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Abstract
We investigate how the efficiency is affected on the noise environments in the controlled
remote state preparation protocol, where the several realistic scenarios, i.e., a part or all of the
qubits are subjected to the same or different types of noise, are considered. We find that more
noise or less entanglement of qubits environment lead to more efficiency in terms of average
fidelity. We show that it is better way to subject the qubits in different noise channels in order
to increase the fidelity of the controlled remote state preparation protocol. By using a non-
maximally three-qubit pure entangled state as quantum channel, furthermore, we could realize
a perfect controlled remote state preparation by choosing the right noisy environments and
adjusting their relations in terms of noisy rates.
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1 Introduction

Transmission of quantum states is a central task in realistic quantum communication. If a
sender (Alice) wants to transmit an unknown quantum state to a receiver (Bob), they can use
quantum teleportation (QT) [1–3]. If the sender Alice knows the quantum state and can use
another quantum communication way to transmit it, which is known as a remote state
preparation (RSP). It is known that RSP can be carried out with less classical communication
costs and simpler measurements than QT [4–7]. Due to its interesting properties, RSP has been
widely investigated both theoretically [8–16] and experimentally [17–25] in recent years.
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In conventional RSP protocols, there is one sender who knows the amplitude information
and the phase information of the quantum state to be transmitted and one receiver who has no
any information about the state. In order to satisfy the requirements of different communication
scenarios, two kinds of RSP have been proposed including joint remote state preparation
(JRSP) [26–30] and controlled remote state preparation (CRSP) [31–35]. In JRSP, several
senders share the amplitude information and phase information of quantum state, with each
sender only having partial information about the state. In CRSP, there is a controller who does
not know the information of state, but the state cannot be faithfully prepared without the
controller’s permission. The combination of these two variants of RSP protocols was called
controlled joint remote state preparation (CJRSP) [36–38], and can involve in multiple senders
and controllers.

As ones know, one of the key factors in the perfect controlled RSP is to use an entangled
pure quantum channel [33–35]. In any realistic RSP protocol, unfortunately, a quantum system
interacts irreversibly with its reservoir [39–41]. Such an effect of noise or decoherence is to
turn a pure state into a mixed one, and perfect controlled RSP is not possible since, instead of
entangled pure states, noise or decoherent effects force us to deal with the mixed states. It has
been shown that, under a complex scheme of both classical communication and local
operations perfect controlled RSP with the mixed states, it is impossible in both theoretically
[42] and experimentally [24] and therefore, one of the current major challenges in
accomplishing perfect controlled RSP is to overcome the limitations imposed by noise.

An increasing interest is to study the environment-assisted quantum processes [43–47]. The
results show that noise or decoherence can enhance the efficiency of quantum communication
protocols. Our goals is to study the mechanism how we increase the efficiency of the
controlled RSP in the presence of noise. And we want to beat the decrease in the efficiency
of the protocol due to noise with noise.

In this work, we investigate how the efficiency is affected on the noisy environments in the
controlled RSP protocol, where all possible types of noise or decoherence effects are consid-
ered, where the several realistic scenarios are considered, i.e., a part or all of the qubits are
subjected to the same or different types of noise. We find several scenarios in which more
noise, less entanglement, or different noise acting on different qubits can increase the efficien-
cy of the controlled RSP protocol. We show that the average fidelity can reach one, i.e., perfect
controlled RSP can be achieved by adjusting the initial angle of the quantum channel and
controlling the noise rate and choosing the types of noisy environments. At the same time, the
controller Bob only needs to perform a single-particle measurement in the diagonal basis

j � 〉 ¼ j0〉� j1〉ð Þ= ffiffiffi
2

p
. Thus it is possible to conquer the decrease of efficiency in the

protocol due to the noise interacting with another noise.

2 Controlled Remote State Preparation Protocol

Suppose that two participants, the sender Alice and the controller Bob, help for the remote
receiver Charlie to prepare an arbitrary single-qubit state ∣ψ〉 = ∣α‖0〉 + ∣ β ∣ eiδ ∣ 1〉, where
|α|2 + |β|2 = 1 with the absolute values ∣α∣ and ∣β∣ of the constant coefficients α and β and
the relative phase δ, and δ = 2πj(j = 0, 1). The sender Alice has the complete messages about
the state ∣ψ〉 including the amplitude information ∣α∣ and ∣β∣ and the phase information δ.
The controller Bob and the receiver Charlie know nothing information of the state.

International Journal of Theoretical Physics (2019) 58:1172–1194 1173



Here, Charlie prepares a three-qubit state ∣Φθ〉123 = cos θ ∣ 000〉123 + sin θ ∣ 111〉123, where
the qubit 1 belongs to Alice, qubit 2 belongs to Bob and qubit 3 belongs to Charlie,
respectively. It is obvious that such three-qubit state is a three qubits GHZ state when θ = π/
4, i.e., a maximally entangled pure state, where the initial angle 0 ≤ θ ≤ π/2 under a quantum
entangled channel will be taken as a free parameter in order to fit the maximum efficiency of
noisy controlled RSP protocol.

Next, it is necessary to define two orthogonal states in order to project the qubit onto Alice
with her,

jA1〉1 ¼ jα‖0〉þ jβje−iδj1〉; jA2〉1 ¼ jβje−iδj0〉−jα‖1〉; ð1Þ
where the Bob’s measurement basis vectors are given by

jBφ
1 〉2 ¼ cosφj0〉þ sinφj1〉; jBφ

2 〉2 ¼ sinφj0〉−cosφj1〉; ð2Þ
in the region 0 ≤φ ≤ π/2. When φ = π/4, the two single-qubit projective states are

j � 〉 ¼ j0〉� j1〉ð Þ= ffiffiffi
2

p
. Under the noisy environment, the controllable free parameter φ will

be adjusted to optimize the efficiency of controlled RSP. In terms of Alice’s and Bob’s
measurement basis vectors, the quantum channel can be rewritten as

jΦθ〉123 ¼ jA1〉1jBφ
1 〉2 jαjcosθcosφj0〉þ jβjeiδsinθsinφj1〉

� �
3

þjA1〉1jBφ
2 〉2σ

z
3 jαjcosθsinφj0〉þ jβjeiδsinθcosφj1〉
� �

3

þjA2〉1jBφ
1 〉2σ

z
3σ

x
3 jαjsinθsinφj0〉þ jβjeiδcosθcosφj1〉
� �

3

þjA2〉1jBφ
2 〉2σ

x
3 jαjsinθcosφj0〉þ jβjeiδcosθsinφj1〉
� �

3
:

ð3Þ

To achieve the controlled RSP, Alice and Bob perform a single-qubit measurement on own
qubit, respectively. Alice’s and Bob’s outcomes may be one of jA1〉1jBφ

1 〉2or jA1〉1jBφ
2 〉2; jA2〉

1jBφ
1 〉2 and jA2〉1jBφ

2 〉2. Next Alice and Bob inform Charlie about their measured results by
using a classical channel. In terms of Alice’s and Bob’s measured results, Charlie can recover
the desired state as shown in Eq. (3) by using a suitable unitary operation.

