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Abstract
Ellsberg thought experiments and empirical confirmation of Ellsberg preferences pose seri-
ous challenges to subjective expected utility theory (SEUT). We have recently elaborated
a quantum-theoretic framework for human decisions under uncertainty which satisfactorily
copes with the Ellsberg paradox and other puzzles of SEUT. We apply here the quantum-
theoretic framework to the Ellsberg two-urn example, showing that the paradox can be
explained by assuming a state change of the conceptual entity that is the object of the deci-
sion (decision-making, or DM, entity) and representing subjective probabilities by quantum
probabilities. We also model the empirical data we collected in a DM test on human par-
ticipants within the theoretic framework above. The obtained results are relevant, as they
provide a line to model real life, e.g., financial and medical, decisions that show the same
empirical patterns as the two-urn experiment.

Keywords Expected utility · Ellsberg paradox · Uncertainty · Quantum structures ·
Quantum probability

1 Introduction

Daniel Kahneman was awarded the Nobel Prize in Economic Science in 2002 for his
pioneering studies on the identification and estimation of the psychological factors that
influence human behaviour under uncertainty, which led to the birth of a new domain called
behavioural economics.

Cognitive psychologists have assumed for years, often implicitly, that complex cognitive
processes, like human judgement and decision-making (DM), have to be modelled by com-
bining set-theoretic structures and should obey to mathematical relations that resemble those
typically used in logic, formalized by Boole (Boolean logic), and probability, axiomatized
by Kolmogorov (Kolmogorovian probability) [1]. These structures are known in physics as
classical structures: they were originally used in classical physics, and later extended to
statistics, psychology, economics, finance and computer science. Classical structures are
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also implicitly assumed in the so-called Bayesian approach, according to which any source
of uncertainty can be formalized probabilistically, while people update knowledge accord-
ing to the Bayes law of Kolmogorovian probability. Finally, classical structures are the
building blocks of subjective expected utility theory (SEUT), providing both the descriptive
and the normative foundations of rational DM: in situations of uncertainty, people (should)
choose as if they maximized EU with respect to a unique probability measure, satisfying the
axioms of Kolmogorov and interpreted as their subjective probability [2, 3].

However, on the one side, empirical research in cognitive psychology has revealed
that classical structures are not generally able to model human judgements and decisions,
thus making problematical the interpretation of a wide range of cognitive phenomena
in terms of standard logic and probability theory. On the other side, Kahneman, Tver-
sky and other authors suggested that these empirical deviations from classicality are “true
errors” of human reasoning, whence the use of terms like “effect”, “fallacy”, “paradox”,
“contradiction”, etc., to refer to such phenomena [4, 5].1

An innovative aspect of the Kahneman-Tversky programme of judgement heuristics and
individual biases was the use of non-Kolmogorovian structures to represent probabilities.
In that regard, the research on the foundations of quantum theory has unveiled both the
conceptual and mathematical differences between classical and quantum structures, e.g.,
context-dependent situations crucially need a non-Kolmogorovian quantum-like model of
probability (see, e.g., [7–9]). This was the starting point of a successful research that applies
the mathematical formalism of quantum theory, detached from any physical interpreta-
tion, to model situations in cognition and economics that cannot be modelled by classical
structures (see, e.g., [6–10]).

Why are classical structures problematical in SEUT? In 1961, Daniel Ellsberg proposed a
series of DM experiments whose results do not agree with the predictions of SEUT, as far as
concrete decisions are mainly influenced by psychological factors, like ambiguity aversion,
rather than by the need of maximizing EU [11]. The consequence is that one cannot repre-
sent Ellsberg preferences by maximization of EU with respect to a unique Kolmogorovian
probability measure, which generates the famous Ellsberg paradox. Ellsberg preferences
have been empirically confirmed several times against the predictions of SEUT and its main
extensions, in simple DM tests, but also in more complex real life DM situations (see, e.g.,
[12]).

How does the research on quantum structures relate to the pitfalls of SEUT? The answer
comes from a 20-year research on the foundations of quantum physics, the origin of quan-
tum structures and the conceptual and mathematical differences between classical and
quantum theories. Indeed, we have followed the operational and realistic approach to quan-
tum physics elaborated by the Brussels research team, extending it to cognitive entities, that
is, concepts, combinations of concepts, propositions and more complex DM entities [13].
In this approach, the situation that is the object of the decision defines a conceptual entity
(the DM entity) in a given state. This state has a cognitive nature and captures concep-
tual and mathematical aspects of the uncertainty (risk, ambiguity) surrounding the decision
situation. When the decision-maker is asked to choose between different options, her/his
mental action is described as a cognitive context influencing the DM entity and changing its

1Empirical psychology usually distinguishes between probability judgement errors and DM errors. Con-
junctive and disjunctive fallacies in Linda-like stories, over- and under-extension effects in membership
judgements on conceptual combinations belong to the former category. The disjunction effect, the prisoner’s
dilemma and the paradoxes of SEUT studied here are instead belong to the latter category [6].
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state. The way in which the state of the DM entity changes due to this contextual interac-
tion provides information about the decision-maker’s attitude towards ambiguity (ambiguity
attraction, ambiguity seeking, ambiguity neutral).

