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Abstract
A necessary and sufficient condition for quantum computing performed with, for exam-
ple, the Deutsch-Jozsa algorithm or the Bernstein-Vazirani algorithm, has theoretically
been investigated. Assume a 2N qubit-quantum computing which starts with the state

|
N

︷ ︸︸ ︷

0, 0, ..., 0, 1〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 as follows: Uf |0, 0, ..., 0, 1〉|1, 1, ..., 1〉 = |0, 0, ..., 0, 1〉
|f (0, 0, ..., 0, 1)〉. Surprisingly the relation f (x) = f (−x) is the necessary and sufficient
condition of holding this fundamental relation if local unitary operations can be used.

Keywords Quantum algorithms · Quantum computation

1 Introduction

Quantum computing is explained as follows [1]: —The design and theory of computer sys-
tems that depend on quantum effects for their operation. On one level, this can be the use
of small components, at the atomic or molecular level, to store or process information. An
example would be a storage system that used two different spin states of atoms to store bits
of information, or a logic gate that depends on the movement or spin of a single electron.
Systems of this type are studied in nanocomputing. At a more fundamental level, the term
‘quantum computing’ implies the use of quantum effects that have no classical analogue to
process information. In a ‘classical’ computer information is held in bits, which can have
two alternative values (0 and 1). In a quantum computer the 0 and 1 values are held simulta-
neously in a superposition state. This unit of information is called a quantum bit (or qubit).
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Much more information can be held in this way and, in principle, it is possible to do parallel
processing of the information. Quantum computers would be much faster than conventional
machines and capable of performing calculations that could not realistically be done oth-
erwise. Ion traps, cavity QED, and spin measurements have been used in research in this
area.

Articles on the history of research into quantum computing are mentioned as fol-
lows. An implementation of a quantum algorithm to solve Deutsch’s problem [2–4] on a
nuclear magnetic resonance quantum computer is reported [5]. An implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum computer is reported [6]. Oliveira et al.
implements Deutsch’s algorithm with polarization and transverse spatial modes of the elec-
tromagnetic field as qubits [7]. A single-photon Bell states are prepared and measured [8].
The decoherence-free implementation of Deutsch’s algorithm is introduced by using such
a single-photon and by using two logical qubits [9]. A one-way based experimental
implementation of Deutsch’s algorithm is reported [10].

In 1993, the Bernstein-Vazirani algorithmwas published [11, 12]. By utilizing a Boolean-
valued function, it is extended to determine the values of the function [13]. In 1994, Simon’s
algorithm [14] and Shor’s algorithm [15] were discussed. In 1996, Grover [16] provided
the motivation for exploring the computational possibilities offered by quantum mechanics.
An implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem
without entanglement in an ensemble quantum computer is mentioned [17]. Fiber-optics
implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three
qubits is discussed [18]. The question whether or not quantum learning is robust against
noise is a subject of a study [19].

A quantum algorithm for approximating the influences of Boolean functions and its
applications are studied [20]. Quantum computation with coherent spin states and the close
Hadamard problem are reported [21]. Transport implementation of the Bernstein-Vazirani
algorithm with ion qubits is studied [22]. Quantum Gauss-Jordan elimination and simu-
lation of accounting principles on quantum computers are discussed [23]. The dynamical
analysis of Grover’s search algorithm in arbitrarily high-dimensional search spaces is stud-
ied [24]. A method of computing many functions simultaneously by using many parallel
quantum systems is reported [25]. An algorithm for fast determining a homogeneous linear
function is proposed [26]. A method of calculating a multiplication by using the generalized
Bernstein-Vazirani algorithm is studied [27]. A new mathematical structure for quantum
algorithms in case of a special function is reported [28]. Efficient quantum algorithm for
the parity problem of a certain function is given [29].

In 2015, it was discussed that the Deutsch-Jozsa algorithm can be used for quantum key
distribution [30]. In 2017, it was discussed that secure quantum key distribution based on
Deutsch’s algorithm using an entangled state [31]. A highly speedy secure quantum cryp-
tography based on the Deutsch-Jozsa algorithm is proposed [32]. The relation between
quantum computer and secret sharing with the use of quantum principles is discussed [33].
An application of quantum Gauss-Jordan elimination code to quantum secret sharing code is
studied [34]. Designing quantum circuit by one step method and similarity with neural net-
work are discussed [35]. Efficient quantum algorithms of finding the roots of a polynomial
function are discussed [36, 37].

There are many researches concerning quantum computing, quantum algorithm, and
their experiments. However, a complete understanding of a fundamental structure of quan-
tum computing is not given. There is a meaningful motivation of looking for a condition
of obtaining the success of a quantum computing experiment. Namely, it is useful for
experimental investigations for judging if the experiments are success. For example, the
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Bernstein-Vazirani algorithm in a noisy environment is studied [22, 31] and a success
probability is given. Here an all-versus-nothing theorem is investigated.

