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Abstract
In this paper, based on the principle of classical morphology operations, the flat grayscale
dilation and erosion operations are proposed for NEQR quantum image model. Furthermore,
through combining these two morphology operations, we further realize the morphological
gradient operation. As the basis of designing of grayscale morphology operations, a series of
quantum circuit designs arepresented, which includes special add one operation UA1(n) and
special subtract one operation US1(n) both for an n-length qubits sequence, quantum unitary
operation UC, parallel subtractor (PS) module, quantum comparator output the large QCOL
and quantum comparator output the small QCOS modules. When designsthe concrete quan-
tum circuit, a sequence of UA1(n) and US1(n) modules are used to obtain the quantum image
sets based on the shape of specific structuring element. Then, the searching for maximaor
minima in a certain space is involved, which can be solved by cascading a series of QCOL and
QCOS modules in certain order. Finally, the PS module can be used to calculate the difference
of the maxima and minima for producing the morphological gradient. The circuit’s complexity
analysis illustrate that our scheme is very lower to the classical morphology operations.

Keywords Quantummorphological gradient . Quantum dilation . Quantum erosion . Quantum
circuit

1 Introduction

As the advantages of quantum physics, the idea to simulate physics with computers is put forward
[1]. Quantum image processing (QIP) is a young emerging cross-discipline of image processing
and quantummechanics. From 1996, QIP gradually comes into our sight. It is primarily devoted to
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utilizing quantum computing technologies to capture, manipulate, and recover quantum images in
different formats and for different purposes [2, 3]. Reference [4] describes the “analogue” quantum
computers to discuss image analysis. Besides, references [5, 6] design algorithms based on
unstructured picture (data set). Due to some of the astounding properties inherent to quantum
computation, the quantum computer has demonstrated a bright prospect over the classic computer,
particularly in Feynman’s computation model [1], Deutsch’s quantum parallelism assertion [7],
Shor’s integer factoring algorithm [8] and Grover’s database searching algorithm [9].

In terms of applications, available literature on quantum image processing can be broadly
classified into two groups: quantum-inspired image processing and classically inspired quan-
tum image processing [10–12], respectively. The first step of quantum image processing thatis
to store imagesin a quantum computer through quantum image representation. Consequently,
several representative models aredeveloped and the pioneering work is the quantum image
model of Qubit Lattice [13]. Following that, entangled images, in which geometric shapes are
encoded in quantum states [14]; and Real Ket, where the images are quantum states having
gray levels as coefficients of the states [15], were proposed by Venegas-Andraca and Latorre,
respectively. More recently, Le et al. [16] proposed a flexible representation of quantum image
(FRQI) using quantum superposition state to store the colors and the corresponding positions
of an image. Years later, more quantum image representations [17–20] were proposed, which
includes: a novel enhanced quantum representation (NEQR) [17] used q qubits encoding the
gray-scale values. Thus make the NEQR could perform the complex and elaborate color
operations more conveniently than FRQI.

Then, based on the work of quantum image representation models, there are many quantum
image processing algorithms, in which includes quantum image geometric transformation
[21–24]; quantum image scaling [25–29]; quantum image scrambling [30–32]; quantum image
watermarking [33–37]; quantum image steganography based on least significant bit (LSB) [38,
39]; quantum image morphological operation [40–42]; quantum image edge detection [43,
44]; quantum image feature point extraction [45]; quantum image matching [46].

This paper is organized as follows. Section 2 briefly introduces the quantum imagemodel NEQR
and the classicalmorphology operations for the grayscale image. A series of specific quantum circuit
are constructed to realize a certain function in Section 3. The specific quantum circuit realization
morphological gradient for quantum gray-scale image is proposed. Section 5 analyses the circuit’s
complexity and experimental results. The conclusions and future work is drawn in section 5.

2 Preliminaries

In this paper, the quantum image NEQR (i.e. a novel enhanced quantum representation of
digital images) model is introduced first. Then, the morphology operations for the grayscale
image that includes the flat grayscale dilation, erosion and their combination operation of
morphology gradient are illustrated in detail.