The above realistic and operational description of the DM process as a “construc-
tive (creation) process in which a context-mediated transition occurs from potential to
actual” closely resembles a quantum measurement process in which the interaction with
the physical measurement context determines an intrinsically probabilistic state change of
the measured quantum entity, which suggests that a quantum mechanical representation is
appropriate in this case. In this regard, we have elaborated a quantum-theoretic framework
to represent human DM under uncertainty that enables modelling of the Ellsberg paradox
[14–16] and more general DM situations [14, 16] that are problematical from the point of
view of SEUT and its extensions, i.e. theMachina paradox [17]. Moreover, we have recently
proved that the quantum-theoretic framework enables successful representation of various
DM tests performed on the Ellsbeg and Machina paradox situations [18].

In the present paper, we focus on the quantum-theoretic modelling of the Ellsberg two-
urn experiment, inasmuch this experiment involves a choice between an option with a
known probability, or risky option, and a choice with an unknown probability, or ambigu-
ous option. Moreover, the design of this experiment is very similar to more general tests,
involving financial and medical decisions, in which a shift is observed from the risky
option to the ambiguous one, and viceversa, depending on the amount of uncertainty sur-
rounding the decision. The quantum-theoretic framework predicts the possibility of such
a shift, hence it is able to model more complex real life situations, as we demonstrate in
Section 5.

For the sake of completeness, let us summarize the content of this paper, as follows.
In Section 2, we give an overview of the main notions and results of SEUT, also pointing

out its main empirical pitfalls. In particular, we present a DM test of the Ellsberg two-urn
example we performed, which reveals a strong ambiguity aversion pattern. In Section 3, we
sketch the essential results of our quantum-theoretic framework. In particular, we stress that
the quantum-theoretic approach suggests the development of a state-dependent quantum-
based SEUT in which decision-makers maximize EU with respect to a quantum probability
measure. In Section 4, we apply the quantum-theoretic framework to the two-urn exam-
ple, reproducing Ellsberg preferences and faithfully representing the experimental data of
Section 2. Finally, in Section 5, we consider some DM tests on managerial and medical
decisions [19, 20], which can be formalized exactly as the two-urn example, and we demon-
strate that its results can be naturally modelled within the quantum model for the two-urn
experiment.

We conclude this section with some remarks which put the present approach into
perspective.

Firstly, the quantum-theoretic framework provides a way to model effects of context
when context has a cognitive-linguistic nature. Another relevant example to model context
effects of a linguistic-cognitive nature is offered by the ‘holistic quantum computational
semantics’ developed by Dalla Chiara et al., where the meaning of a sentence is not
attributed to the compositional meaning of each word but, rather, to the holistic rela-
tions between these words, which is a genuinely contextual process in a sense that closely
resembles the one specified here [21, 22].

Secondly, it is typical in non-physical applications of the quantum formalism, to use
the whole Hilbert space as modelling instrument. On the other side, it is well known that
quantum probability only provides an example of how probability can be extended in a
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non-Kolmogorovian direction (see, generalized probabilistic models [23]). Hence, one may
wonder whether more general non-Kolmogorovian non-Hilbertian models of probability
should be used to represent probabilistic data in cognitive and social sciences. At this stage
of research, we prefer using the conventional Hilbert space framework, as the latter pro-
vides a unitary conceptual and mathematical framework enabling investigation of a wide
range of phenomena where empirical deviations of Kolmogorovness are due to the simulta-
neous presence of different quantum effects, e.g., contextuality, emergence, entanglement,
Lüders-type state change, etc., thus the entire Hilbert space structure is needed. However,
non-Kolmogorovian non-Hilbertian models of probability have already been successfully
applied to sequential cognitive tests where Hilbert space models are problematical [13],
which suggests that generalized probabilistic models could well be the next step of the
quantum cognition research programme.

Thirdly, the quantum formalism is being increasingly extended from cognitive to com-
puter science. It is worth, in this respect, to mention the systematic and successful
use of quantum-theoretic models in information retrieval, natural language processing,
computational semantics and, more recently, pattern recognition [24].