In order to simplify our equations, we will take a discrete variable j = 1, 2, 3 and 4 (i.e.,
j ¼ jA1〉1jBφ

1 〉2; jA1〉1jBφ
2 〉2; jA2〉1jBφ

1 〉2;and jA2〉1jBφ
2 〉2) in the following, with each j

representing one of the above four possible joint measurement result, respectively. Thus the
successful probabilities Qj{j = 1, 2, 3, 4} can be obtained by

Q1 ¼ αj j2cos2θcos2φþ βj j2sin2θsin2φ; ð4Þ

Q2 ¼ αj j2cos2θsin2φþ βj j2sin2θcos2φ; ð5Þ

Q3 ¼ αj j2sin2θsin2φþ βj j2cos2θcos2φ; ð6Þ

Q4 ¼ αj j2sin2θcos2φþ βj j2cos2θsin2φ: ð7Þ
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It is convenient to quantify the protocol efficiency in terms of the fidelity [48]. Since the
benchmark state is an initially pure one, the fidelity Fj{j = 1, 2, 3, 4} can be written as

F1 ¼ αj j4cos2θcos2φþ βj j4sin2θsin2φþ 2 αj j2 βj j2cosθcosφsinθsinφ
αj j2cos2θcos2φþ βj j2sin2θsin2φ ; ð8Þ

F2 ¼ αj j4cos2θsin2φþ βj j4sin2θcos2φþ 2 αj j2 βj j2cosθcosφsinθsinφ
αj j2cos2θsin2φþ βj j2sin2θcos2φ ; ð9Þ

F3 ¼ αj j4sin2θsin2φþ βj j4cos2θcos2φþ 2 αj j2 βj j2cosθcosφsinθsinφ
αj j2sin2θsin2φþ βj j2cos2θcos2φ ; ð10Þ

F4 ¼ αj j4sin2θcos2φþ βj j4cos2θsin2φþ 2 αj j2 βj j2cosθcosφsinθsinφ
αj j2sin2θcos2φþ βj j2cos2θsin2φ : ð11Þ

Consider a controlled RSP protocol occurred in each state in terms of the different probabil-

ities, we define the average fidelity as F ¼ ∑
4

j¼1
QjF j, with Qjis a successful probability of the

Charlie state, i.e., any qubit is equally probable to be picked as an original state in the
controlled RSP protocol. Thus we have

F ¼ αj j4 þ βj j4 þ 2 αj j2 βj j2sin 2θð Þsin 2φð Þ; ð12Þ

where F depends on the original state and the initial angle φ. The average value

F
� � ¼ 1

2π ∫
2π
0 ∫10F αj j2; δ

� �
d αj j2dδ;and therefore the quantity

F
D E

¼ 2

3
þ 1

3
sin 2θð Þsin 2φð Þ ð13Þ

is the efficiency of the controlled RSP protocol. Under the condition of θ =φ = π/4, F
� � ¼ 1.

The result implies that we recover the perfect controlled RSP protocol with Q1 =Q2 =Q3 =
Q4 = 1/4 in terms of a maximally three-qubit pure entangled channel. Under the other
situations, especially for the noises interacting with the quantum channel, Qj{j = 1, 2, 3, 4}
depends on the desired state and an averaging over the other possible degrees of freedom in the
controlled RSP protocol.

3 Noisy Controlled RSP Protocol

The interaction of between a noisy environment and a qubit can be described by the
quantum operators. In the operator-sum representation formalism, the trace-preserving
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Kraus operators Ek{k = 1, 2,⋯, n} can represent such a noise and satisfy the complete
condition,

∑
n

k¼1
E†
kEk ¼ I ; ð14Þ

where I is an identity operator acting on the qubit’s Hilbert space. Under the noisy
environment, the density matrix ρj of the qubit j becomes

ρ j→ε j ¼ ∑
n

k¼1
E†
kρ jEk : ð15Þ

In the following, we will discuss all possible types of noise from the realistic noisy environ-
ment as shown in Fig. 1, where one, two, or all three qubits of the quantum entangled pure
channel in the controlled RSP protocol are affected by such a noise in a different way. And all
possible types of noise are given in the Appendix.

Under case of that each qubit is independently subjected to the noisy environments, the
initial density matrix will evolve in terms of all possible types of noise.

From Eq. (15) with the three sources of noise, the density matrix including the noise effects
is given by

ε ¼ ∑
i¼1

n1

∑
j¼1

n2

∑
k¼1

n3

Eijk p1; p2; p3ð ÞjΦ〉〈ΦjE†
ijk p1; p2; p3ð Þ; ð16Þ

where Eijk(p1, p2, p3) =Mi(p1)⊗ Nj(p2)⊗ Lk(p3), with Mi(p1) =Mi(p1)⊗ I⊗ I, Nj(p2) = I⊗
Nj(p2)⊗ I and Lk(p3) = I⊗ I⊗ Lk(p3). It is obvious that each Kraus operator associates with
one kind of the noise interacting on the desired qubit. Generally, the different noises can act
during different times with different probabilities, which can be distinguished by the decay

Fig. 1 (Color online) A schematic picture of the controlled RSP protocol. Three-qubit pure entangled channel
∣Φθ〉123 refers to a source producing states in terms of Eq. (3), where SQM is a single-qubit measurement. The
noise before the SQM makes the ∣Φθ〉123 mixed while the noise in the last step of the protocol allows one to
obtain the desired state
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rates p1, p2 and p3. Inserting Eq. (16) into Eqs. (3)–(13), we could get the relevant physical
quantities to analyze the perfect controlled RSP protocol under the noise environments. Under
the limit of p1 = p2 = p3 = 0, on the other hand, we can recover the noiseless case, i.e., the pure
entangled state.