2.1 Quantum Image Model NEQR and Circuit Complexity

2.1.1 The Novel Enhanced Quantum Representation (NEQR)

As for an2n × 2nimage with grayscale range[0, 2q − 1], NEQR uses q qubits to represent color
information and 2n qubits to represent position information. But for a binary image, the color
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information just includes two values 0 and 1 (therein q = 1). Thus, the gray-scale value CYXof
the pixel coordinate (Y, X) can be expressed by Eq. (1).

CYX ¼ CYX
0CYX

1⋯CYX
q−2CYX

q−1;CYX
k∈ 0; 1f g;CYX∈ 0; 2q−1½ � ð1Þ

Therefore, the NEQR quantum image representation can be written as Eq. (2) for an2n ×
2nimage with grayscale range[0, 2q − 1].

jI〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCYX 〉jY 〉jX 〉 ¼ 1

2n
∑

22n−1

YX¼0
⊗
q−1

k¼0
jCk

YX 〉jYX 〉 ð2Þ

Figure 1 shows an image and the corresponding NEQR state is on the right.

2.1.2 Simple Quantum Gates and circuit’s Complexity

Quantum Gates In the quantum circuitmodel, a complex transformation can be broken down
into universal quantum logic gates [47], i.e., single-qubit gate, two-qubit and three-qubit gates,
such as NOT, Controlled-V gate, Controlled-V+ gate, Feynman gate (FG) [48],Toffoli gate
[49] and Peres gate [50] and Thapliyal Ranganathan gate [51] which are shown in Fig. 2.

Therein, V is a square-root-of NOT gate and V+ is its Hermittian. Thus, VV or
V+V+ creates a unitary matrix of NOT gate and VV+ = V+V = I (an identity matrix),
which can be described as Eq. (3).

V � V ¼ Vþ � Vþ ¼ X
V � Vþ ¼ Vþ � V ¼ I

ð3Þ

As shown in Fig. 2, the FG can accomplish XOR function. It is easy to conclude that when
cascades (n-1) FG gates we can realize n-bit XOR operation. The concrete quantum circuit
realization and corresponding block diagram are shown in Fig. 3.

Quantum circuit’s Complexity In the quantum circuit model, a complex transformation can
be broken down into simpler gates, i.e., single-qubit gate, two-qubit and three-qubit
gates. Therefore, the circuit complexity of anysingle-qubit gate, two-qubit and three-
qubit gatesare taken as unity. The circuit’s complexity is determined by the number of
these simpler gates. Based on this principle, it is obvious that the NOT gate, FG,
Controlled-V gate, Controlled-V+gate and TG can take as unity 1. The PG is
composed by 2 Controlled-V gates,1 Controlled-V+gate and 1 FG, therefore, the
circuit complexity of PG is 4. As shown in Fig. 3, the n-bit XOR operation is
constructed by cascading (n-1) FG, thus the circuit complexity of n-bit XOR module
is (n-1).

Fig. 1 An 2 × 2 NEQR image and its quantum state is on the right
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2.2 Classical Grayscale Morphology Operations

The grayscale morphology is built on binary morphological. In this section, we focus on flat
grayscale quantum dilation and erosion operations which are defined in terms of minima and
maxima of pixel neighborhoods [52]. Then, based on the flat grayscale dilation and erosion
operations, we further introduce the conception of morphological gradient.

0 1 1 0

If(A), V(B)

Else B

If(A), V+(B)

Else B

Controlled-V+ gateControlled-V gate

NOT gate Feynman gate (FG)

FG

Toffoli Gate (TG)
A

B

C AB C

A

B

C

A B

A A

B

C AB C

A B

A

AB C

A

B

Peres gate (PG)

PG

V+V

V+V V

Fig. 2 Some single-qubit gate, two-qubit and three-qubit gates

Fig. 3 a The quantum circuit realization of n-bit XOR operation, b the block diagram of n-bit XOR operation
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2.2.1 The Classical Flat Grayscale Dilation Operation

A function is used to represent the grayscale dilation operation of image F by structuring
element B as denoted by

F⊕Bð Þ s; tð Þ ¼ max F s−x; t−yð Þ þ B x; yð Þj x; yð Þ∈DBf g ð4Þ
where DB is the domain of b and F(x, y)is assumed to equal−∞outside the domain of F.