2 Expected Utility Theory and its Descriptive Pitfalls

The first axiomatic formulation of expected utility theory can be traced back to the semi-
nal work of von Neumann and Morgenstern: in the presence of uncertainty, people choose
in such a way to maximize their expected utility with respect to a unique Kolmogorovian
probability measure [25]. However, this formulation of expected utility theory only deals
with the uncertainty that can be described by known probabilities (objective uncertainty,
or risk). On the other hand, situations frequently occur in which uncertainty cannot be
described by known probabilities (subjective uncertainty, or ambiguity) [26]. The Bayesian
approach mentioned in Section 1 simplifies the distinction between objective and subjec-
tive uncertainty introducing the notion of subjective probability: even when probabilities
are not known, people may still make their own beliefs, or priors, which may differ from
one person to another, and with respect to which they maximize expected utility. As a
matter of fact, Savage presented an axiomatic formulation of SEUT which extends the
one of von Neumann and Morgenstern and perfectly accords with the Bayesian approach
[2].

We introduce here the basic definitions and results of SEUT we need to obtain our results
in Sections 3 and 4. The reader who is interested to deepen these notions can refer to [2, 12,
27]. Let:

(i) S be the set of all (physical) states of nature, assumed discrete and finite, for the
sake of simplicity;

(ii) P(S ) be the power set of S ;
(iii) A ⊆ P(S ) be a σ -algebra, whose elements denote events;
(iv) p : A ⊆ P(S ) −→ [0, 1] be a Kolmogorovian probability measure over A ;
(v) X be the set of all consequences, whose elements are assumed to denote monetary

payoffs, for the sake of simplicity;
(vi) f : S −→ X be a function denoting an act;
(vii) F be the set of all acts;
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Table 1 The payoff matrix for
the Ellsberg two-urn example Urn I Urn II

1/2 1/2

Act Red Black Red Black

f1 $100 $0

f2 $100 $0

f3 $0 $100

f4 $0 $100

(viii) � be a weak preference relation, i.e. reflexive, symmetric and transitive over the
Cartesian productF ×F , where� and∼ are the strong preference and indifference
relations, respectively;2

(ix) u : X −→ � be an utility function, assumed strictly increasing and continuous, as
in the traditional literature;

(x) {E1, . . . , En} be a set of mutually exclusive and exhaustive elementary events
forming a partition of S ;

(xi) for every i ∈ {1, . . . , n}, xi be the utility associated by the act f to the event Ei , i.e.
f = (E1, x1; . . . ; En, xn);

(xii) W(f ) = ∑n
i=1 p(Ei)u(xi) be the expected utility associated with the act f with

respect to the Kolmogorovian probability measure p.

Savage proved that, if the algebraic structure (F ,�) satisfies suitable axioms3 then,
for every f, g ∈ F , a unique Kolmogorovian probability measure p and a unique (up to
positive affine transformations) utility function u exist such that f is preferred to g, i.e.
f � g, if and only if the expected utility of f is greater than the expected utility of g, i.e.
W(f ) ≥ W(g). For every i ∈ {1, . . . , n}, the utility value u(xi) depends on the decision-
maker’s risk preferences, while p(Ei) is interpreted as the subjective probability that the
event Ei occurs [2].

Savage’s result above is testable at a descriptive level, in the sense that it can be empiri-
cally tested through human decisions, and compelling at a normative level, in the sense that
it prescribes what “rational behaviour” should be. However, Daniel Ellsberg proposed in
1961 a series of thought experiments in which, he suggested, decision-makers are not likely
to maximize expected utility, rather they are likely to prefer acts with known (or objective)
probabilities over acts with unknown (or subjective) probabilities. While a famous thought
experiment is the three-color example, we prefer here to discuss the two-urn example, for
reasons that will become clear in Section 5.

Consider two urns, urn I with 100 balls that are either red or black in unknown proportion,
and urn II exactly with 50 red balls and 50 black balls. One ball is to be drawn at random
from each urn. Then, free of charge, a person is asked to bet on pairs of the acts f1, f2, f3
and f4 in Table 1.

2For example, assuming an approach in which preferences are revealed, if a person strongly, or strictly,
prefers act f to act g, we write f � g. Analogously, if a person is indifferent between f and g, we write
f ∼ g.
3One of the axioms is the famous sure thing principle, which is violated in the Ellsberg paradox. Other
axioms have a technical nature. However, the axioms of SEUT are not relevant to the present purposes, hence
we will not dwell on them, for the sake of brevity.
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Ellsberg suggested that most people will generally prefer f2 over f1 and f4 over f3. The
reason for this choice is simple: f2 and f4 are unambiguous acts, because they are associ-
ated with events over known probabilities, 0.5 in this case, while f1 and f3 are ambiguous
acts, because they are associated with events over unknown probabilities, ranging from 0 to
1 in this case [11]. This attitude of decision-makers towards ambiguity is called ambiguity
aversion. Several experiments on the two-urn example have confirmed the Ellsberg prefer-
ences f2 � f1 and f4 � f3, hence an ambiguity aversion attitude of decision-makers (see,
e.g., [12]).