4 Discussions and Results

4.1 Noise in Alice’s Qubit

In order to make it clear which qubits are subjected to the noise, we introduce the notation

FX ;∅;Y
� �

in terms of the optimal efficiency of the protocol, where the first subindex represents

the qubit 1 interacting with the noise X, the second one denotes that Bob’s qubit of the
quantum channel without any noise, and the third subindex is Charlie’s qubit interacting with
the noise Y. Here X and Y can be any one of the four kinds of noise described in the appendix.

At the initial time, suppose that the qubits 2 and 3 of quantum channel are not affected from
the noise, i.e., p2 = p3 = 0, and the qubit 1 lies in a noisy environment (p1 ≠ 0). The efficiency,
for each type of noise as described in Sec. 3, can be obtained by

FBF;∅;∅

D E
¼ 2

3
1−

p1
2
þ 1

2
sin 2θð Þsin 2φð Þ

� �
; ð17Þ

FAD;∅;∅

D E
¼ 2

3
1−

p1
2
sin2θþ

ffiffiffiffiffiffiffiffi
1−p

p
1

2
sin 2θð Þsin 2φð Þ

� �
; ð18Þ

FPhF;∅;∅

D E
¼ 2

3
1þ j1−2p1j

2
sin 2θð Þsin 2φð Þ

� �
; ð19Þ

FD;∅;∅

D E
¼ 2

3
1−

p1
4
þ 1−p1

2
sin 2θð Þsin 2φð Þ

� �
: ð20Þ

In Eqs. (17)–(20), the subscripts on the left-hand side are the particular type of noise, i.e., BF→
bit-flip, AD→ amplitude-damping, PhF→ phase-flip, and D→ depolarizing.

From Eqs. (17)–(20), we see that the optimal efficiency is a function of p1, the initial angle θ
of the quantum channel, and the initial angle φ of the Bob’s measurement basis vectors. The
maximum efficiencies are occurred at φ = π/4 due to the conditions 0 ≤ sin(2θ) sin(2φ) ≤ 1 and
1 − p1 ≥ 0. In Fig. 2, we plot the numerical results of Eqs. (17)–(20), where 0 ≤ p1 ≤ 1, 0 ≤ θ ≤ π/
2, and φ = π/4.

According to Fig. 2, the maximum efficiencies FBF;∅;∅
� � ¼ FAD;∅;∅

� � ¼ FD;∅;∅
� � ¼ 1

occur at p1 = 0 and θ = π/4, i.e., the qubit 1 is not affected from the noise. It is surprised that the

efficiency FPhF;∅;∅
� �

is separated into two the two regions, which is resulted from the

relations ∣1 − 2p1 ∣ ≥ 0 and sin(2θ) sin(2φ) = 1. In Eq. (19), sin(2θ) sin(2φ)is multiplied by

∣1 − 2p1∣ and therefore FPhF;∅;∅
� �

changes sign at p1 = 1/2. In the range 0 ≤ p1 ≤ 1/2, the
average fidelity decreases and increases in the range of 1/2 ≤ p1 ≤ 1. Thus the maximum
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efficiency FPhF;∅;∅
� � ¼ 1 occur at p1 = 0 or p1 = 1 for θ = π/4. In the two cases of p1 = 0 and

p1 = 1, therefore, the phase flip does not affect on the physical system. The results give out an
approach to control the RSP protocol under the environment of phase flip. For high values of
p1, the phase-flip noise give the greatest efficiency in the case of θ =φ = π/4.

Next, let us investigate a more real situation. We firstly study that the qubit 1 is always
subjected to the bit-flip noise and Charlie’s qubit lies in one of the four different types of noisy
environments given in Sec. 3. The optimal efficiencies are given by

FBF;∅;BF

D E
¼ 2

3
−
1

3
p1 þ p3−2p1p3ð Þ þ 1

3
sin 2θð Þsin 2φð Þ; ð21Þ

FBF;∅;AD

D E
¼ 2

3
−
p1
3
−
p3
3

1−2p1ð Þsin2θþ
ffiffiffiffiffiffiffiffiffiffi
1−p3

p
3

sin 2θð Þsin 2φð Þ; ð22Þ

FBF;∅;PhF

D E
¼ 2

3
−
1

3
p1 þ

j1−2p3j
3

sin 2θð Þsin 2φð Þ; ð23Þ

FBF;∅;D

D E
¼ 2

3
−
p3
6
−
p1
3
þ p1p3

3
þ 1

3
1−p3ð Þsin 2θð Þsin 2φð Þ: ð24Þ

From Eqs. (21)–(24), we see the efficiencies depend on noisy rates p1 and p3 for the optimal
efficiencies with θ = φ = π/4, where the coupling terms between the noisy rates p1
andp3emerge in Eqs. (21)–(24). Such coupling terms imply the entanglement of noisy

Fig. 2 (Color online) Efficiency of the controlled RSP protocol when the desired qubit is only affected by a noisy
environment, with the decay ratep1 from the noise interacting with the qubit 1, and the initial angle θ of the
quantum channel
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environments. Therefore, there exists a possible approach to obtain the maximum efficiencies

by adjusting the values of the parameters p1 and p3 in the efficiencies FBF;∅;BF
� �

, FBF;∅;AD
� �

,

FBF;∅;PhF
� �

and FBF;∅;D
� �

. In Fig. 3, thus, we firstly plot the efficiencies for different values

of the noisy rate p1 and p3 in terms of Eqs. (21)–(24).
Forp1 < 0.5, we find that FBF;∅;BF

� �
; FBF;∅;PhF
� �

and FBF;∅;D
� �

reduce with increasing of
the noisy rate p3. The results imply that the average fidelities decrease with increasing of noisy

rate. Differently from FBF;∅;AD
� �

and FBF;∅;D
� �

; FBF;∅;PhF
� �

is divided into two regions,

where FBF;∅;PhF
� �

raises for p3 > 0.5 and reduces for p3 < 0.5.
Under the situations of p1 > 0.5, the average fidelity FBF;∅;BF

� �
becomes bigger with

increasing of noisy rate p3. The results show that more noise means higher efficiency in the
cases. By putting Charlie’s qubit in a noisy environment described by the bit-flip map, thus, we
can raise the efficiency of the protocol beyond the classical limit with the value 2/3 for p1 > 0.5.