Actually, the grayscale dilation operation always done by the flat structuring element, in
which means that the value of B is 0 at all coordinates over DB definition. That is,

B x; yð Þ ¼ 0; x; yð Þ∈DB ð5Þ
In this case, the max operation is specified completely by the value of 0 and 1 in binary
matrixDB, and the grayscale dilation equation is simplified to

F⊕Bð Þ s; tð Þ ¼ max F s−x; t−yð Þj x; yð Þ∈DBf g ð6Þ
Thus, flat grayscale dilations are a local-maximum operator, where the maximum is taken over
a set of pixel neighbors determined by the shape ofDB.

An example, asshown in Fig. 4, illustrates that the flat grayscale dilation is a local-
maximum operator.

Structuring element B, specifies the number of local 

pixels involved in the calculation, where all pixels

are involved

In any case, the maximum value for this 

field is 246

The start of the dilation, the origin of B 

and the first pixel of the image are 

overlapped, find the local-maximum 232

Fig. 4 The flat grayscale dilation is a local-maximum operator
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2.2.2 The Classical Grayscale Erosion Operation

A function is used to represent the grayscale erosion operation of image F by structuring
element B as denoted by

FΘBð Þ s; tð Þ ¼ min F sþ x; t þ yð Þ−B x; yð Þj x; yð Þ∈DBf g ð7Þ
where DBis the domain of b and F(x, y)is assumed to equal+∞outside the domain of F.

Conceptually, we again can think of translating the structuring element to all locations in the
image. At each translated location, the structuring element values are subtracted to the image
pixel values and the minimum is computed.

As with dilation, grayscale erosion is most often performed using flat structuring elements.
The equation for flat grayscale erosion can then be simplified to

FΘBð Þ s; tð Þ ¼ min F sþ x; t þ yð Þj x; yð Þ∈DBf g ð8Þ
Thus, flat grayscale erosion is a local-minimum operator, in which the minimum is taken over
a set of pixel neighbors determined by the shape of DB. So, the erosion problem transfers to
search for minimum.

An example, shown in Fig. 5, illustrates that the flat grayscale erosion is a local-minimum
operator.

2.2.3 The Classical Morphological Gradient for Grayscale Image

Dilation and erosion can be used in combination, subtracting the eroded image from the dilated
image can produce a morphological gradient, which is a measure of the local gray level change
in the image. Thus, the function of morphological gradient based on the flat element can be
written as follows.

The start of the erosion, the origin of B and the first pixel of the image are 

overlaped, find the local minimum 125

In any case, the minmum 

value for this field is 66

Structuring element B, specifies the number of local pixels 

involved in the calculation, where all pixels are involved

Fig. 5 The flat grayscale erosion is a local-minimum operator
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MF ¼ F⊕Bð Þ s; tð Þ− FΘBð Þ s; tð Þ
¼ max F sþ x; t þ yð Þf g−min F s−x; t−yð Þf g½ �; x; yð Þ∈DB

ð9Þ

3 Quantum Circuit Design

In this section, a series of specific quantum circuit are designed to realize a certain function,
which includes special add one operation UA1(n), special subtract one operation US1(n),
quantum unitary operator UCand the parallel full subtractor PS. All of the mentioned quantum
circuit will be used in the proposed morphology operations.

3.1 Special Add One Operation

The quantum circuit realization of special add one operation UA1(n)for an n-length qubits
sequence is shown in Fig. 6. When UA1(n) works on the n qubits quantum state ∣xn − 1xn −
2⋯x1x0〉(Input), the result (Output) will be the∣xn − 1xn − 2⋯x1x0 + 1〉if and only if xn − 1 × xn −

2 ×⋯ × x1 × x0 ≠ 1. Otherwise, the n qubits quantum state∣xn − 1xn − 2⋯x1x0〉will not be
changed. The function of UA1(n) can be expressed by Eq. (10).

UA1 nð Þjxn−1⋯x1x0〉 ¼ jxn−1⋯x1x0 þ 1〉; xn−1 � xn−2 �⋯� x1 � x0≠1
jxn−1⋯x1x0〉; xn−1 � xn−2 �⋯� x1 � x0 ¼ 1

(
ð10Þ

therein, n is a positive natural number, n ≥ 2, x0, x1, ..., xn − 1 ∈ {0, 1}.

