
Influence of Magnetic Field on Qutrit Teleportation
under Intrinsic Decoherence

Negar Naderi1 & Mojtaba Jafapour1

Received: 10 August 2018 /Accepted: 26 November 2018 /Published online: 3 January 2019
# Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We study qutrit teleportation through a qutrit xyz chain, in the presence of intrinsic decoherence
and a non-homogeneous magnetic field. We study the effects of intrinsic phase change,
magnetic field and entanglement of the initial state of the channel. It is observed that while
the intrinsic phase change and the non-homogeneity of the magnetic field have adverse effects
on the teleportation fidelity, the entanglement of the initial state of the channeled enhances the
latter. Moreover, the intrinsic decoherence may remove the ripples from the time curve that is
delivered by the Schrödinger channel.

Keywords Qutrit . Teleportation . Intrinsic decoherence .Environmental decoherence,Entangled
state . Product state . Fidelity, Homogeneousmagnetic field, Inhomogeneous magnetic field

1 Introduction

Quantum entanglement, a non-classical property of the physical systems, has been considered a
resource to perform several information processing tasks which are not possible in the classical
realm [1]. There has been a concerted effort to study the entanglement properties of the spin
chains in the last decade; they have been used in several quantum information processes
including quantum computations [2, 3], quantum communications [4] and have been consid-
ered as relatively realistic models to study quantum dots [5, 6], superconductivity [7] and phase
transitions [8]. Spin chains, specifically the spin-12ones, have been also considered as appropri-

ate media to perform quantum teleportation and their properties in the absence [9–12] or in the
presence of the environment decoherence [13–16]. A few papers also consider the effect of the
intrinsic decoherence, as was formulated by Milburn [17], on teleportation via the12-spin chains
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[13, 18]. It has been also reported that application of a homogeneous magnetic field may reduce
the adverse effect of the intrinsic decoherence on the teleportation [13], while another research
reports a similar effect, in a xxz chain, if a non-homogeneous magnetic field is applied [18].

Reports regarding qutrit teleportation are few and far between [19–21]. A reference reports
qutrit state transfer between two cavities [19]. Probabilistic qutrit teleportation has been also
discussed [20]. Teleportation of one – and two-qutrit systems, through a maximally entangled
quantum channel of three-qutrit channel, has been also reported [21]. We have also considered
the teleportation of a qutrit state through an xyz chain model, and have studied the effect of the
entanglement of the initial state of the channel on that, previously [22]. Our aim in this work is
to consider qutrit teleportation through a qutrit xyz chain, in the presence of the intrinsic
decoherence; while a non-homogeneous magnetic field is also applied, to study its possible
improving effects onthe teleportation, as has been reported in the case of spin-12 models [18].

2 Theoretical Model

We intend to study qutrit teleportation through a qutritxyzHeisenberg chain under non-
homogeneous magnetic field. Considering a two-qutrit chain, its Hamiltonian is given by

H ¼ JX SX1 ⊗SX2 þ JY SY1⊗SY2 þ JZSZ1⊗SZ2 þ Bþ bð Þ SZ1⊗I
� �þ B−bð Þ I⊗SZ2

� �
; ð1Þ

Where, Ji‘s are the interaction parameters, B is homogeneous magnetic field, b is the
inhomogeneous magnetic field and the qutrit operators are given by [23].

Sx ¼ 1ffiffiffi
2

p
0 1 0
1 0 1
0 1 0

0
@

1
A; ð2� aÞ

Sy ¼ 1ffiffiffi
2

p
0 −i 0
i 0 −i
0 i 0

0
@

1
A; ð2� bÞ

Sz ¼
1 0 0
0 0 0
0 0 −1

0
@

1
A: ð2� cÞ

The matrix representation of the Hamiltonian in the computational basis is given by

H ¼

2þ 2B 0 0 0 −1 0 0 0 0
0 Bþ b 0 2 0 −1 0 0 0
0 0 −2þ 2b 0 2 0 0 0 0
0 2 0 −bþ B 0 0 0 −1 0
−1 0 2 0 0 0 2 0 −1
0 −1 0 0 0 b−B 0 2 0
0 0 0 0 2 0 −2−2b 0 0
0 0 0 −1 0 2 0 −b−B 0
0 0 0 0 −1 0 0 0 2−2B

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð3Þ
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whose eigenvalues are expressed by