The behaviour of a decision-maker who is psychologically influenced by ambiguity
cannot be reproduced by SEUT. Indeed, assuming that decision-makers assign subjective
probabilities pR and pB = 1 − pR to the events “a ball of red color is drawn” and “a ball
of color black is drawn”, respectively, then the condition W(f2) > W(f1) is equivalent to
(pR− 1

2 )(u(100)−u(0)) < 0, where u(0) and u(100) denote the utilities associated with the
payoffs 0 and 100, respectively. On the contrary, the condition W(f4) > W(f3) is equiva-
lent to (pR − 1

2 )(u(100) − u(0)) > 0. Hence, one cannot find a Kolmogorovian probability
measure such that f2 � f1 and f4 � f3 by maximization of the expected utility functional
with respect to that measure, whence the paradox.

The Ellsberg paradox above and other Ellsberg-type puzzles put at stake both the
descriptive and the normative foundations of SEUT, which led various scholars to propose
alternatives to SEUT, in which more general, and even non-Kolmogorovian, mathematical
structures are used to represent subjective probabilities. Major non-expected utility models
include rank dependent expected utility, expected utility with multiple priors, second order
beliefs, etc. (see, e.g., [12, 27]).

In 2009, Mark Machina elaborated two variants of the Ellsberg paradox, the 50/51 exam-
ple and the reflection example, which challenge major non-expected utility models in a
similar way as the Ellsberg examples challenge SEUT [17, 28]. Machina preferences have
been confirmed in two tests against the predictions of both SEUT and its non-expected util-
ity generalizations [18] and [29]. The implication of Ellsberg and Machina paradoxes is that
a unified theoretic approach to represent human preferences and choices under uncertainty
is still an unachieved goal [29].

We illustrate and analyse here a DM test we performed on the Ellsberg two-urn example
which confirms traditional ambiguity aversion patterns and enables a quantum-theoretic
modelling [18]. The results and ensuing quantum model have far reaching implications on
applications of ambiguity aversion to financial and medical decisions, as we will see in
Section 5.

We presented a sample of 200 people with a questionnaire in which they had to choose
between the pairs of acts “f1 versus f2” and “f3 versus f4” in Table 1. Respondents had
overall a basic knowledge of probability theory, but no specific training in decision theory.
Respondents were provided with a paper similar to the one in Fig. 1.4 In the test, 26 respon-
dents chose acts f1 and f3, 10 chose f1 and f4, 6 chose f2 and f3, and 158 chose f2 and f4.
Equivalently, 164 respondents over 200 preferred act f2 over act f1, for a preference rate of
164/200=0.82 (the difference is significant, p = 1.49E − 24). Moreover, 168 respondents
over 200 preferred act f4 over act f3, for a preference rate of 168/200=0.84 (the difference
is again significant, p = 1.25E − 28). Finally, 184 respondents over 200 preferred either

4For the sake of simplicity, we assumed that each choice concerned two alternatives, hence indifference
between acts was not a possible option.
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Fig. 1 A sample of the questionnaire on the Ellsberg two-urn experiment. It corresponds to the choice
between acts f1 and f2 in Table 1

f1 and f4 or f2 and f3, for an inversion rate of 184/200=0.92. This pattern agrees with the
Ellsberg preferences and points towards ambiguity aversion, while it cannot be reproduced
by SEUT. In addition, these results confirm empirical findings existing in the literature (see,
e.g., [12]).

It is important to notice that in each pair of acts, decision-makers are asked to choose
between a risky option, that is, an option with known probability of getting a given conse-
quence, and an ambiguous option, that is, an option with unknown probability of getting
the same consequence. We will see in Section 5 that this is exactly the experimental set-
ting that is designed to test individual attitudes towards ambiguity in more concrete DM
situations, like medical and financial decisions. This makes relevant a systematic study
of the two-urn example and the ensuing modelling within the quantum mathematical
formalism.

We sketch in the next section the quantum-theoretic framework which models human
decisions, ambiguity, ambiguity aversion, and explains Ellsberg and other puzzles of SEUT
in terms of genuine quantum structures.
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3 A Quantum-Theoretic Framework for Expected Utility

The quantum-theoretic framework we summarize in this section provides a successful
modelling of the Ellsberg and Machina paradox situations [15]. In addition, it enables quan-
tum representation of various sets of DM tests on these paradoxes, namely, the three-color
experiment [14, 18], the 50/51 experiment [14, 18] and the reflection experiment [16, 18].
The quantum-theoretic framework constitutes the first step towards the development of a
quantum-based state-dependent extension of SEUT [16].