3.2 Special Subtract One Operation

The quantum circuit realization of special subtract one operation US1(n)for an n-
length qubits sequence is shown in Fig. 7. When US1(n) works on the n qubits

1nx

2nx

3nx

2x

1x

0x

1

Input Output

Input OutputUA1(n)

(a) (b)

Fig. 6 a Quantum circuit realizations of UA1(n), b the block diagram of UA1(n)
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quantum state ∣xn − 1xn − 2⋯x1x0〉 (Input), the result (Output) will be the∣xn − 1xn −

2⋯x1x0 − 1〉if and only if xn − 1 × xn − 2 ×⋯ × x1 × x0 ≠ 0. Otherwise, the n qubits quan-
tum state∣xn − 1xn − 2⋯x1x0〉will not be changed. The function of US1(n) can be
expressed by Eq. (11).

US1 nð Þjxn−1xn−2⋯x1x0〉 ¼ jxn−1xn−2⋯x1x0−1〉; xn−1 � xn−2 �⋯� x1 � x0≠0
jxn−1xn−2⋯x1x0〉; xn−1 � xn−2 �⋯� x1 � x0 ¼ 0

(
ð11Þ

therein, n is a positive natural number, n ≥ 2, xn − 1xn − 2⋯x1x0 ∈ {0, 1}.

3.3 Quantum Unitary OperationUC

The quantum unitary operationUCas defined in Eq. (12) can copy the q-length qubit sequence
information of∣C〉 = ∣ cq − 1cq − 2⋯c0〉 into the q ancillary qubits∣0〉⊗q. The quantum circuit
realization of UCis shown in Fig. 8.

UC jC〉j0〉⊗n
� �

¼ jCYX 〉jCYX 〉 ð12Þ

3.4 Quantum Comparator Circuit

In this section, the n-bit reversible comparator is designed through the 1-bit reversible
comparator, in which a series of basic quantum gates (NOT, CNOT, PG and Toffoli gate)
are used to construct the synthetic circuit.

3.4.1 1-Bit Reversible Comparator

The result of 1-bit compares shown in Table 1. From the truth table of connectional comparator
in Table 1, the logical expressions of 1-bit comparator is as follows:

1nx

2nx

3nx

2x

1x

0x

1

Input Output

Input Output
1( )US n

(a) (b)

Fig. 7 a Quantum circuit realizations of US1(n), b the block diagram of US1(n)
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FA>B ¼ AB
FA¼B ¼ A⊕B
FA<B ¼ AB

ð13Þ

According to the logical expression of Eq. (13), the quantum circuit realization 1-bit
reversible comparator as illustrated in Fig. 9.

The conventional n-bit comparator is used for comparing two n-bit numbers likeA = aq − 1aq

− 2⋯a1a0 and B = bq − 1bq − 2⋯b1b0. The logical expression of n-bit comparator can be written
as Eq. (14).

FA>B ¼ aq−1 > bq−1
� �

⊕ aq−1 ¼ bq−1
� �

aq−2 > bq−2
� �

⊕⋯
⊕ aq−1 ¼ bq−1
� �

aq−2 ¼ bq−2
� �

⋯ a2 ¼ b2ð Þ a1 ¼ b1ð Þ a0 > b0ð Þ
FA¼B ¼ aq−1 ¼ bq−1

� �
aq−2 ¼ bq−2
� �

⊕⋯⊕ a1 ¼ b1ð Þ a0 ¼ b0ð Þ
FA<B ¼ aq−1 < bq−1

� �
⊕ aq−1 ¼ bq−1
� �

aq−2 < bq−2
� �

⊕⋯
⊕ aq−1 ¼ bq−1
� �

aq−2 ¼ bq−2
� �

⋯ a2 ¼ b2ð Þ a1 ¼ b1ð Þ a0 < b0ð Þ

ð14Þ

According to logical expression of q-bit conventional binary comparator, equation of FA < B

also can be obtained as followed:

1qc

2qc

0c

0

0

C

0

CU
C

q
0

C

C

(a) (b)

Fig. 8 a Quantum circuit for unitary operation UC, b the simplified graph of UC

Table 1 The truth table of 1-bit
comparator Input Output

A B FA>B FA=B FA<B
0 0 0 1 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0
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FA<B ¼ FA>B⊕FA¼B ð15Þ
Combine the principle illustrated in Eq. (14) and Eq. (15) that the comparative resultsof FA<B

for q-bit A and B can be deduced from the corresponding results of FA >B and FA=B. Thus, the
basic quantum comparator for 1-bit module (QC1) that deduces from the 1-bit reversible
comparatorcan be rebuilt as illustrated in Fig. 10, which would be used to build the integrate
quantum comparator and output the large and small circuits for q-bit in latter.