In addition, we find that FBF;∅;BF
� � ¼ 1 for p1 = p3 = 0 or p1 = p3 = 1 with θ =φ = π/4,

FBF;∅;PhF
� � ¼ 1 for p3 = 0 or p3 = 1 with θ =φ = π/4 and p1 = 0, and FBF;∅;AD

� � ¼ FBF;∅;D
� �

¼ 1 for p1 = p3 = 0 with θ =φ = π/4 as shown in Fig. 3.
In order to find a perfect controlled RSP by using a non-maximally three-qubit pure

entangled state under the noisy environments in terms of the noisy rates, we set FBF;∅;AD
� �

¼ 1 with φ = π/4 in Eq. (22). Thus we have

p3 ¼
1

2sin2θ 1−2p1ð Þ2
n
2sin2θp1−2sin

2θ−sin2 2θð Þ þ 4sin2θp21

þsin 2θð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sin2θþ 4sin4θþ sin2 2θð Þ−4sin2θp1−16sin2 2θð Þp1−8sin2θp21 þ 16sin4θp21

q o
:

ð25Þ

Fig. 3 (Color online) Efficiency of the controlled RSP protocol when both Alice’s qubit (p1) and Charlie’s qubit
(p3) are affected by the different environments, where the qubit 1 is always subjected to the bit-flip (BF) noise
while Charlie’s qubit may suffer from several types of noise
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For 0 ≤ p1 ≤ 1, 0 ≤ θ ≤ π/2 in Eq. (25), if p3exist in the range 0 ≤ p3 ≤ 1, we can recover the
perfect controlled RSP protocol, otherwise, we cannot realize the perfect controlled RSP. We
plot the numerical results of Eq. (25), where 0 ≤ p1 ≤ 1 and 0 ≤ θ ≤ π/2. Fortunately, one can

obtain FBF;∅;AD
� � ¼ 1 for 0.5 < p1 ≤ 0.6, 0 ≤ p3 < 0.3, and 0 < θ ≤ 1[rad] as shown in Fig. 4.

The results show that one can implement the perfect controlled RSP by using a non-
maximally three-qubit pure entangled state under the noise environment in terms of Eq. (22).
For the other environments, unfortunately, we cannot find a way to implement the perfect
controlled RSP in terms of Eq. (21) and Eqs.(23)–(24).

Let us consider another case of qubit 1 interacting with the amplitude-damping noise, while
Charlie’s qubit can suffer any one of the four kinds of noise as shown in the appendix. The
optimal efficiencies are now given by

FAD;∅;BF

D E
¼ 2

3
−
p3
3
−
p1
3
−
p1p3
6

þ p1
6

1þ p3ð Þsin2θþ
ffiffiffiffiffiffiffiffiffiffi
1−p1

p
3

sin 2θð Þsin 2φð Þ; ð26Þ

FAD;∅;AD

D E
¼ 2

3
−
1

3
p1 þ p3−2p1p3ð Þsin2θþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p1ð Þ 1−p3ð Þp

3
sin 2θð Þsin 2φð Þ; ð27Þ

FAD;∅;PhF

D E
¼ 2

3
−
p1
3
þ p1

3
sin2θþ j1−2p3j

ffiffiffiffiffiffiffiffiffiffi
1−p1

p
3

sin 2θð Þsin 2φð Þ; ð28Þ

FAD;∅;D

D E
¼ 2

3
−
p3
6
−
p1
3
þ p1p3

12
þ p1

6
2þ p3ð Þsin2θþ 1−p3ð Þ ffiffiffiffiffiffiffiffiffiffi

1−p1
p
3

sin 2θð Þsin 2φð Þ: ð29Þ

From Eqs. (26)–(29), we see that the efficiencies depend on the parameters p1, p3, θ and φ,
where the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 5, we plot the optimal
efficiencies for different values of the noisy rate p1 and p3 in terms of Eqs. (26)–(29), where
0 ≤ p1 ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

Fig. 4 (Color online) The relations of realizing the perfect controlled RSP between the noisy rates and measured
angle, where the qubit 1 is subjected to the bit-flip (BF) noise while Charlie’s qubit may suffer from amplitude-
damping (AD) noise:0.5 < p1 ≤ 0.6, 0 ≤ p3 < 0.3, 0 < θ ≤ 1[rad], and FBF;∅;AD

� � ¼ 1
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In Fig. 5, we find that FAD;∅;AD
� � ¼ FAD;∅;PhF

� � ¼ FAD;∅;D
� � ¼ 1 for p1 = p3 = 0 and

θ =φ = π/4, FBF;∅;PhF
� � ¼ 1 for p3 = 0 or p3 = 1 with θ =φ = π/4 and p1 = 0.

From Eqs. (26)–(29), we see that the efficiencies depend on the coupling terms between the
two noisy rates. In the other words, such efficiencies are relative to the entanglement of
environments. It is happens again when Charlie’s qubit interacts with the bit-flip noise [Eq.
(26)], for the optimal θ is not π/4, the less entanglement of environments leads to a better
performance for the controlled RSP protocol.

Similarly, in order to implement the perfect controlled RSP by using a non-maximally

three-qubit pure entangled state under the noise environments in this case, we set FAD;∅;BF
� �

¼ 1 with φ = π/4 in Eq. (26). Thus we have

p3 ¼
2−sin2θþ 2p1−2sin 2θð Þ ffiffiffiffiffiffiffiffiffiffi

1−p1
p

sin2θ−2−p1
: ð30Þ

The numerical results p3 of Eq. (30) is shown in Fig. 6. We see that one can obtain

FAD;∅;BF
� � ¼ 1 for 0 ≤ p1 ≤ 0.15, 0 < p3 < 0.45, 0.75 ≤ θ ≤ 1.08[rad]. For the other en-

vironments, we cannot find an approach to realize such a perfect controlled RSP in
terms of Eqs.(27)–(29).