Assume a 2N qubit-quantum computing which starts with the state

|
N

︷ ︸︸ ︷

0, 0, ..., 0, 1〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 as follows: Uf |0, 0, ..., 0, 1〉|1, 1, ..., 1〉 = |0, 0, ..., 0, 1〉
|f (0, 0, ..., 0, 1)〉. Recently, it is shown that the relation f (x) = f (−x) is a necessary
condition of holding this fundamental relation of quantum computing performed with, for
example, the Deutsch-Jozsa algorithm or the Bernstein-Vazirani algorithm if we assume
| − x〉 = −|x〉 [28, 29]. It is interesting to study whether the relation f (x) = f (−x) is also
a sufficient condition.

In this contribution, a necessary and sufficient condition for quantum computing is pro-
posed. Surprisingly the relation f (x) = f (−x) is the necessary and sufficient condition of
holding this fundamental relation if local unitary operations can be used. A quantum algo-
rithm (computing) experiment is success if f (x) = f (−x), otherwise the experiment is not
success.

The argumentations for finding this evenness: f (x) = f (−x) of the function f (x) is
assumed to a practical use in combination together with quantum error correction algorithms
for qubits/qudits (or even topological anyons in topological quantum error correction). See
[38] and [39]. After an error correction the problem is protected from any kinds of bit flip
or spin flip actions and the argumentations work well.

The rest of the paper is organized as follows:
In Section 2, a necessary and sufficient condition for quantum computing is given.

Finally, the conclusion is drawn in Section 3.

2 A Necessary and Sufficient Condition for Quantum Computing

In this section, a necessary and sufficient condition for quantum computing is proposed.
Assume | − x〉 = −|x〉. This is realized as follows:
• Prepare | − x〉.
• Introduce the flip operator σx = | − x〉〈x| + |x〉〈−x|.
• Notice σx | − x〉 = |x〉.
• Operate −I to |x〉 in giving −|x〉.
Notice

• Prepare −|x〉.
• Introduce the flip operator σx = | − x〉〈x| + |x〉〈−x|.
• Notice σx(−|x〉) = −| − x〉.
• Operate −I to −| − x〉 in giving | − x〉.
Therefore, transformations | − x〉 to −|x〉 and −|x〉 to | − x〉 are realised by using local
unitary operations. In the following, local unitary operations can be used in order to justify
the assumption | − x〉 = −|x〉. Roughly speaking, the entire argumentations are held under
the assumption that local unitary operations can be used.

Assume that the following function is given

f : {−(2N − 1), −(2N − 2), . . . , 2N − 2, 2N − 1} →
{0, 1, . . . , 2N − 2, 2N − 1}. (1)
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Assume that f (y) ≥ 0. Introduce a function g(x) that transforms binary strings into an inte-
ger. Define g−1(f (g(x))) = F(x). The construction of F(x) is independent of the choice
of the function g. Assume such a function F(x)(= g−1(f (g(x)))) and such a function g

indeed exist, for example to make precise, choose the function g such that for any string
x = (xN , . . . , x0), g(x) = xN2N + · · · + x121 + x0. This function g is invertible and g−1

converts the integer x = xN2N + · · · + x121 + x0 back to the bit-string (xN , . . . , x1, x0).
y = g(x) is the integer representation of the binary string x. For example, x = (1, 1) if
y = 3. Assume that the given function f is even. Namely,

F(x) = F(−x) ∈ {0, 1}N, (2)

where x ∈ {0, 1}N . The condition (2) is a sufficient condition for quantum computing as
shown below.

What the function f (x) does in (1) is to map a set of discrete values onto another one.
In (2), assume that x is the binary representation of an integer. x will be given by a binary

string belonging to the Cartesian product

N
︷ ︸︸ ︷

{0, 1} × {0, 1} × . . . × {0, 1}, for instance, x =
(0, 1, 1, 0, 0, 1, . . . , 1). Define −x as −(0, 1, 1, 0, 0, 1, . . . , 1).

Throughout the discussion, any normalization factors are omitted. The input state is

|ψ1〉 = |
N

︷ ︸︸ ︷

0, 0, . . . , 0, 1〉|
N

︷ ︸︸ ︷

1, 1, . . . , 1〉. (3)

The function F is evaluated by using the following unitary 2N qubit gate

UF : |x, z〉 → |x, z + F(x)〉 (4)

with

UF : |x, z〉 → |x, z + F(x)〉
⇔ −|x, z〉 → −|x, z + F(x)〉
⇔ | − x, z〉 → | − x, z + F(x)〉
⇔ | − x, z〉 → | − x, z + F(−x)〉 (5)

employing the fact that F(x) = F(−x). Here, z + F(x) = (z1 ⊕ F1(x), z2 ⊕
F2(x), . . . , zN ⊕ FN(x)) (the symbol ⊕ indicates addition modulo 2). And, F(x) = (1 ⊕
F1(x), 1⊕F2(x), . . . , 1⊕FN(x)). For example, F(0, 0, ..., 0, 1) = (0, 1, 1, 0, 0, 1, . . . , 1)
if F(0, 0, ..., 0, 1) = (1, 0, 0, 1, 1, 0, . . . , 0).