3.4.2 Q-Bit Reversible Comparator and Output the Large

Combine the logical value described in Eq. (14) and Eq. (15), the circuit realization of q-bit
reversible comparator and output the large (QCOL) is constructed through the QC1 module, n-
bit xor gate, PG gate and FG gate, as shown in Fig. 11.

3.4.3 Q-Bit Reversible Comparator and Output the Small

Similar to quantum circuit for QCOL, the circuit realization of q-bit reversible comparator and
output the small (QCOS) is constructed through the QC1 module, n-bit xor gate, PG gate and
FG gate, as shown in Fig. 12.

For convenience, Fig. 13 gives the simplified block diagram QCOL and QCOS modules,
which omits the constant inputs and garbage outputs.

A

B

0

0

A BF

A BF

A

B

0 A BF
Fig. 9 Quantum circuit realization of 1-bit reversible comparator

A

B

0

0

A BF

A BF

A

B
QC1

A

B

0

0

A BF

A BF

A

B

(b)(a)

Fig. 10 a The QC1 module, b quantum circuit for the QC1 module

424 International Journal of Theoretical Physics (2019) 58:415–435



1qa

1qb
0

0

QC1

QC1

QC1

2qa

2qb

0

0

1a

1b
0

0

PG

1 1n nq qF F
1 1q qa bF F

0
1 1 2 2

( )( )
q q q qa b a bF F F F

PG
0

PG
0

QC1

0a

0b
0

0

PG
0

PG
0

PG
0

n-bit 

xor

A BF F

A BF F

F

G
F

G1

A BF F

0

0

0

0

The large

Fig. 11 q-bit reversible comparator and output the large

1qa

1qb
0

0

QC1

QC1

QC1

2qa

2qb

0

0

1a

1b
0

0

PG

1 1n nq qF F
1 1q qa bF F

0
1 1 2 2

( )( )
q q q qa b a bF F F F

PG
0

PG
0

QC1

0a

0b
0

0

PG
0

PG
0

PG
0

n-bit 

xor

A BF F

A BF F

F

G
F

G1

A BF F

0

0

0

0

The small

Fig. 12 q-bit reversible comparator and output the small
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As shown in Fig. 13, A = aq − 1aq − 2⋯a1a0and B = bq − 1bq − 2⋯b1b0. In QCOL module,
ifA ≥ B, the large = A; Otherwise, the large = B. In QCOS module, ifA ≥ B, the small = B;
Otherwise, the small = A.

3.5 The Parallel Subtractor (PS) Circuit

Thapliyal H. and Ranganathan N. [51] designed subtractor using the TR gate and further
realized optimization in terms of quantum cost and delay in [53]. Here, the concrete design of
parallel subtractor circuit is given.

(a) Reversible half subtractor (RHS)

The RHS can be used to calculate two 1-bit numbers difference, where the corresponding truth
value of RHS is shown in Table 2. Therein, the inputs of a0 andb0 are 1-bit binary number
whiled0 and b0 denote the corresponding difference and borrow of b0 – a0, respectively. The
simplified graph of RHS module and its quantum circuit realization are illustrated in Fig. 14,

where ∣a0⊕ b0〉 represents the difference of ∣b0 − a0〉, and ja0b0〉 generates the corresponding
borrow bit.

(b) Reversible fullsubtractor (RFS)

The RFS can be used to calculatethree 1-bit numbers difference, where the corresponding truth
value of RFS is shown in Table 3. Therein, the inputs of a0,b0 and c0 are 1-bit binary number
while d0 and b0 denote the corresponding difference and borrow of a0–b0– c0, respectively. The
simplified graph of RFS module and its quantum circuit realization are illustrated in Fig. 15,
where ∣a0⊕ b0⊕ c0〉represents the difference of ∣a0 − b0 − c0〉, and a0 b0⊕c0ð Þ ⊕b0c0 gener-
ates the corresponding borrow bit.