When the qubit 1 is subjected to the phase-flip noise and Charlie’s qubit is subjected to the
four different types of noise as shown in the appendix, the optimal efficiencies are

FPhF;∅;BF

D E
¼ 2

3
−
p3
3
þ 1

3
j1−2p1jsin 2θð Þsin 2φð Þ; ð31Þ

Fig. 5 (Color online) Optimal efficiency of the controlled RSP protocol when both Alice’s qubit (p1) and
Charlie’s qubit (p3) are affected by the different environments, where the qubit 1 is always subjected to the
amplitude-damping (AD) noise while Charlie’s qubit may suffer from several types of noise
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FPhF;∅;AD

D E
¼ 2

3
−
p3
3
sin2θþ 1

3
j1−2p1j

ffiffiffiffiffiffiffiffiffiffi
1−p3

p
sin 2θð Þsin 2φð Þ; ð32Þ

FPhF;∅;PhF

D E
¼ 2

3
þ 1

3
j 1−2p1ð Þ 1−2p3ð Þjsin 2θð Þsin 2φð Þ; ð33Þ

FPhF;∅;D

D E
¼ 2

3
−
p3
6
þ 1

3
j1−2p1j 1−p3ð Þsin 2θð Þsin 2φð Þ: ð34Þ

In Eqs. (31)–(34), the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 7, we plot the
maximum efficiencies for different values of the noisy rate p1 and p3 in terms of Eqs.
(31)–(34), where 0 ≤ p1 ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

For p1 < 0.5, we find that FPhF;∅;BF
� �

and FPhF;∅;D
� �

reduce with increasing of the noisy
rate p3. The results imply that the average fidelities decrease with increasing of noisy rate.

Differently from FPhF;∅;PhF
� �

, FPhF;∅;BF
� �

and FPhF;∅;D
� �

are divided into two regions,

which raise for p3 > 0.5 and reduce for p3 < 0.5.
It is interesting that FPhF;∅;PhF

� �
is divided into four regions, which is reduces for p3 < 0.5

and p1 < 0.5 and raises for p3 > 0.5 and p1 > 0.5. It is surprised that under the situations of p3 >
0.5 and p1 > 0.5due to the entanglement of environments as shown in Eq. (33), the average

fidelity FPhF;∅;PhF
� �

becomes bigger with increasing of noisy rate p3. The results show that

more noise means more efficiency in the case. By putting Charlie’s qubit in a noisy environ-
ments described by the phase-flip map, thus, we can raise the efficiency of the protocol beyond
the classical limit with the value 2/3 [49].

Next, we discuss the optimal efficiencies under case of the qubit 1 with the depolarizing
noise. Under this situation, the optimal efficiencies can be expressed as

FD;∅;BF

D E
¼ 2

3
−
p1
6
−
p3
3
þ p1p3

3
þ 1

3
1−p1ð Þsin 2θð Þsin 2φð Þ; ð35Þ

Fig. 6 (Color online) The relations of realizing the perfect controlled RSP between the noisy rates and measured
angle, where the qubit 1 is subjected to the amplitude-damping (AD) noise while Charlie’s qubit may suffer from
bit-flip (BF) noise: 0 ≤ p1 ≤ 0.15, 0 < p3 < 0.45, 0.75 ≤ θ ≤ 1.08[rad], and FAD;∅;BF

� � ¼ 1
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FD;∅;AD

D E
¼ 2

3
−
p1
6
−
p3
3

1−p1ð Þsin2θþ 1

3
1−p1ð Þ ffiffiffiffiffiffiffiffiffiffi

1−p3
p

sin 2θð Þsin 2φð Þ; ð36Þ

FD;∅;PhF

D E
¼ 2

3
−
p1
6
þ 1

3
1−p1ð Þj1−2p3jsin 2θð Þsin 2φð Þ; ð37Þ

FD;∅;D

D E
¼ 2

3
−
p1
6
−
p3
6
þ p1p3

6
þ 1

3
1−p1ð Þ 1−p3ð Þsin 2θð Þsin 2φð Þ: ð38Þ

From Eqs. (35)–(38), the optimal efficiencies are occurred at θ =φ = π/4. In this case, the
environments are all entangled. In Fig. 8, we plot the maximum efficiencies for different values
of the noisy rate p1 and p3 in terms of Eqs. (35)–(38), where 0 ≤ p1 ≤ 1, 0 ≤ p3 ≤ 1, and
θ =φ = π/4.

In Fig. 8, with increasing the noisy rate p1, FD;∅;AD
� �

; FD;∅;D
� �

and FD;∅;BF
� �

decrease

beside the FD;∅;PhF
� �

; where FD;∅;PhF
� �

is divided into two regions. In the case of p3 < 0.5,

FD;∅;PhF
� �

reduces and increases for p3 > 0.5. For values p1 greater than ≈0.7 we see that any

values of average fidelities are below the classical 2/3 limit. In this situation, the RSP protocol
is not possible. Therefore, it is necessary to controlling the noisy rate p1 and p3 < 0.5 in
processing of the protocol.

In above two cases of FPhF;∅;∅
� �

and FPhF;∅;∅
� �

, such a perfect controlled RSP is
not possible by using a non-maximally three-qubit pure entangled state in terms of
Eqs.(31)–(38).

Fig. 7 (Color online) Optimal efficiency of the controlled RSP protocol when both Alice’s qubit (p1) and
Charlie’s qubit (p3) are affected by the different environments, where the qubit 1 is always subjected to the phase-
flip (PhF) noise while Charlie’s qubit may suffer from several types of noise
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4.2 Noise in Bob’s Qubit

Let us discuss the qubit 2 interacting with the amplitude damping noise, while Charlie’s qubit
can suffer any one of the four kinds of noise as shown in the appendix. The optimal
efficiencies are given by

F∅;AD;BF

D E
¼ 2

3
−
p2
3
−
p3
3
þ p2p3

6
þ 2p2

3
−
p2p3
3

	 

sin2θþ

ffiffiffiffiffiffiffiffiffiffi
1−p2

p
3

sin 2θð Þsin 2φð Þ; ð39Þ

F∅;AD;AD

D E
¼ 2

3
−
p3
6

1−cos 2θð Þ½ � þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2ð Þ 1−p3ð Þ

p
sin 2θð Þsin 2φð Þ; ð40Þ

F∅;AD;PhF

D E
¼ 2

3
−
p2
3
þ 2p2

3
sin2θþ

ffiffiffiffiffiffiffiffiffiffi
1−p2

p
3

j1−2p3jsin 2θð Þsin 2φð Þ; ð41Þ

F∅;AD;D

D E
¼ 2

3
−
p3
6
−
p2
3
þ 1

12
p2p3 þ

2

3
−
p3
6

	 

p2sin

2θ

þ
ffiffiffiffiffiffiffiffiffiffi
1−p2

p
3

1−p3ð Þsin 2θð Þsin 2φð Þ: ð42Þ

In Eqs. (39)–(42), the optimal efficiencies are occurred at θ =φ = π/4, where the coupling
terms of environments are emerged in all cases. In Fig. 9, we plot the maximum efficiencies for

Fig. 8 (Color online) Optimal efficiency of the controlled RSP protocol when both Alice’s qubit (p1) and
Charlie’s qubit (p3) are affected by the different environments, where the qubit 1 is always subjected to the
depolarizing (D) noise while Charlie’s qubit may suffer from several types of noise
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different values of the noisy rate p2 and p3 in terms of Eqs. (39)–(42), where 0 ≤ p2 ≤ 1, 0 ≤
p3 ≤ 1, and θ =φ = π/4.