E1 ¼ − 5þ b2 þ B2−2A1

� �1
2 ; ð4� aÞ

E2 ¼ −E1; ð4� bÞ

E3 ¼ − 5þ b2 þ B2 þ 2A1

� �1
2 ; ð4� cÞ

E4 ¼ −E3; ð4� dÞ

E5 ¼ Root1
h
−48−16b2 þ 64B2 þ 56−8b2 þ 16B2 þ 16b2B2

� �
X

þ 12þ 16b2−16B2
� �

X 2 þ −18−4b2−4B2
� �

X 3 þ X 5 ¼ 0
i
;

ð4� eÞ

E6 ¼ Root2
h
−48−16b2 þ 64B2 þ 56−8b2 þ 16B2 þ 16b2B2

� �
X

þ 12þ 16b2−16B2
� �

X 2 þ −18−4b2−4B2
� �

X 3 þ X 5 ¼ 0
i
;

ð4� fÞ

E7 ¼ Root3
h
−48−16b2 þ 64B2 þ 56−8b2 þ 16B2 þ 16b2B2

� �
X

þ 12þ 16b2−16B2
� �

X 2 þ −18−4b2−4B2
� �

X 3 þ X 5 ¼ 0
i
;

ð4� gÞ

E8 ¼ Root4
h
−48−16b2 þ 64B2 þ 56−8b2 þ 16B2 þ 16b2B2

� �
X

þ 12þ 16b2−16B2
� �

X 2 þ −18−4b2−4B2
� �

X 3 þ X 5 ¼ 0
i
;

ð4� hÞ

E9 ¼ Root5
h
−48−16b2 þ 64B2 þ 56−8b2 þ 16B2 þ 16b2B2

� �
X

þ 12þ 16b2−16B2
� �

X 2 þ −18−4b2−4B2
� �

X 3 þ X 5 ¼ 0
i
:

ð4� iÞ

And the corresponding eigenfunctions are

jψ1〉 ¼
n

1−A*
1 þ B* B*−E*

2

� �� �j1^1̂; 0^2̂〉þ E*
2

�
2þ A*

2 −B* þ bþ E2ð Þ*
� �

j0^1̂; 1^2̂〉

þA*
2E

*
2j1^1̂; 2^2̂〉þ E*

2j2^1̂; 1^2̂〉
o�

1þ A2j j2 þ 1−A1 þ B B−E2ð Þð Þj j2 E2j j2
� �−1

þ 2þ A2 b−Bþ E2ð Þð Þj j2
�
−1
2 ;

ð5� aÞ

International Journal of Theoretical Physics (2019) 58:799–816 801



jψ2〉 ¼
n

−1þ A1−B Bþ E2ð Þð Þ*
� �

j1^1̂; 0^2̂〉þ E*
2 2þ A*

3 b*− Bþ E2ð Þ*
� �� �

j0^1̂; 1^2̂〉

þA*
3E

*
2j1^1̂; 2^2̂〉þ E*

2j2^1̂; 1^2̂〉
o�

1þ A3j j2 þ −1þ A1−B Bþ E2ð Þð Þj j2 E2j j2
� �−1

þ 2þ A3 b−Bþ E2ð Þð Þj j2
�
−1
2 ;

ð5� bÞ

jψ3〉 ¼
n

1þ A1 þ B B−E4ð Þð Þ*
� �

j1^1̂; 0^2̂〉þ E*
4 2þ A*

4 −B* þ bþ E4ð Þ*
� �� �

j0^1̂; 1^2̂〉

þA*
4E

*
4j1^1̂; 2^2̂〉þ E*

4j2^1̂; 1^2̂〉
o�

1þ A4j j2 þ 1þ A1 þ B B−E4ð Þð Þj j2 E4j j2
� �−1

þ 2þ A4 b−Bþ E4ð Þð Þj j2
�
−1
2 ;

ð5� cÞ
jψ4〉 ¼

n
− 1þ A*

1 þ B Bþ E4ð Þð Þ*
� �

j1^1̂; 0^2̂〉þ E*
4 2þ A*

5 b*− Bþ E4ð Þ*
� �� �

j0^1̂; 1^2̂〉

þA*
5E

*
4j1^1̂; 2^2̂〉þ E*

4j2^1̂; 1^2̂〉
o�

1þ A5j j2 þ 1þ A1 þ B Bþ E4ð Þð Þj j2 E4j j2
� �−1

þ 2−A5 −bþ Bþ E4ð Þð Þj j2
�
−1
2 ;