Let us start by introducing the basic notions we need for attaining our purposes. These
notions rest on the realistic and operational approach worked out by the Brussels research
team for both quantum and cognitive entities [13].

The object of the decision, the decision-maker interacts with, defines a conceptual DM
entity which is supposed to be in a defined state pv . Such a state captures aspects of ambi-
guity and has a conceptual nature, thus it must be distinguished from a physical state of
nature (see Section 2). Let �DM denote the set of all states of the DM entity. Let E denote
the set of all events which may occur when the DM entity is in a specific state. For a state
pv ∈ �DM , let μ(E, pv) denote the (subjective) probability that E occurs when the DM
entity is in the state pv .

Then, let E1, E2, . . . , En ∈ E denote mutually exclusive and exhaustive elementary
events, let X ⊆ � be the set of consequences (monetary outcomes), and let, for every
i ∈ {1, . . . , n}, the act f map the elementary event Ei ∈ E into the outcome xi ∈ �, so that
f = (E1, x1; . . . ;En, xn).5 Finally, let u : X −→ � be a continuous strictly increasing
utility function expressing individual preferences towards risk.

Like in the canonical representation of quantum entities, we associate the DM entity
with a Hilbert space H over the field C of complex numbers. The number n of mutu-
ally exclusive and exhaustive elementary events entails that the Hilbert space H can be
chosen to be isomorphic to the Hilbert space C

n of all n-tuples of complex numbers.
Let {|α1〉, |α2〉, . . . , |αn〉} be the canonical orthonormal (ON) basis of C

n, i.e. |α1〉 =
(1, 0, . . . 0), . . . , |αn〉 = (0, 0, . . . 1).

The set E of events is represented by the complete orthocomplemented, but non-
distributive, lattice L (Cn) of all orthogonal projection operators over Cn. In particular,
for every i ∈ {1, . . . , n}, the elementary event Ei is represented by the 1-dimensional
orthogonal projection operator Pi = |αi〉〈αi |.

For every state pv ∈ �DM of the DM entity, represented by the unit vector |v〉 =∑n
i=1〈αi |v〉|αi〉 ∈ C

n, the mapping

μv : P ∈ L (Cn) �−→ μv(P ) ∈ [0, 1] (1)

induced by the Born rule is a quantum probability measure over L (Cn). In particular,
μv(P ) is identified with the (subjective) probability μ(E, pv) that the event E, represented
by the orthogonal projection operator P , occurs when the DM entity is in the state pv . Thus,
in particular, for every i ∈ {1, . . . , n},

μ(Ei, pv) = 〈v|Pi |v〉 = |〈αi |v〉|2 (2)

5The intepretation of the symbol f = (E1, x1; . . . ;En, xn) is the usual one in decision theory, namely, we
get x1 if the event E1 occurs, . . . , xn if the event En occurs.
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Let us now represent acts by using the quantum mechanical formalism. The act f =
(E1, x1; . . . ;En, xn) is represented by the Hermitian operator

F̂ =
n∑

i=1

u(xi)Pi =
n∑

i=1

u(xi)|αi〉〈αi | (3)

For every pv ∈ �DM , we introduce the functional “expected utility in the state pv”, Wv :
F −→ �, as follows. For every f ∈ F ,

Wv(f ) = 〈v|F̂ |v〉 = 〈v|
(

n∑

i=1

u(xi)Pi

)

|v〉

=
n∑

i=1

u(xi)〈v|Pi |v〉 =
n∑

i=1

u(xi)|〈αi |v〉|2 =
n∑

i=1

μ(Ei, pv)u(xi) (4)

where we have used (2) and (3). Equation (4) generalizes the SEUT formula in (xii),
Section 2. We note that the expected utility generally depends on the state pv of the DM
entity. When Wv(f ) does (not) explicitly depend on the state pv of the DM entity, then the
act f is (un)ambiguous. Thus, pv mathematically and conceptually incorporates the pres-
ence of ambiguity. This means in particular that, for every f, g ∈ F , states pv, pw ∈ �DM

may exist such that Wv(f ) > Wv(g), whereas Ww(f ) < Ww(g), depending on decision-
makers’ attitudes towards ambiguity. This suggests introducing a state-dependent preference
relation �v on the set of acts F , as follows.

For every f, g ∈ F and pv ∈ �DM ,

f �v g iff Wv(f ) ≥ Wv(g) (5)

Equation (5) indicates that one could in principle identify a set of axioms on acts and
their order relations allowing to uniquely represent preferences by maximization of a state-
dependent expected utility functional, thus opening the way towards a quantum SEUT.
However, such a representation theorem would go beyond the scopes of the present paper,
hence we do not discuss it here.