The state |ψ1〉 (3) can be decomposed as follows:

|ψ1〉 =
−2
∑

x=−(2N−1)

|x〉|
N

︷ ︸︸ ︷

1, 1, . . . , 1〉 +
2N−1
∑

x=+1

|x〉|
N

︷ ︸︸ ︷

1, 1, . . . , 1〉. (6)

Start the discussion from the following

UF |ψ1〉 = |ψ2〉

=
−2
∑

x=−(2N−1)

|x〉|F(x)〉 +
2N−1
∑

x=+1

|x〉|F(x)〉 (7)
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and

|ψ2〉 =
−2
∑

x=−(2N−1)

|x〉|F(x)〉 +
2N−1
∑

x=+1

|x〉|F(x)〉. (8)

This implies for x → −x, with x 	= 0 to the first term;

|ψ2〉 =
2N−1
∑

x=+2

| − x〉|F(−x)〉 +
2N−1
∑

x=+1

|x〉|F(x)〉. (9)

Therefore, using F(x) = F(−x);

|ψ2〉 =
2N−1
∑

x=+2

| − x〉|F(x)〉 +
2N−1
∑

x=+1

|x〉|F(x)〉. (10)

Therefore, using | − x〉 = −|x〉;

|ψ2〉 = −
2N−1
∑

x=+2

|x〉|F(x)〉 +
2N−1
∑

x=+1

|x〉|F(x)〉. (11)

Thus, the terms except for x = 1 cancel;

|ψ2〉 = |0, 0, . . . , 0, 1〉|F(0, 0, . . . , 0, 1)〉. (12)

The following fundamental relation in quantum computing is derived.

UF |
N

︷ ︸︸ ︷

0, 0, ..., 0, 1〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉

= |
N

︷ ︸︸ ︷

0, 0, ..., 0, 1〉|F(0, 0, ..., 0, 1)〉. (13)

Therefore, the relation F(x) = F(−x) is a sufficient condition for the fundamental
relation (13). The relation F(x) = F(−x) is also a necessary condition for the fundamental
relation (13) as shown below [28, 29].

From the definition in (5), notice

UF |x〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 = |x〉|F(x)〉. (14)

This implies for x → −x, with x 	= 0

UF | − x〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 = | − x〉|F(−x)〉. (15)

Assume |−x〉 = −|x〉. It follows that the minus sign on the left and right hand sides of (15)
drops off. This implies

UF |x〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 = |x〉|F(−x)〉. (16)
Assume such that

|P 〉 = |Q〉 ⇔ P = Q. (17)
Comparing (14) with (16), notice |F(x)〉 = |F(−x)〉. Hence, the following property of
the function in order to maintain a consistency for the fundamental relation (13) cannot be
avoided.

F(x) = F(−x). (18)
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The fact that the function under study is even is derived.

F(x) = F(−x). (19)

Thus the relation F(x) = F(−x) is a necessary condition for the fundamental relation (13).
It is indeed surprise to show the relation f (x) = f (−x) is the necessary and sufficient

condition of holding this fundamental relation if local unitary operations can be used. Again,
a quantum algorithm (computing) experiment is success if f (x) = f (−x), otherwise the
experiment is not success. It is the all-versus-nothing theorem.

A quantum algorithm does not distinguish f (−x) from f (x). In other words, the minus
sign does not change anything in the outcome of the quantum algorithm. This fact is due
to the Galilean transformation that changes the Cartesian coordinate from x to −x. The
non-relativistic quantum theory are invariant under the Galilean transformation. The all-
versus-nothing theorem is explained as follows: the quantum algorithms is invariant under
the Galilean transformation.

3 Conclusions

In conclusion, a necessary and sufficient condition for quantum computing has
been proposed. Assume a 2N qubit-quantum computing which starts with the

state |
N

︷ ︸︸ ︷

0, 0, ..., 0, 1〉|
N

︷ ︸︸ ︷

1, 1, ..., 1〉 as follows: Uf |0, 0, ..., 0, 1〉|1, 1, ..., 1〉 = |0, 0, ..., 0, 1〉
|f (0, 0, ..., 0, 1)〉. Surprisingly the relation f (x) = f (−x) has been the necessary and
sufficient condition of holding this fundamental relation if local unitary operations can be
used.
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I.L., Blatt, R.: Nat. (London) 421, 48 (2003)
7. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)
8. Kim, Y.-H.: Rev, Phys. A 67(R), 040301 (2003)
9. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)
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