ q2m+1−q

q2−1
− 1, such that

1 + 2(
q2m+1 − q

q2 − 1
− 2 + l) ≡ −q(1 + 2j)q2k mod 2n,

for some k ∈ {0, 1}. We can seek contradictions as follows.

(i) When k = 0, we have 1 + 2( q2m+1−q

q2−1
− 2 + l) ≡ −q(1 + 2j) mod 2n, which is

equivalent to

2q2m+1 − 2q

q2 − 1
+ q − 3 + 2l + 2jq ≡ 0 mod 2n, (2)

where n = q4m−1
q2−1

. From 2 ≤ l ≤ (q2m−1+1)(q+3)
2(q+1) , 0 ≤ j ≤

q2m+1−q

q2−1
− 1, then 2q2m+1−2q

q2−1
+ q + 1 ≤ 2q2m+1−2q

q2−1
+ q −

3 + 2l + 2jq ≤ 2q2m+2+3q2m+1+2q2m−3q2m−1−q3−4q2+q

q2−1
. Because of

2q2m+2+3q2m+1+2q2m−3q2m−1−q3−4q2+q

q2−1
< 2n, (2) is not established.
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(ii) When k = 1, we have 1 + 2( q2m+1−q

q2−1
− 2 + l) ≡ −q3(1 + 2j) mod 2n, which is

equivalent to

2q2m+1 − 2q

q2 − 1
+ q3 − 3 + 2l + 2jq3 ≡ 0 mod 2n, (3)

where n = q4m−1
q2−1

. From 2 ≤ l ≤ (q2m−1+1)(q+3)
2(q+1) , 0 ≤ j ≤

q2m+1−q

q2−1
− 1, we have: 2q2m+1−2q

q2−1
+ q3 + 1 ≤ 2q2m+1−2q

q2−1
+ q3 −

3 + 2l + 2jq3 ≤ 2q2m+4+3q2m+1+2q2m−3q2m−1−q5−2q4+q3−2q2

q2−1
. Because of

2q2m+4+3q2m+1+2q2m−3q2m−1−q5−2q4+q3−2q2

q2−1
< 2n, (3) is not established.

From the discussions above, we can see

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) = ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

Next, we show that

(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅.

Since

−q((∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−1

i=0 C1+2i )) = −q∅ = ∅,

it follows that

(∪
q2m+1−q

q2−1
−1

i=0 C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅.

Finally, we show that

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) . If (∪

q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) �= ∅, i.e.,

(∪t
i=2C1+2(i+ q2m+1−q

q2−1
−2)

) ∩ −q(∪t
i=2C1+2(i+ q2m+1−q

q2−1
−2)

) �= ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) , then there exist two integers l and j , where 2 ≤ l, j ≤

(q2m−1+1)(q+3)
2(q+1) , such that

1 + 2(l + q2m+1 − q

q2 − 1
− 2) ≡ −q[1 + 2(j + q2m+1 − q

q2 − 1
− 2)]q2k mod 2n,

for some k ∈ {0, 1}. We can seek contradictions as follows.
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(i) When k = 0, we have 1+2(l+ q2m+1−q

q2−1
−2) ≡ −q[1+2(j + q2m+1−q

q2−1
−2)] mod 2n,

which is equivalent to

2q2m+2 + 2q2m+1 − 2q2 − 2q

q2 − 1
− 3q − 3 + 2l + 2jq ≡ 0 mod 2n, (4)

where n = q4m−1
q2−1

. From 2 ≤ l, j ≤ (q2m−1+1)(q+3)
2(q+1) , we

have: 2q2m+2+2q2m+1+q3−q2−3q−1
q2−1

≤ 2q2m+2+2q2m+1−2q2−2q
q2−1

− 3q −
3 + 2l + 2jq ≤ 3q2m+2+5q2m+1−q2m−3q2m−1−2q3−2q2

q2−1
. Because of

3q2m+2+5q2m+1−q2m−3q2m−1−2q3−2q2

q2−1
< 2n, (4) is not established.

(ii) When k = 1, we have 1+2(l+ q2m+1−q

q2−1
−2) ≡ −q3[1+2(j + q2m+1−q

q2−1
−2)] mod 2n,

which is equivalent to

2l + 2jq3 ≡ 2q4m − 2q2m+4 − 2q2m+1 + 3q5 + 2q4 − 3q3 + 3q2 + 2q − 5

q2 − 1
mod 2n.

(5)

From 2 ≤ l, j ≤ (q2m−1+1)(q+3)
2(q+1) , we have

4 + 4q3 ≤ 2l + 2jq3 ≤ q2m+4 + 2q2m+3 − 3q2m+2 + q2m+1 + 2q2m − 3q2m−1 + q5 + 2q4 − 3q3 + q2 + 2q − 3

q2 − 1
.