(c) Parallel subtractor (PS)

The parallel subtractor (PS) is used to compute the difference of two n-bit numbers X and Y,
whereinX = xn − 1…x0, Y = yn − 1…y0. Assume thatwe define the difference of X − Y isdndn − 1…
d1d0. Because of the highest bit dn is a sign bit, i.e., if dn = 1, then X < Y; otherwise, dn = 0 and
X ≥ Y. The PS module are designed using 1 RHS and (n-1) RFS as shown in Fig. 16(a). For

A

B

A

B

the large

QCOL

A

B

A

B

the small

QCOS

(a) (b)

Fig. 13 a The block diagram of QCOL, b the block diagram of QCOS

Table 2 The truth table of RHS
a0 b0 d0 b0

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 0
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convenience, the block diagram of PS omits the constant ancillary bit 0 and the other
unmarked garbage outputs as shown in Fig. 16(b).

4 Circuit Realization Morphological Gradient for Quantum Gray-Scale
Image

In this section, the quantum circuit for quantum gray-scale image dilation and erosion are
constructed first. Then, based on the results of quantum dilation and erosion, thequantum
morphological gradientoperation is done through the PS module, whichsubtracts the eroded
image from the dilated image. Finally, through the quantum measurement, the classical
morphological gradient can be obtained.

4.1 Workflow of Quantum Grayscale Image Morphological Gradient Operation

The whole procedure ofquantum morphological gradient operationis shown in Fig. 17, which
is divided into many steps more specifically.

Here, the working principle of the whole procedure is introduced briefly. The first step in
thiswhole procedure is to quantize the classical image into to aquantum image based on NEQR
expression model. Following that, A series of modules UA1(n) and US1(n) are implemented in a
certain order to shift the quantum image based on the specific shape of structuring element and the
quantum unitary operation UC modules to copy the corresponding the pixel information of the
shifted quantum image into prepared extra ancillary qubit sequences. Thus, we can obtain the
quantum image sets, which is associated with the specific shape of the structuring element. And
now, based on these quantum image sets, the QCOL modules is used to find the local-maximum
(the quantum dilation result) and the QCOS modules is used to find the local-minimum (the

V+V V

0a

0b

0

0 0a b

0a

0 0a b

(b)(a)

RHS

Fig. 14 a The block diagram of RHS module, b quantum circuit realization of RHS module

Table 3 The truth table of RFS
a0 b0 c0 d0 b0

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
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quantum erosion result), respectively. Finally, the quantummorphological gradientcan be obtain-
ed by subtracting the eroded image from the dilated image through PS module.

4.2 Quantum Circuit Realization Quantum Dilation and Erosion Operations

Suppose that there adigital image is quantized into a NEQR quantum image with size 2n ×
2nand gray range[0, 2q − 1], which is expressed by Eq. (2). The flat structuring element B as
shown in Fig. 18 is a 3 × 31-matric including 9 neighbor pixels.

Through the analysis of classical grayscale morphology operations in subsection 2.2.1 and
2.2.2, it is easy to find that the result of the flat grayscale image dilation and erosion are the
local-maximum and local minimum operators, respectively. Therein, the maximum and
minimum values are taken over a set of neighbor pixels determined by the exact shape of
structuring element. Based on this principle, the integrated quantum circuit design is divided
into two steps as shown in Fig. 19 and Fig. 20.

Step 1. Firstly, prepare the eight extra qubits∣0〉⊗8qsequences as defined in Eq. (16),
which is in a tensor product with the original quantum image state. Then, implement the

0 0 0a b c

V+ V
0 0 0 0 0a b c b c

0c

0b

0

0a

(a) (b)

V V

RFS
0b

0a

Fig. 15 a The simplified graph of RFS module, b quantum circuit for RFS module

R
H

S

R
F

S

R
F

S

R
F

S

R
F

S

(b)(a)

d0

dn

dn-1

X

Y

X-YPS

Fig. 16 a quantum circuit realization of PS module, b thesimplified graph of PS module
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special add one operation UA1(n), special subtract one operation US1(n) and quantum
unitary operation UCin a certain order on the original quantum image, we can get the 9
qubits information of the neighbor pixels of the whole image and store them into the
prepared qubit sequences. The concrete circuit realization of this step is shown in Fig. 19.