ð5� dÞ

jψ5〉 ¼
n

−9−2A*
6 þ 2A*

7 þ 2 B*−1
� �

E*
5 þ E*

5

� �2� �
j0^1̂; 0^2̂〉þ −2−A*

6

� �j0^1̂; 2^2̂〉

þ 2−2B*−E*
5

� �j1^1̂; 1^2̂〉þ −2þ A*
7

� �j2^1̂; 0^2̂〉þ j2^1̂; 2^2̂〉
o

1þ −2−A6j j2 þ −2þ A7j j2 þ 2−2B−E5j j2 þ −9−2A6 þ 2A7 þ 2 B−1ð ÞE5 þ E5ð Þ2�� ��2� �−1
2
;

ð5� eÞ

jψ6〉 ¼
n

−9−2A*
8 þ 2A*

9 þ 2 B*−1
� �

E*
6 þ E*

6

� �2� �
j0^1̂; 0^2̂〉þ −2−A*

8

� �j0^1̂; 2^2̂〉

þ 2−2B*−E*
6

� �j1^1̂; 1^2̂〉þ −2þ A*
9

� �j2^1̂; 0^2̂〉þ j2^1̂; 2^2̂〉
o

1þ −2−A8j j2 þ −2þ A9j j2 þ 2−2B−E6j j2 þ −9−2A8 þ 2A9 þ 2 B−1ð ÞE6 þ E6ð Þ2�� ��2� �−1
2
;

ð5� fÞ

jψ7〉 ¼
n

−9−2A*
10 þ 2A*

11 þ 2 B*−1
� �

E*
7 þ E*

7

� �2� �
j0^1̂; 0^2̂〉þ −2−A*

10

� �j0^1̂; 2^2̂〉

þ 2−2B*−E*
7

� �j1^1̂; 1^2̂〉þ −2þ A*
11

� �j2^1̂; 0^2̂〉þ j2^1̂; 2^2̂〉
o

1þ −2−A10j j2 þ −2þ A11j j2 þ 2−2B−E7j j2 þ −9−2A10 þ 2A11 þ 2 B−1ð ÞE7 þ E7ð Þ2�� ��2� �−1
2
;

ð5� gÞ

jψ8〉 ¼
n

−9−2A*
12 þ 2A*

13 þ 2 B*−1
� �

E*
8 þ E*

8

� �2� �
j0^1̂; 0^2̂〉þ −2−A*

12

� �j0^1̂; 2^2̂〉

þ 2−2B*−E*
8

� �j1^1̂; 1^2̂〉þ −2þ A*
13

� �j2^1̂; 0^2̂〉þ j2^1̂; 2^2̂〉
o

1þ −2−A12j j2 þ −2þ A13j j2 þ 2−2B−E8j j2 þ −9−2A12 þ 2A13 þ 2 B−1ð ÞE8 þ E8ð Þ2�� ��2� �−1
2
;

ð5� hÞ
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jψ9〉 ¼
n

−9−2A*
14 þ 2A*

15 þ 2 B*−1
� �

E*
9 þ E*

9

� �2� �
j0^1̂; 0^2̂〉þ −2−A*

14

� �j0^1̂; 2^2̂〉

þ 2−2B*−E*
9

� �j1^1̂; 1^2̂〉þ −2þ A*
15

� �j2^1̂; 0^2̂〉þ j2^1̂; 2^2̂〉
o

1þ −2−A14j j2 þ −2þ A15j j2 þ 2−2B−E9j j2 þ −9−2A14 þ 2A15 þ 2 B−1ð ÞE9 þ E9ð Þ2�� ��2� �−1
2
;