Let us come to the DM process. The state of the DM entity can change under the effect
of a context, which has again a cognitive nature. An example of such a cognitive context is a
measurement with n possible outcomes {1, . . . , n} that can be performed on the DM entity,
where the i-th outcome is associated with the elementary event Ei ∈ E . If the i-th outcome
is obtained, the state of the DM entity is transformed into a state represented by the unit
vector |αi〉. More generally, if we denote the set of all contexts by C , then their influence
on the DM entity can be described by the transition probability ν(pv, c, pv0), where the
context c ∈ C changes the initial state pv0 ∈ �DM into the final state pv ∈ �DM .

Suppose now that, when the decision-maker is presented with a questionnaire involving a
choice between the acts f and g, the DM entity is in the initial state pv0 , which is generally
determined by symmetry reasons. The state pv0 is interpreted as the state of the DM entity
in the absence of any context (equivalently, in the presence of the unitary context). As the
decision-maker starts comparing f and g, this cognitive action can be described as a context
interacting with the DM entity and changing its state. The type of state change directly
depends on the decision-maker’s attitude towards ambiguity. More precisely, a given attitude
towards ambiguity, say ambiguity aversion, will determine a given change of state of the DM
entity to a state pv , inducing the decision-maker to prefer, say f . But, a different attitude
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towards ambiguity, say ambiguity seeking, will determine a different change of state of the
DM entity to a state pw , leading the decision-maker to instead prefer g. In this way, different
attitudes towards ambiguity are formalized by different changes of state of the DM entity
hence, through (2), by different subjective probability measures.

We proved in [16, 18] that the state-dependence above can exactly explain the inversion
of preferences observed in the Ellsberg and Machina paradox situations. The conclusion is
interesting, from our point of view. On the one side, SEUT claims that decision makers
should choose in such a way to maximize expected utility with respect to a Kolmogorovian
probability measure. On the other side, we found that various puzzles of SEUT are solved
if one assumes that decision makers actually maximize expected utility with respect to a
non-Kolmogorovian, specifically quantum, probability measure.

4 An Application to the Ellsberg Two-Urn Example

In this section, we specify the quantum-theoretic framework of Section 3 to the Ellsberg
two-urn example, showing that it enables faithful representation of the experimental data in
Section 2.

The two-urn example defines two conceptual entities, DM entity I, which is the urn with
100 red or black balls in unknown proportion, and DM entity II, which is the urn with 50
red balls and 50 black balls. In the absence of any context, for uniformity reasons, we can
assume that both entities are initially in the state pv0 , which has a cognitive nature, as we
have seen in Section 3.

Let ER and EB denote the exhaustive and mutually exclusive elementary events “a red
ball is drawn” and “a black ball is drawn”, respectively. They define a “color measurement
context” on both DM entity I and DM entity II with two outcomes, corresponding to the
colors red and black.

Thus, both DM entity I and DM entity II are associated with the 2-dimensional complex
Hilbert space C2. Let {(1, 0), (0, 1)} be the canonical ON basis of C2. The color measure-
ment is represented by a Hermitian operator with eigenvectors |R〉 = (1, 0) and |B〉 = (0, 1)
or, equivalently, by the spectral family . In
the canonical basis of C2, the initial state pv0 of both DM entity I and DM entity II is
represented, due to the uniformity reasons above, by the unit vector

|v0〉 = 1√
2
|R〉 + 1√

2
|B〉 = 1√

2
(1, 1) (6)

A generic state pv of both DM entity I and DM entity II is represented by the unit vector

|v〉 = ρReiθR |R〉 + ρBeiθB |B〉 = (ρReiθR , ρBeiθB ) (7)

with ρR, ρB ≥ 0, θR, θB ∈ �, ρ2
R + ρ2

B = 1.
For every i ∈ {R,B}, the (subjective) probability μv(Ei) of drawing a ball of color i in

the state pv of either DM entity I or DM entity II is

μv(Ei) = 〈v|Pi |v〉 = |〈i|v〉|2 = ρ2
i (8)
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Let us consider the representation of the acts f1, f2, f3 and f4 in Table 1, Section 2. For
given utility values u(0) and u(100), the acts f1, f2, f3 and f4 are respectively represented
by the Hermitian operators

F̂1 = u(100)PR + u(0)PB (9)

F̂2 = u(100)PR + u(0)PB (10)

F̂3 = u(0)PR + u(100)PB (11)

F̂4 = u(0)PR + u(100)PB (12)

The expected utility of f1, f2, f3 and f4 in a state pv of both DM entity I and DM entity II
are respectively given by