1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
j0〉⊗8qjCYX 〉jY 〉jX 〉 ¼ 1

2n
∑

22n−1

YX¼0
j0〉⊗8q ⊗

q−1

k¼0
jCk

YX 〉jYX 〉 ð16Þ

Therefore, we can get therelative color qubits of the neighbor pixels of the whole image, i.e., the
quantum image sets where all the pixels share the same position state as defined in Eq. (17).

1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jCYX 〉jCY−1X 〉jCY−1Xþ1〉jCYXþ1〉jCYþ1Xþ1〉jCYþ1X 〉 jCYþ1X−1〉 jCYX−1〉 jCY−1X−1〉 jY 〉jX 〉 ð17Þ

Classical image I
Quantum

image

Quantum

image sets

Quantum

dilation result

Quantum

erosion result

Quantum

morphological

gradient

Classical

morphological

gradient

NEQR

Quantum

measurement

Use PS module

to producing the

morphological

gradient

Use QCOL modules to

find local-maximum

Use QCOS modules to

find local-minimum

Use the UA1(n) and US1(n)

modules to shift based on the

specific flat structuring element

I

Fig. 17 Whole procedure of quantum morphological gradient operation

1 1 1

1 1 1

1 1 1

Fig. 18 Structuring element B
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Step 2. Eight QCOL and Eight QCOS modules are cascaded for finding the local-
maximum pixel and local-minimum pixel in quantum image sets, respectively. The
specific circuit design is shown in Fig. 20.

Therefore, though the above two steps, we can obtain the quantum dilation and erosion results,
which can be expressed Eq. (18)

jresults〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jDYX 〉jEYX 〉jY 〉jX 〉 ð18Þ

therein, the qubit sequence ∣DYX〉 and ∣EYX〉 are entangled with each other and share the same
position coordinates.
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Fig. 19 Quantum circuit realization obtaining 9 neighbor pixels according to structuring element B
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Fig. 20 Finding the local-maximum and local-minimum in any 3 × 3neighbor window
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4.3 Quantum Circuit Realization Quantum Morphological Gradient Operation

According to principle of the classical morphological gradient in subsection 2.2.3,we know
that the morphological gradient operation can be done through thedilation and erosion
operations. Based on this principle, Fig. 21 provides the concrete quantum circuit realization
of the morphological gradient, which a single PS module is used to subtract quantum erosion
result ∣EYX〉from the quantum dilation result ∣DYX〉.

Thus, we obtain the quantum morphological gradient as Eq. (19)

jG〉 ¼ 1

2n
∑
2n−1

Y¼0
∑
2n−1

X¼0
jGYX 〉jY 〉jX 〉 ð19Þ

5 Circuit Complexity and Experiment Analyses

In this section, the circuit complexity of morphological gradient operation for quantum grayscale
image discussed firstly, which includes three figures (Fig. 19, Fig. 20 and Fig. 21). Then, the
experiment results aresimulated based onthe classical computer’s MATLAB software.

5.1 Circuit Complexity Analysis

Here consider a size of 2n × 2n quantum image with grayscale range[0, 2q − 1]as an example.
Similarly, the circuit’s complexity analysis is divided into three steps according to the circuit
realization three steps.

Step 1. The quantum circuit realization as shown in Fig. 19, therein, 5 UA1(n) modules
and 5 US1(n) modules both are for an n-length qubits sequence, and 8 UCmodules. The
single UCmodule is constructed by q FG gates (shown in Fig. 8), thus its circuit’s
complexity is q. As shown in Fig. 6 and Fig. 7, the single UA1(n) and US1(n) module
both are comprised by (n-1) multi-CNOT (which means the circuit’s control qubits not
just one)ofCNOT, 2 − CNOT⋯(n − 2) − CNOT, (n − 1) − CNOTand two n −
CNOT.According to analysis of [44, 54], a K-CNOT quantum gate (where K represents
the number of control qubits, K ≥ 3) can be constructed by (4 K-8) 2-CNOT gates (TG)
and (K-3) assistant qubits. Therefore, the circuit’s complexity of single UA1(n) or US1(n)