In Fig. 9, with increasing the noisy rate p2, F∅;AD;BF
� �

; F∅;AD;AD
� �

and F∅;AD;D
� �

decrease beside the F∅;AD;PhF
� �

, where F∅;AD;PhF
� �

is divided into two regions. In the case

of p3 < 0.5, F∅;AD;PhF
� �

reduces and increases for p3 > 0.5.
We find F∅;AD;BF

� � ¼ F∅;AD;AD
� � ¼ F∅;AD;PhF

� � ¼ F∅;AD;D
� � ¼ 1 for p2 = p3 = 0 with

θ =φ = π/4. In addition, F∅;AD;PhF
� � ¼ 1 for p2 = 0, p3 = 1 and θ =φ = π/4.

If Bob’s qubit 2 is subjected to the depolarizing noise and Charlie’s qubit that lies in one of
the four different types of noisy environments as shown in the appendix. We have the
following optimal efficiencies,

F∅;D;BF

D E
¼ 2

3
−
p3
3
þ 1

3
1−p2ð Þsin 2θð Þsin 2φð Þ; ð43Þ

F∅;D;AD

D E
¼ 2

3
−
p3
6

1−cos 2θð Þ½ � þ 1

3
1−p2ð Þ ffiffiffiffiffiffiffiffiffiffi

1−p3
p

sin 2θð Þsin 2φð Þ; ð44Þ

F∅;D;PhF

D E
¼ 2

3
þ 1

3
1−p2ð Þj1−2p3jsin 2θð Þsin 2φð Þ; ð45Þ

F∅;D;D

D E
¼ 2

3
−
p3
6
þ 1

3
1−p2ð Þ 1−p3ð Þsin 2θð Þsin 2φð Þ: ð46Þ

Fig. 9 (Color online) Optimal efficiency of the controlled RSP protocol when both Bob’s qubit (p2) and Charlie’s
qubit (p3) are affected by the different environments, where the qubit 2 is always subjected to the amplitude-
damping (AD) noise while Charlie’s qubit may suffer from several types of noise
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In Eqs. (43)–(46), the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 10, we plot the
maximum efficiencies for different values of the noisy rates p2 and p3 in terms of Eqs.
(43)–(46), where 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

In Fig. 10, with increasing the noisy rate p2, F∅;D;BF
� �

; F∅;D;AD
� �

and F∅;D;D
� �

decrease

beside the F∅;D;PhF
� �

, where F∅;D;PhF
� �

is divided into two regions. In the case of p3 < 0.5,

F∅;D;PhF
� �

reduces and increases for p3 > 0.5. By putting Charlie’s qubit in a noisy environ-

ments described by the phase-flip map, thus, we can raise the efficiency of the protocol beyond
the classical limit with the value 2/3.

When the qubit 2 is subjected either to the bit-flip noise or to the phase-flip noise, we find

that the qualitative behavior of F∅;BF;Y
� �

; Y ¼ ∅;BF;PhF;D;ADð Þ is similar to Fig. 8. A

direct calculation shows F∅;PhF;Y
� � ¼ FPhF;∅;Y

� �
. In other words, the qualitative behavior of

F∅;PhF;Y
� �

is the same as Fig. 7.

In the above four cases, we do not find an approach to improve the overall efficiency by
adjusting the noise rate from Bob’s qubit and one could not implement the perfect controlled
RSP by using a non-maximally three-qubit pure entangled state. When Bob’s qubit is
subjected to the bit-flip noise and amplitude-damping noise, however, we can perform such
a protocol in the higher efficiency for low values of p2. For the higher values of p2, on the other
hand, the phase-flip channel may be a better choose to perform the protocol.

4.3 Noise in Alice’s and Bob’s Qubits

Next, we further investigate the scenario that the qubits 1 and 2 are subjected to the same type
of noises. This scenario is useful in the controlled RSP protocol since the entangled channel is

Fig. 10 (Color online) Optimal efficiency of the controlled RSP protocol when both Bob’s qubit (p2) and
Charlie’s qubit (p3) are affected by the different environments, where the qubit 2 is always subjected to the
depolarizing (D) noise while Charlie’s qubit may suffer from several types of noise
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employed by Charlie for the quantum communication tasks, suppose thatp1 = p2 = p, but
Charlie’s qubit may suffer a different type of noise.

For the qubits 1 and 2 interacting with the bit-flip noise, we have the following optimal
efficiencies,

FBF;BF;BF

D E
¼ 2

3
−
4

3
pþ p2−

1

3
p3 þ

2

3
pp3 þ

1

3
1−2pþ 2p2
� �

sin 2θð Þsin 2φð Þ; ð47Þ

FBF;BF;AD

D E
¼ 2

3
−
4

3
pþ p2−

p3
6

1−2pþ 2p2
� �

1−cos 2θð Þ½ �
þ 1

3
1−2pþ 2p2
� � ffiffiffiffiffiffiffiffiffiffi

1−p3
p

sin 2θð Þsin 2φð Þ;
ð48Þ

FBF;BF;PhF

D E
¼ 2

3
−
4

3
pþ p2 þ 1

3
j1−2p3j 1−2pþ 2p2

� �
sin 2θð Þsin 2φð Þ; ð49Þ

FBF;BF;D

D E
¼ 2

3
−
4

3
pþ p2−

p3
6
þ 1

3
pp3 þ

1

3
1−2pþ 2p2
� �

1−p3ð Þsin 2θð Þsin 2φð Þ: ð50Þ

From Eqs. (47)–(50), the optimal efficiencies depend on the parameters p, p3, θ and φ. And the
optimal efficiencies are occurred at θ =φ = π/4. In Fig. 11, we plot the maximum efficiencies
different values of the noisy rate p and p3 in terms of Eqs. (47)–(50), where 0 ≤ p ≤ 1, 0 ≤ p3 ≤
1, and θ =φ = π/4.