Wv(f1) = 〈v|F̂1|v〉 = ρ2
Ru(100) + ρ2

Bu(0) = ρ2
Ru(100) + (1 − ρ2

R)u(0) (13)

Wv(f2) = 〈v|F̂2|v〉 = ρ2
Ru(100) + (1 − ρ2

R)u(0) (14)

Wv(f3) = 〈v|F̂3|v〉 = ρ2
Ru(0) + ρ2

Bu(100) = ρ2
Ru(0) + (1 − ρ2

R)u(100) (15)

Wv(f4) = 〈v|F̂4|v〉 = ρ2
Ru(0) + (1 − ρ2

R)u(100) (16)

where we have used (7) and (9)–(12).
Now, when a decision-maker is asked to ponder between the choice of acts f1 and f2,

the pondering itself, before a decision is taken, defines a cognitive context, hence it may
again change the state of DM entities I and II. Analogously, when a decision-maker is
asked to ponder between the choice of acts f3 and f4, this defines a new cognitive context,
before decision is taken, which may change the state of DM entities I and II. However,
the pondering between f1 and f2 (and also the pondering between f3 and f4) will have
different effects on DM entities I and II. Indeed, since act f1 is ambiguous whereas f2 is
unambiguous, the comparison between f1 and f2 will determine a change of DM entity
I from the state pv0 to a generally different state pv12 , whereas the same comparison will
leave DM entity II in the initial state pv0 . Analogously, since f3 is ambiguous whereas f4
is unambiguous, the comparison between f3 and f4 will determine a change of DM entity
I from the state pv0 to a generally different state pv34 , whereas the same comparison will
leave DM entity II in the initial state pv0 .

Thus, the expected utilities in (14) and (16) in the state p0 of DM entity II become
Wv0(f2) = Wv0(f4) = 1

2 (u(100)+u(0)), which do not depend on the cognitive state of DM
entity II, in agreement with the fact that f2 and f4 are unambiguous acts, while the expected
utilities in (13) and (15) do depend on the final state of DM entity I, again in agreement
with the fact that f1 and f3 are ambiguous acts.

Let us then prove that two ambiguity averse final states pv12 and pv34 of DM entity I exist
such that the corresponding expected utilities satisfy the Ellsberg preferences in Section 2,
that is, Wv12(f1) < Wv0(f2) and Wv34(f3) < Wv0(f4). Indeed, suppose that the states pv12

and pv34 are represented, in the canonical ON basis of C2, by the unit vectors

|v12〉 = (
√

α,
√
1 − α) (17)

|v34〉 = (
√
1 − α,−√

α) (18)
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respectively, where α < 1
2 . One preliminarily observes that the states pv12 and pv34 are

represented by orthogonal vectors, that is, 〈v12|v34〉 = 0. Moreover, by using (13)–(16), we
have

Wv12(f1) = αu(100) + (1 − α)u(0) <
1

2
(u(100) + u(0)) = Wv0(f2) (19)

Wv34(f3) = (1 − α)u(0) + αu(100) <
1

2
(u(100) + u(0)) = Wv0(f4) (20)

Hence, the ambiguity averse states pv12 and pv34 perfectly reproduce Ellsberg preferences
against SEUT.

It remains to model the experimental data in Section 2. To this end suppose that the deci-
sion measurement between acts f1 and f2 is represented by the spectral family ,
where the orthogonal projection operator M projects onto the 1-dimensional subspace
generated by the unit vector |m〉 = (ρmeiθm, τmeiφm) or, equivalently,

M = |m〉〈m| =
(

ρ2
m ρmτmei(θm−φm)

ρmτme−i(θm−φm) τ 2m

)

(21)

Analogously, suppose that the decision measurement between acts f3 and f4 is represented
by the spectral family , where the orthogonal projection operator N projects
onto the 1-dimensional subspace generated by the unit vector |n〉 = (ρne

iθn , τne
iφn) or,

equivalently,

N = |n〉〈n| =
(

ρ2
n ρnτne

i(θn−φn)

ρnτne
−i(θn−φn) τ 2n

)

(22)

It follows that the conditions

〈v12|M|v12〉 = 0.82 (23)

〈v0|M|v0〉 = 0.50 (24)

〈v12|v12〉 = 1 (25)

〈v12|N |v12〉 = 0.84 (26)

〈v0|N |v0〉 = 0.50 (27)

〈v34|v34〉 = 1 (28)

must be satisfied by the parameters α < 1
2 , ρm, τm, ρn, τn ≥ 0, θm, φm, θn, φn ∈ �.