X

Y

PS YXG
YXE

YXD

X

Y

Fig. 21 Subtract the eroded image from the dilated image to produce the morphological gradient
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module is1þ ∑
n−1

K¼3
4K−8ð Þ þ2 4n−8ð Þ ¼ 2n2−2nþ 5. Thus, the circuit’s complexity in

step 1 is10 × (2n2 − 2n + 5) + 8q = 20n2 − 20n + 8q + 50.
Step 2.The quantum circuit realization as shown in Fig. 20, therein, 8QCOL modules and
8 QCOS modules both are for an q-length qubits sequence. The single QCOL and QCOS
modules are shown in Fig. 11 and Fig. 12, respectively, which both are composed by q
QC1 modules, 2(q-1) PG gates, 2 FG gates and 2q 2-CNOT gates. Therein, QC1 module
is shown in Fig. 10, which circuit’s complexity is 6, and the PG gate and FG gate are
shown in Fig. 2 of which circuit’s complexity are 4 and 2, respectively. Thus, we can
calculate that the single QCOL or QCOS module is 6q + 4 ⋅ 2(q − 1) + 2 + 2q. Therefore,
the circuit’s complexity in this step is16 × (6q + 4 ⋅ 2(q − 1) + 2 + 2q) = 256q − 96.
Step 3.The quantum circuit realization is shown in Fig. 21. Therein, just only one PS
module for a q-length qubits sequence is used to calculate the difference of the local-
maximum and local-minimum. Thus the PS module can be constructed by 1 RHS module
and (q-1) RFS module. As shown in Fig. 14 and Fig. 15, single RHS module and single
RFS module circuit’s complexity are 4 and 6, respectively. Thus the circuit’s complexity
of this step is6(q − 1) + 4 = 6q − 2.

According to thecircuit’s complexity analysis in abovethree steps, we can conclude that the
integrated circuit complexity is equal to the sum of the three steps, that is

20n2−20nþ 8qþ 50
� �þ 256q−96ð Þ þ 6q−2ð Þ
¼ 20n2 þ 270q−20n−48
≈Ο 20n2 þ 270q

� �
For classical dilation and erosion operations, the complexity is Ο(m222n) where the size of
structuring element and original image are m ×mand 2n × 2n, respectively. Therefore, our
proposed quantum circuit scheme has a very lower complexity to the classical one.

(a) (c)

(b)

(e)

(f) (g) (h)

(d)
1 1 1

1 1 1

1 1 1

(i)

Fig. 22 (a) grayscale image Lena. (b) flat structuring element B. (c) the flat grayscale dilation of Lena by B. (c)
the flat grayscale erosion of Lena by B. (e) the morphological gradient producing by (c) and (d); (f) grayscale
image Rice. (g) the flat grayscale dilation of Rice by B. (h) the flat grayscale erosion of rice by B. (e) the
morphological gradient producing by (g) and (h)
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5.2 Simulation Analysis

All the experiments are simulated by MATLAB 2014 on the classical computer. Two common
test images Lena and Rice were chosen, and the structuring element is a 3 × 3 1-matric. The
experiment results are shown in Fig. 22.

6 Conclusions

Morphology provides an approach to the processing of digital images based on shape. In this
paper, quantum implementation circuits of flat dilation and erosion of grayscale images are
constructed based on NEQR. Then,the circuit realization of morphological gradient for
grayscale imageshas been designed.

According to the characteristic of operations of the classical flat grayscalemorphology, the
quantum circuit realization mainly are divided into three steps:(1) Obtain the quantum image
sets of neighborhood window pixels based on the shape of structuring element using a
sequence of UA1(n), US1(n), and UC modules; (2) Finding the local-maximum and local-
minimum through a series of QCOLand QCOS modules; (3) Using the PS module to subtract
the local-minimum from the local-maximum.

Due to the unique advantages of parallel computing, entanglement, superposition, quantum
computer brings bright prospect. Therefore, the quantum versions of erosion and dilation
algorithms have been studied, the complexity of which is greatly reduced. Our future work will
focus on the application of quantum morphology, such as quantum edge detection, noise
reduction, feature detection, and image recognition.
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