Figure 11 shows the dynamic behaviors of Eqs. (43)–(46) for the different noisy rates p and
p3. In the region of p > 0.9, we see that more noise means more efficiency. By adding more
noise to Charlie’s qubit in a noisy environment of the bit-flip map, we can increase the
efficiency of protocol, where the following optimal efficiency increases with increasing the
noisy rate p3 > 0.5 above the classical limit.

Under the case of qubits 1 and 2 interacting with the amplitude-damping noise, the optimal
efficiencies are

FAD;AD;BF

D E
¼ 1

6
2−p3ð Þ 2−2pþ p2

� �þ 1

3
p2 1þ p3ð Þsin2θþ 1

3
1−pð Þsin 2θð Þsin 2φð Þ; ð51Þ

FAD;AD;AD

D E
¼ 2

3
−
1

3
4p−3p2 þ p3−2pp3
� �

sin2θþ 1

3
1−pð Þ ffiffiffiffiffiffiffiffiffiffi

1−p3
p

sin 2θð Þsin 2φð Þ; ð52Þ

FAD;AD;PhF

D E
¼ 2

3
−
2

3
pþ 1

3
p2 þ 1

3
p2sin2θþ 1

3
1−pð Þj1−2p3jsin 2θð Þsin 2φð Þ; ð53Þ

FAD;AD;D

D E
¼ 1

12
4−p3ð Þ 2−2pþ p2

� �þ 1

6
p2 2þ p3ð Þsin2θ

þ 1

3
1−pð Þ 1−p3ð Þsin 2θð Þsin 2φð Þ: ð54Þ
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From Eqs. (51)–(54), we see the optimal efficiencies depend on the parameters p, p3, θ and φ.
And the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 12, we plot the optimal
efficiencies at the different values of the noisy rates p and p3 in terms of Eqs. (51)–(54), where
0 ≤ p ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

In Fig. 12, with increasing the noisy rate p, FAD;AD;BF
� �

; FAD;AD;AD
� �

and FAD;AD;D
� �

decrease beside the FAD;AD;PhF
� �

, where FAD;AD;PhF
� �

is divided into two regions. In the case

of p3 < 0.5, FAD;AD;PhF
� �

reduces and increases for p3 > 0.5.
When the qubits 1 and 2 are subjected to the phase-flip noise and Charlie’s qubit suffer any

one of the four kinds of noise given in Sec. 3. The optimal efficiencies become

FPhF;PhF;BF

D E
¼ 1

3
2−p3ð Þ 1−2pþ 2p2

� �þ 1

3
1−2pþ 2p2
� �

sin 2θð Þsin 2φð Þ; ð55Þ

FPhF;PhF;AD

D E
¼ 2

3
1−2pþ 2p2
� �

−
p3
6

1−cos 2θð Þ½ �
þ 1

3
1−2pþ 2p2
� � ffiffiffiffiffiffiffiffiffiffi

1−p3
p

sin 2θð Þsin 2φð Þ;
ð56Þ

FPhF;PhF;PhF

D E
¼ 2

3
1−2pþ 2p2
� �þ 1

3
1−2pþ 2p2
� �j1−2P3jsin 2θð Þsin 2φð Þ; ð57Þ

FPhF;PhF;D

D E
¼ 1

6
4−p3ð Þ 1−2pþ 2p2

� �þ 1

3
1−p3ð Þ 1−2pþ 2p2

� �
sin 2θð Þsin 2φð Þ: ð58Þ

Fig. 11 (Color online) Optimal efficiency of the controlled RSP protocol when the qubits 1 and 2 (p) and
Charlie’s qubit (p3) are affected by the different environments, where the qubits 1 and 2 is always subjected to the
bit-flip (BF) noise while Charlie’s qubit may suffer from several types of noise
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From Eqs. (55)–(58), the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 13, we plot
the maximum efficiencies at the different values of noisy rates p and p3 in terms of Eqs.
(55)–(58), where 0 ≤ p ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

Figure 13 shows the dynamic behaviors for the different noisy rates p and p3. Here
FPhF;PhF;BF

� �
is divided into four regions, which is reduces for p3 < 0.5 and p < 0.5 and raises

for p3 > 0.5 and p > 0.5. It is surprised that under the situations of p3 > 0.5 and p > 0.5, the
average fidelity FPhF;PhF;BF

� �
becomes bigger with increasing of noisy rate p3. The results

show that more noise means more efficiency in this case. By putting Charlie’s qubit in a noisy
environment described by the phase-flip map, thus, we can raise the efficiency of the protocol
beyond the classical limit with the value 2/3.

Assuming that the qubits 1 and 2 are subjected to the depolarizing noise and Charlie’s qubit
is subjected to the four different types of noise, the optimal efficiencies are

FD;D;BF

D E
¼ 2

3
−pþ 11

24
p2 þ 1

2
pp3−

1

3
p3−

1

6
p2p3 þ

1

3
−
1

2
pþ 1

4
p2

	 

sin 2θð Þsin 2φð Þ; ð59Þ

FD;D;AD

D E
¼ 2

3
−pþ 11

24
p2−

1

6
2p3−3pp3 þ p2p3
� �

1−cos 2θð Þ½ �

þ 1

3
1−

3

2
pþ 3

4
p2

	 
 ffiffiffiffiffiffiffiffiffiffi
1−p3

p
sin 2θð Þsin 2φð Þ;

ð60Þ

FD;D;PhF

D E
¼ 2

3
−pþ 11

24
p2 þ 1

3
−
1

2
pþ 1

4
p2

	 

j1−2p3jsin 2θð Þsin 2φð Þ; ð61Þ

Fig. 12 (Color online) Optimal efficiency of the controlled RSP protocol when the qubits 1 and 2 (p) and
Charlie’s qubit (p3) are affected by the different environments, where the qubits 1 and 2 is always subjected to
amplitude-damping (AD) noise while Charlie’s qubit may suffer from several types of noise
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Fig. 13 (Color online) Optimal efficiency of the controlled RSP protocol when the qubits 1 and 2 (p) and
Charlie’s qubit (p3) are affected by the different environments, where the qubits 1 and 2 is always subjected to the
phase-flip (PhF) noise while Charlie’s qubit may suffer from several types of noise