Equations (23) and (26) are determined by empirical data, (25) and (28) are determined
by normalization conditions, while (24) and (27) are determined by the fact that decision-
makers who are not sensitive to ambiguity should overall be indifferent between f1 and f2,
as well as between f3 and f4. Hence, on average, half respondents are expected to prefer
f1 (f3) and the other half f2 (f4). To simplify the analysis, let us set θm = 90◦, θn = 270◦,
φm = φn = 0. Hence, we are left with a system of 6 equations in 5 unknown variables
whose solution is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α = 0.14815
ρm = 0.21274
τm = 0.97711
ρn = 0.99155
τn = 0.12975

(29)
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Hence, the orthogonal projection operators in (21) and (22) reproducing the experimental
data in Section 2 are

M =
(

0.04526 0.20787i
−0.20787i 0.95474

)

(30)

N =
(

0.98316 −0.12865i
0.12865i 0.01684

)

(31)

This completes the construction of a quantum model for the Ellsberg two-urn experiment.
As we can see, genuine quantum structures, namely, contextuality, superposition and intrin-
sically non-deterministic state change occur, while quantum probabilities crucially represent
subjective probabilities.

5 ModellingManagerial andMedical Decisions

The violation of SEUT in the Ellsberg two-urn experiment in Section 2 is paradigmatic, as
the experiment provides the typical design one is confronted with in a variety of real life
situations, like in economics, finance and even medicine, in which decision-makers have
to choose between a risky prospect, i.e. a situation involving a known probability, and an
ambiguous one, i.e. a situation involving an unknown ambiguity. DM tests in these domains
confirm that people generally have an ambiguity aversion attitude, but they sometimes
exhibit an ambiguity seeking attitude, also shifting from one attitude to the other depend-
ing on the degree of uncertainty involved in the decision. In this regard, let us consider the
following medical situation example [19].

Suppose your doctor tells you that there is a defined probability that you have a serious
disease. So, you decide to consult other doctors: some of them believe that the probability
is much greater while others believe that the probability is less. Which option would you
“prefer”, the former which is risky, or the latter which is ambiguous? Intuition suggests that
the level of probability will play a crucial role in the final decision. Indeed, if the probability
is low, it is reasonable to assume that a fear effect occurs in which you prefer the risky
option to the ambiguous one, thus showing an ambiguity aversion behaviour. On the other
side, if the probability is high, it is reasonable to assume that a hope effect instead occurs in
which you prefer the ambiguous option, thus showing an ambiguity seeking behaviour.

Two experimental studies, [19] and [20], tested hope and fear effects in specific invest-
ment decisions involving business owners and managers. In managerial decisions, one
typically measures the performance of an investment by comparing the value of a financial
estimator, like the internal rate of return (IRR) or the return on the investment (ROI), with
a targeted performance, or benchmark. If, say ROI, is above the benchmark, we say that a
“gain” is realized, if ROI is instead below the benchmark, we say that a “loss” is realized.
Thus, we may compare two options, a risky option, in which decision-makers know that
the probability to have a gain is equal to p, with an ambiguous option, in which decision-
makers only know that the probability to have a gain is between p − 
 and p + 
. Viscusi
and Chesson [19] found that, if the probability of a gain is high, a fear effect occurs and
people tend to be ambiguity averse. But, as this probability decreases, people become less
ambiguity averse, reaching a crossover point in which they become ambiguity seeking,
which suggests a shift from a fear to a hope effect. Viceversa, if the probability of a loss is
high, a hope effect occurs and people tend to be ambiguity seeking. But, as this probability
decreases, people become less ambiguity seeking, again reaching a crossover point in which
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they become ambiguity averse, which suggests a shift from a hope to a fear effect [19]. At
high probabilities, this behaviour was confirmed by the test of Ho, Keller and Keltyka [20].

We note that the quantum-theoretic framework of Section 3 can be naturally applied to
both ambiguity averse and ambiguity seeking attitudes, as the type of state change of the DM
entity induced by the interaction with the cognitive context in the DM process determines
individual attitudes towards ambiguity. In addition, the Hilbert space model of Section 4
can be applied to represent the empirical data collected in both tests in [19] and [20]. These
tests are indeed variants of the two-urn experiment in which each time a risky option is
compared with an ambiguous one, hence one can construct Hilbert space states, operators
and quantum probabilities that faithfully represent data sets.

The applicability of the theoretic framework of Section 3 to a wide range of DM sit-
uations was a priori expected. Indeed, the quantum-theoretic framework and the quantum
models derived from it are not ad hoc models, in the sense that they were not constructed on
purpose to accommodate the Ellsberg paradox and fit the corresponding experiments. They
were instead generated from the investigation of quantum theory as a unified and general
theory to model human DM under uncertainty, hence they can be applied in principle to any
type of empirical situation where people take decisions in the presence of uncertainty, like
investment and medical situations, which is what we plan to do in future research.
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