ð5� iÞ
Where, we have defined

A1 ¼ 4þ b2
� �

1þ B2
� �� �1

2 : ð6� aÞ

A2 ¼ A1−4þ b E2−bð Þð Þ 2E2ð Þ−1; ð6� bÞ

A3 ¼ −A1 þ 4þ b E2 þ bð Þð Þ 2E2ð Þ−1; ð6� cÞ

A4 ¼ −A1−4þ b E4−bð Þð Þ 2E4ð Þ−1; ð6� dÞ

A5 ¼ A1 þ 4þ b E4 þ bð Þð Þ 2E4ð Þ−1; ð6� fÞ

A6 ¼ 4 −2þ bþ Bð Þ 2−2bþ E5ð Þ−1; ð6� fÞ

A7 ¼ 4 2þ b−Bð Þ 2þ 2bþ E5ð Þ−1; ð6� gÞ

A8 ¼ 4 −2þ bþ Bð Þ 2−2bþ E6ð Þ−1; ð6� hÞ

A9 ¼ 4 2þ b−Bð Þ 2þ 2bþ E6ð Þ−1; ð6� iÞ

A10 ¼ 4 −2þ bþ Bð Þ 2−2bþ E7ð Þ−1; ð6� jÞ

A11 ¼ 4 2þ b−Bð Þ 2þ 2bþ E7ð Þ−1; ð6� kÞ

A12 ¼ 4 −2þ bþ Bð Þ 2−2bþ E8ð Þ−1; ð6� lÞ

A13 ¼ 4 2þ b−Bð Þ 2þ 2bþ E8ð Þ−1; ð6�mÞ
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A14 ¼ 4 −2þ bþ Bð Þ 2−2bþ E9ð Þ−1; ð6� nÞ

A15 ¼ 4 2þ b−Bð Þ 2þ 2bþ E9ð Þ−1; ð6� oÞ

3 Schrödinger and Milburn Evolution of an Initial Product State

The evolution under Schrödinger equation is given by

ρSh tð Þ ¼ U tð Þρ 0ð ÞU† tð Þ ð7Þ
where,

U tð Þ ¼ e−i
H t−t0ð Þ

ℏ : ð8Þ
The evolution of the initial state under Millburn model is given by

dρ̂̂ tð Þ
dt

¼ 1

η
e
−iηĤ̂
ℏ ρ̂̂ 0ð ÞeiηĤ̂

ℏ

� �
−ρ̂̂ 0ð Þ

n o
; ð9Þ

where, η aris the minimum phase change and ρ(0) the initial density matrix of the system [17].
Solving this equation we find [24].

ρ̂̂ tð ÞM ¼ ∑
mn

exp
−tη
2

Em−Enð Þ2−it Em−Enð Þ
h i

ψmjρ̂̂ 0ð Þjψnh ijψm〉〈ψnj: ð10Þ

where, ∣ψn〉 and Enare given in eqs. (5-a) to (5-i) and (4-a) to (4-i) respectively. Now
considering the initial product state

jψ0〉 ¼ j01; 12〉: ð11Þ
The matrix representation is given by

ρSh−P tð Þ ¼

0 0 0 0 0 0 0 0 0
0 I1j j2 0 I2I*1 0 I3I*1 0 I4I*1 0
0 0 0 0 0 0 0 0 0
0 I1I*2 0 I2j j2 0 I3I*2 0 I4I*2 0
0 0 0 0 0 0 0 0 0
0 I1I*3 0 I2I*3 0 I3j j2 0 I4I*3 0
0 0 0 0 0 0 0 0 0
0 I1I*4 0 I2I*4 0 I3I*4 0 I4j j2 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð12Þ

where, theIi parameters are too complicated to write it down and they are saved in our
computer program. Similarly, we find
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ρM−P ¼

0 0 0 0 0 0 0 0 0
0 H1 0 H2 0 H3 0 H4 0
0 0 0 0 0 0 0 0 0
0 H5 0 H6 0 H7 0 H8 0
0 0 0 0 0 0 0 0 0
0 H9 0 H10 0 H11 0 H12 0
0 0 0 0 0 0 0 0 0
0 H13 0 H14 0 H15 0 H16 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð13Þ

where, the Hi parameters are too complicated to write it down and they are saved in our
computer program.

4 Teleportation using Schrödinger and Milburn Channel Whose Initial
State is a Product One

We consider the following incoming state to be teleported

jΛin〉 ¼ 1ffiffiffi
3

p j0〉þ j1〉þ j2〉
� �

; ð14Þ

whose corresponding density matrix is expressed by

ρin ¼
1

3

1 1 1
1 1 1
1 1 1

0
@

1
A: ð15Þ

The outgoing state is given by [25].

ρout ¼ ∑
8

j¼0
Tr E jρ tð Þ� �

Γ jρinΓ
j� 	
; ð16Þ

where, Γj(j = 1, ..., 8) are Gell-Mann matrices [26] and the density matrices Ej
‘s represent the

two-qutrit maximally entangled states (ME) [27] which are expressed in appendix 1 and 2,
respectively.