Then we have the following results:

(a) when m = 2, since (4 + 4q3)(q2 − 1) = 4q5 − 4q3 + 4q2 − 4 > q5 + 2q4 −
3q3 + 3q2 + 2q − 5, (5) is not established;

(b) when m ≥ 3, we have

2q4m − 2q2m+4 − 2q2m+1+3q5 + 2q4 − 3q3+3q2+2q−5

q2 − 1
>(2l + 2jq3)max .

Therefore, (5) is not established.

From the discussions above, we can see

(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) ∩ −q(∪
q2m+1−q

q2−1
−2+t

i= q2m+1−q

q2−1

C1+2i ) = ∅,

for 2 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

From Lemma 1 and Theorem 3, we have c = 4m. From Theorem 2, there exist
entanglement assisted quantum codes with parameters

[[n, n − 4m�(δ − 3

2
)(1 − q−2)� + 4m, ≥ δ; 4m]]q ,

where 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) .

When q = 3 or 5, we can construct EAQECCs in the following two theorems. The proof
is similar to Theorem 7, so we omit it here.
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Theorem 8 Let q = 3, m ≥ 2, n = q4m−1
q2−1

and δ = q2m+1−q

q2−1
+ t , where q2 ≡ 1 mod 4

and 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) . If C is a q2-ary negacyclic code of length n with defining set

Z = ⋃
q2m+1−q

q2−1
−2+t

i=0 C1+2i , then there exsit EAQECCs with parameters

(i) If δ ≤ q2m+3
2 ,

⎧
⎨

⎩

[[n, n − 4m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ 4mε − mq2 + 7m,≥ δ; 4m]]q , if ε = 2 or 3,

[[n, n − 4m
⌈
(δ − 3

2 )(1 − q−2)
⌉

+ mq2 + m, ≥ δ; 4m]]q , if ε = 4.

(ii) If q2m+5
2 ≤ δ ≤ q2m, [[n, n − 4m

⌈
(δ − 3

2 )(1 − q−2)
⌉

+ mq2 + m, ≥ δ; 4m]]q .

Theorem 9 Let q = 5, m ≥ 2, n = q4m−1
q2−1

and δ = q2m+1−q

q2−1
+ t , where q2 ≡ 1 mod 4

and 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) . If C is a q2-ary negacyclic code of length n with defining set

Z = ⋃
q2m+1−q

q2−1
−2+t

i=0 C1+2i , then there exsit EAQECCs with parameters
{ [[n, n − 4m�(δ − 3

2 )(1 − q−2)� + 4m, ≥ δ; 4m]]q, if ε < 6,
[[n, n − 4m�(δ − 3

2 )(1 − q−2)� + 4εm − mq2 + 7m,≥ δ; 4m]]q , if 6 ≤ ε ≤ 11.

Table 1 new EAQECCs from
Theorem 8 q m δ [[n, k, d; c]]q

3 2 31 [[820, 608,≥ 31; 8]]3
3 2 32 [[820, 616,≥ 32; 8]]3
3 2 33 [[820, 616,≥ 33; 8]]3
3 2 34 [[820, 608,≥ 34; 8]]3
3 2 35 [[820, 600,≥ 35; 8]]3
3 2 36 [[820, 592,≥ 36; 8]]3
3 2 37 [[820, 584,≥ 37; 8]]3
3 2 38 [[820, 576,≥ 38; 8]]3
3 2 39 [[820, 568,≥ 39; 8]]3
3 2 40 [[820, 560,≥ 40; 8]]3
3 2 41 [[820, 552,≥ 41; 8]]3
3 2 42 [[820, 552,≥ 42; 8]]3
3 2 43 [[820, 544,≥ 43; 8]]3
3 2 44 [[820, 536,≥ 44; 8]]3
3 2 45 [[820, 528,≥ 45; 8]]3
3 2 46 [[820, 520,≥ 46; 8]]3
3 2 47 [[820, 512,≥ 47; 8]]3
3 2 48 [[820, 504,≥ 48; 8]]3
3 2 49 [[820, 496,≥ 49; 8]]3
3 2 50 [[820, 488,≥ 50; 8]]3
3 2 51 [[820, 488,≥ 51; 8]]3
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5 Example

Let q = 3 and m = 2. Then n = q4m−1
q2−1

= 820, 1 ≤ t ≤ (q2m−1+1)(q+3)
2(q+1) = 21 and

31 ≤ δ = q2m+1−q

q2−1
+ t ≤ 51. Then from Theorem 8, we can construct some EAQECCs with

new parameters in Table 1.

6 Conclusion

In this work, we have constructed a class of EAQECCs from negacyclic BCH codes over

the finite fields Fq2 of length n = q4m−1
q2−1

, where q ≥ 3 is some odd prime power and m ≥ 2.
The construction is through cyclotomic cosets and ideal theory. It would be interesting to
construct EAQECCs with different lengths from other types of linear codes.
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