Fig. 14 (Color online) Optimal efficiency of the controlled RSP protocol when the qubits 1 and 2 (p) and
Charlie’s qubit (p3) are affected by the different environments, where the qubits 1 and 2 is always subjected to the
depolarizing (D) noise while Charlie’s qubit may suffer from several types of noise
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FD;D;D

D E
¼ 2

3
−pþ 11

24
p2 þ 1

4
pp3−

1

6
p3−

1

12
p2p3

þ 1

3
−
1

2
pþ 1

4
p2

	 

1−p3ð Þsin 2θð Þsin 2φð Þ:

ð62Þ

From Eqs. (59)–(62), we see the optimal efficiencies depend on the parameters p, p3, θ and φ.
And the optimal efficiencies are occurred at θ =φ = π/4. In Fig. 14, we plot the optimal
efficiencies at the different values of noisy rates p and p3 in terms of Eqs. (59)–(62), where 0 ≤
p ≤ 1, 0 ≤ p3 ≤ 1, and θ =φ = π/4.

The results show that by putting Charlie’s qubit in a noisy environment given in Sec. 3,
thus, we cannot raise the efficiency of the protocol.

In these four cases in terms of Eqs.(47)–(62) for a non-maximally three-qubit pure
entangled state as quantum channel, we do not find an approach to implement the perfect
controlled RSP under the noisy effects environments. By adjusting the relations among the
noisy rates and initial entangled angles or choosing an adapted noisy environment, however,
we can improve the optimal efficiency of the controlled RSP protocol.

5 Conclusions

In summary, we investigated how the efficiency of the controlled RSP protocol is
affected by all possible noisy environments, i.e., the bit-flip noise, amplitude-damping
noise, phase-flip noise, and depolarizing noise channels, where the several realistic
scenarios, i.e., a part and all of the qubits are subjected to the same or different types
of noise, are considered. We show how to beat the decrease in the efficiency of the
protocol due to noise with noise.

At first, we find that less entanglement means more efficiency when the qubit 1 lies in
the bit-flip noise and at the same time Charlie’s qubit lies in the amplitude damping
noise. And the similar result is also observed when the channel qubit 1 is subjected to the
amplitude-damping noise and at the same time Charlie’s qubit lies in the bit-flip noise.
For other noise scenarios with the same initial entanglement state, we could not find this
behavior. In the limit of pure quantum channels, more entanglement leads to more
efficiency.

Secondly, we show a scenario that more noise leads to more efficiency. This fact occurred
when the qubit 1 lies in the bit-flip noise (or phase-flip noise) and Charlie’s qubit is also
affected by this same noise, the efficiency is considerably greater in comparison with the
situation of only the qubit 1 in this type of noise. Such a behavior was also observed in Ref.
[45] when the channel qubits are subjected to the amplitude-damping noise.

Under an unavoidable noisy environment, thirdly, we find that Charlie should keep his
qubit in a noisy environments described by the phase-flip map in order to get the best
performance for the protocol. Furthermore, in many scenarios we can raise the efficiency of
the protocol beyond the classical limit with the value 2/3.

By using a non-maximally three-qubit pure entangled state as quantum channel in a
noisy environment, especially, it is surprise that the average fidelity can reach one, i.e.,
perfect controlled RSP can be achieved by adjusting the initial angle of the quantum
channel and controlling the noise rate and choosing the types of noisy environments. In
this case, the controller Bob only needs to perform a single-particle measurement in the
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diagonal basis j � 〉 ¼ j0〉� j1〉ð Þ= ffiffiffi
2

p
. Thus it is possible to conquer the decrease of

efficiency in the protocol due to the noise with another noise.
Finally, we find that the optimal combination in the noisy environments can lead to the

greatest efficiencies by choosing the kinds of noise interacting with the qubits. In many
situations, Alice, Bob and Charlie should subject their qubits to the same noise in order to
get the better scheme to perform the controlled RSP protocol. A potentially feasible approach
to the optimal efficiency is obtained by putting one of the qubits that are sent to different kinds
of noise for a longer time than the other one.
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Appendix

Bit-flip noise

The bit-flip noise changes a qubit state from ∣0〉 to ∣1〉 or from ∣1〉 to ∣0〉 with a probability p
and is frequently used in the theory of quantum-error correction. The associated Kraus
operators are given by

E1 ¼
ffiffiffiffiffiffiffiffi
1−p

p
0

0
ffiffiffiffiffiffiffiffi
1−p

p
	 


;E2 ¼ 0
ffiffiffi
p

pffiffiffi
p

p
0

	 

: ð63Þ

Amplitude-damping noise

The amplitude-damping noise channel allows us to describe the decay of a two-level system
due to spontaneous emission of a phonon. This process is accompanied with the loss of energy
and can be described by the Kraus operators,

E1 ¼ 1 0
0

ffiffiffiffiffiffiffiffi
1−p

p	 

;E2 ¼ 0

ffiffiffi
p

p
0 0

	 

: ð64Þ

The quantity p is regarded as a decay probability from the excited to the ground state for a two-
level system.

Phase-flip noise

The phase-flip noise channel has no classical analog because it describes the loss of quantum
information without loss of energy. The quantum information corresponding to the ability of a
system to produce quantum interferences hence is described by the off-diagonal elements of a
density matrix. Phase-flip map can be occurred in the phase kicks or scattering processes. Such
a channel can be modeled by the following Kraus operators,

E1 ¼
ffiffiffiffiffiffiffiffi
1−p

p
0

0
ffiffiffiffiffiffiffiffi
1−p

p
	 


;E2 ¼
ffiffiffi
p

p
0

0 −
ffiffiffi
p

p
	 


: ð65Þ
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Depolarizing noise

The depolarizing noise channel is a decoherent model. The Kraus operators including all
possible decay ways for the depolarizing channel are given by

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3p=4

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3p=4

p
	 


;E2 ¼ 0
ffiffiffiffiffiffiffiffi
p=4

p
ffiffiffiffiffiffiffiffi
p=4

p
0

	 

σx;E3 ¼ 0 −i

ffiffiffiffiffiffiffiffi
p=4

p
i

ffiffiffiffiffiffiffiffi
p=4

p
0

	 

;

E4 ¼
ffiffiffiffiffiffiffiffi
p=4

p
0

0 −
ffiffiffiffiffiffiffiffi
p=4

p
	 


:

ð66Þ
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