0 1 2 3 4 5 6
t0.0

0.1

0.2

0.3

0.4

0.5

fidelity

Fig. 1 FSh − P (solid line) and FM −P (dotted line) as a function oft; Jx = 1, Jy = 3, Jz = 2, b = 1, η = 1, B = 1
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The fidelity of the teleportation may be defined by [28].

F ρin; ρoutð Þ ¼ Tr ρin
1
2ρoutρin

1
2

� �1
2


 �2
: ð17Þ

Now using eqs. (11), (14) and (15) we find

FSh−P ¼ 2

27
4I1 þ 1−3

1
2 i

� �
I2

� �
I*1 þ 1þ 3

1
2 i

� �
I1 þ 4I2

� �
I*2

h i
ð18Þ

and using eqs. (12), (14) and (15) also we find

FM−P ¼ 2

27
3

1
2 Im H2½ �−Im H5½ �ð Þ þ Re 4H1 þ H2 þ H5 þ 4H6½ �

� �
: ð19Þ

In Fig. 1, fidelities of Schrödinger and Milburn non-entangled channels as a function of
time are plotted: It is observed that both start at the same value, but FM − P decreases
monotonically while FSh − P fluctuates in time. Moreover, it is observed that at specific
periods of time, FSh − P gains larges values than that of Milburn fidelity and it is vice
versa in specific periods of time.

Figure 2, depicts the fidelity of Schrödinger non-entangled channel as a function of
time in the presence of an inhomogeneous magnetic field (b). By increasing an inhomo-
geneous magnetic field, the time periods of the fidelity become shorter and the latter
decreases. Also, in Fig. 3, the fidelity of the Schrödinger non-entangled channel as a
function of time for three different values of homogeneous magnetic field (B) is plotted.
Increasing the homogeneous magnetic field, does not have any appreciable effect on the
fidelity; only the latter increases slightly.

Fig. 2 FSh − P as a function of t and b; Jx = 1, Jy = 3, Jz = 2, B = 10
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In Fig. 4 we have plotted fidelity of the non-entangled Milburn channel as a function of
time and the inhomogeneous magnetic field (b). Also Fig. 5, depicts the fidelity of the non-
entangled Milburn channel as a function of time, for three different values of homogeneous
magnetic field (B). It is deduced that fidelity increases as the homogenous or the inhomoge-
neous magnetic field are increased.

In Fig. 6, the fidelity of non-entangled Milburn channel is shown as a function of time
for three different values of the decoherence phase (η). It is observed that by increasing (η),
the fidelity first decreases slightly but finally follows a plateau in time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t0.1

0.2

0.3

0.4

0.5

fidelity

Fig. 3 FSh −P (B = 3: thick solid line, B = 6: dotted line, B = 10: thin solid line) as a function of t; Jx = 1,Jy = 3, Jz =
2, b = 1, η = 1

Fig. 4 FM −P as a function of t and b; Jx = 1, Jy = 3, Jz = 2, η = 1, B = 10
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5 Teleportation using Schrödinger and Milburn Channel Whose Initial
State is Entangled

Now we consider the entangled state

jϕ0〉 ¼ 1ffiffiffi
3

p j0; 0〉þ j1; 1〉þ j2; 2〉
� �

; ð20Þ

Which following the same procedure as the previous section leads to the following density
matrices for the channel

0.0 0.5 1.0 1.5 2.0
t

0.26

0.28

0.30

0.32

0.34

fidelity

Fig. 5 FM − P (B = 3: thick solid line, B = 6: dotted line, B = 10: thin solid line) as a function of t; Jx = 1, Jy = 3,
Jz = 2, b = 1, η = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0.26

0.28

0.30

0.32

0.34

fidelity

Fig. 6 FM −P (η = 1: thick solid line, η = 2: dotted line, η = 3: thin solid line) as a function of t; Jx = 1, Jy = 3, Jz = 2,
b = 1, B = 10

808 International Journal of Theoretical Physics (2019) 58:799–816



ρSh−E tð Þ ¼

C1C*
1 0 C2C*

1 0 C3C*
1 0 C4C*

1 0 C5C*
1

0 0 0 0 0 0 0 0 0
C1C*

2 0 C2C*
2 0 C3C*

2 0 C4C*
2 0 C5C*

2
0 0 0 0 0 0 0 0 0

C1C*
3 0 C2C*

3 0 C3C*
3 0 C4C*

3 0 C5C*
3

0 0 0 0 0 0 0 0 0
C1C*

4 0 C2C*
4 0 C3C*

4 0 C4C*
4 0 C5C*

4
0 0 0 0 0 0 0 0 0

C1C*
5 0 C2C*

5 0 C3C*
5 0 C4C*

5 0 C5C*
5

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð21Þ

where, the Ci parameters are too complicated to write it down and they are saved in our
computer program, and

0 1 2 3 4 5 6
t0.0

0.1

0.2

0.3

0.4

0.5

0.6

fidelity

Fig. 7 FSh − E (solid line) and FM −E (dotted line) as a function oft; Jx = 1, Jy = 3, Jz = 2, b = 1, η = 1, B = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t0.1

0.2

0.3

0.4

0.5

fidelity

Fig. 8 FSh −E (b = 0: thick solid line, b = 1: dotted line, b = 3: thin solid line) as a function of t; Jx = 1, Jy = 3, Jz =
2, B = 10
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ρM−E ¼

G1 0 G2 0 G3 0 G4 0 G5

0 0 0 0 0 0 0 0 0
G6 0 G7 0 G8 0 G9 0 G10

0 0 0 0 0 0 0 0 0
G11 0 G12 0 G13 0 G14 0 G15

0 0 0 0 0 0 0 0 0
G16 0 G17 0 G18 0 G19 0 G20

0 0 0 0 0 0 0 0 0
G21 0 G22 0 G23 0 G24 0 G25

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð22Þ

where, the Gi parameters are too complicated to write it down and they are saved in our
computer program. The above two density matrices also lead to the following fidelities,
following the same procedure as the previous section.

FSh−E ¼ 1

27

�
2*3

1
2Im C3−C2ð ÞC*

4

� 
þ Re
h

13C2 þ 7þ 2*3
1
2 i

� �
C3 þ 7−2*3

1
2 i

� �
C4

� �
C*

2

þ 7−2*3
1
2 i

� �
C2 þ 13C3 þ 7þ 2*3

1
2 i

� �
C4

� �
C*

3 þ 7 C2 þ C3ð Þ þ 13C4ð ÞC*
4 þ 8 C5j j2

i�
:

ð23ÞAnd

FM−E ¼ 1

27

�
2*3

1
2Im G12−G14−G17 þ G18−G8 þ G9½ �

þRe 13 G7 þ G13 þ G19ð Þ þ 7 G8 þ G9 þ G12 þ G14 þ G17 þ G18ð Þ þ 8G25½ �
�
:

ð24Þ

In Fig. 7, fidelity of the entangled Schrödinger and Milburn channel as a function of time are
plotted. It is noted that the Schrödinger fidelity is larger than the Milburn one most of the time.

In Figs. 8 and 9, fidelities of entangled Schrödinger channel as a function of time for three
different values of inhomogeneous (b) and homogeneous (B) magnetic fields are plotted. It is
observed that as the inhomogeneous (b) and homogeneous (B) magnetic fields are increased,
fidelities on the average decrease.

In Figs. 10 and 11, fidelities of the entangled Milburn channel as a function of time for three
different values of the inhomogeneous (b) and the homogeneous (B) magnetic fields are
shown. As the inhomogeneous magnetic field increases, the fidelity decreases; while, as the
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Fig. 9 FSh −E (B = 3: thick solid line, B = 6: dotted line, B = 10: thin solid line) as a function of t; Jx = 1, Jy = 3,
Jz = 2, b = 1
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homogeneous magnetic field increases the fidelity is increased. Moreover, for large values of
the homogeneous field, fidelity follows a plateau.

In Fig. 12, fidelity of entangled Milburn channel as a function of time for three different
values of decoherence phase (η) are shown. It is observed that, when the channel is entangled,
an increase in (η), initially increases the fidelity slightly for small periods of time; however,
does not have an appreciable effect for large times.

6 Comparison of the Fidelity for Entangled and Non-Entangled Channels
Under the Schrödinger and Milburn Evolution

In Fig. 13, FSh− P and FSh − E and in Fig. 14 FM − P and FM − E as a function of time are shown. In
both of Schrödinger and Milburn evolution, fidelity of entangled channel is superior to non-
entangled channel in most of the times. However, for small times, the situation is vice versa.
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Fig. 11 FM −E (B = 3: thick solid line, B = 6: dotted line, B = 10: thin solid line) as a function of t; Jx = 1, Jy = 3,
Jz = 2, b = 1, η = 1
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Fig. 10 FM −E (b = 0.1: thick solid line, b = 1: dotted line, b = 3: thin solid line) as a function of t; Jx = 1,Jy = 3,
Jz = 2, η = 1, B = 10
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In Fig. 15 FM − P and FM − E as a function of decoherence phase η are plotted. It is observed
that as η increases, both entangled and non-entangled Milburn fidelity increase, but finally they
follow their respective plateaus.

7 Conclusions and Discussion

For non-entangled Schrödinger channel, in the absence of decoherence, an increase in the
inhomogeneous magnetic field, increases fidelity but its fluctuation periods decrease. An
increase of the homogeneous magnetic field for this channel does not have any appreciable
effect on the fidelity, only increases slightly. For entangled Schrödinger channel, an increase in
the inhomogeneous or homogeneous magnetic field increases the fidelity on the average.

For the non-entangled Milburn channel, an increase of the homogeneous or inhomogeneous
magnetic field increases the fidelity. For entangled Milburn channel, an increase of the
inhomogeneous magnetic field decreases the fidelity, but an increase of the homogeneous
magnetic field increases the latter.
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Fig. 13 FSh −P (solid line) andFSh −E (dotted line) as a function of t: Jx = 1, Jy = 3, Jz = 2, b = 1, η = 1, B = 1
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Fig. 12 FM −E (η = 1: thick solid line, η = 2: dotted line, η = 3: thin solid line) as a function oft; Jx = 1, Jy = 3, Jz =
2, b = 1, B = 10
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We also note an interesting observation regarding the Milburn channel: The fidelity of the
entangled Milburn channel increases due to decoherence, while that of the nonentangled
channel decreases, due to small decoherence effects; however, for the larger values of the
decoherence, the fidelity is not appreciably changed for both entangled and non-entangled
channels.

Finally we consider some results obtained in the case of two-qubit teleportation in the
presence of the intrinsic decoherence for comparison. In reference (13) it is found that
both entangled and non-entangled initial states are appropriate for teleportation and the
tuning of the magnetic field can improve the fidelity. We have also observed a similar
result regarding our initial-qutrit entangled and non-entangled states in the presence of
the magnetic fields. In reference (15) the Dzyaloshinskii–Moriya interaction has also
been considered; it is observed that the Dm interaction and both homogeneous and
inhomogeneous part of the field can influence the fidelity, depending on the entangled
initial state. We observed in our work that for the qutrit-entangled Milburn channel, an
increase of the inhomogeneous magnetic field decreases the fidelity, but an increase of
the homogeneous magnetic field increases the latter.
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Fig. 15 FM −P (solid line) and FM −E (dotted line) as a function of η: Jx = 1, Jy = 3, Jz = 2, b = 1, t = 1, B = 1
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Fig. 14 FM −P (solid line) and FM −E (dotted line) as a function of t: Jx = 1, Jy = 3, Jz = 2, b = 1, η = 1, B = 1
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Appendix 1

Γ 0 ¼
1 0 0
0 1 0
0 0 1

0
@

1
A; ð25Þ
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1 0 0
0 0 0

0
@

1
A; ð26Þ

Γ 2 ¼
0 −i 0
i 0 0
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0
@

1
A; ð27Þ
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0
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1
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Appendix 2

jϕ0〉 ¼ 1ffiffiffi
3

p j2; 0〉þ j1; 1〉þ j0; 2〉
� �

ð34Þ

jϕ1〉 ¼ 1ffiffiffi
3

p j1; 0〉þ j0; 1〉þ j2; 2〉
� �

ð35Þ

jϕ2〉 ¼ 1ffiffiffi
3

p j0; 0〉þ j2; 1〉þ j1; 2〉
� �

ð36Þ

jϕ3〉 ¼ 1ffiffiffi
3

p j2; 0〉þ e
2πi
3 j1; 1〉þ e−

2πi
3 j0; 2〉

� �
ð37Þ

jϕ4〉 ¼ 1ffiffiffi
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2πi
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jϕ5〉 ¼ 1ffiffiffi
3

p j0; 0〉þ e
2πi
3 j2; 1〉þ e−

2πi
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jϕ6〉 ¼ 1ffiffiffi
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