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Abstract
Measuring entanglement is a demanding task in the field of quantum computation and
quantum information theory. Recently, some authors experimentally demonstrated an
embedding quantum simulator, using it to efficiently measure two-qubit entanglement.
Here, we are reviewing some measures of entanglement which are used for pure and mixed
states. Furthermore, we have reported the efficient bipartite and multipartite entanglement
measures.
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1 Introduction

Quantum entanglement plays a key ingredient of quantum information theory, such as quan-
tum communication and quantum computation [1–4]. Quantum entanglement represents
one of the most remarkable features of quantum systems that has no classical counter-
part [5]. Entanglement is an important quantum resource in both quantum computation and
communication [6]. Entangled states indicate a variety of non-local quantum correlation
subsystems, which have many applications in quantum data, including quantum teleporta-
tion, quantum cryptography [7], quantum dense coding and quantum computing [8, 9]. The
study of entanglement of such states is essential and recently has been a field of severe
research [10]. Candia et al. [11] proposed a protocol for the efficient measurement of mul-
tipartite entanglement with embedding quantum simulators [12], but we have to focus on
the meaning of the term efficient. It depends if we want to qualify or quantify the entangle-
ment. For example, for pure states, we have some methods in quantum information theory
that describe a certain type or class of entanglement, under stochastic local operations with
classical communication (SLOCC) [13, 14]. Also by using invariant theory, some polyno-
mial can help us to distinguish different classes of entanglement [15]. We can also study
the entanglement of pure state by associating each quantum state, which is a geometri-
cal singularity, that can help to have a piece of information on the entanglement of the
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state. Cavalcanti et al. [16] have demonstrated how the geometry of the set of unentangled
states can be related to singular behavior in physical phenomena. Their results have pro-
posed an explanation by interpreting the non-analyticities exhibited by entanglement as a
consequence of geometric singularities [16]. There are also some numerical measurements
of entanglement that can help us to quantify entanglement, such as concurrence [17–19],
negativity and logarithmic negativity [20, 21], Von Neumann entropy, etc [22–25]. In this
paper, we are looking for the efficient bipartite and multipartite entanglement measures.
This paper is organized as follows: in Section 2 we provide bipartite systems and then we
introduce multipartite systems in the Section 3. Finally, Section 4 is dedicated to discussion
and conclusions.

2 Bipartite Systems

When a system consists of two subsystems we say it is a bipartite system. The Hilbert
space of the composite system is a tensor product of Hilbert space that describes Alice,s
system and the Hilbert space that describes Bob,s system. If we define these as HA and
HB , respectively, then the Hilbert space of the composite system is H = HA ⊗ HB . But
not all states |ψ〉 ∈ HA ⊗ HB are entangled. When two systems are entangled, the state
of each composite system can only be described with reference to the other state. If |ψ〉 ∈
HA and |φ〉 ∈ HB and |ξ〉 = |ψ〉 ⊗ |φ〉, then |ξ〉 is a product state or separable. For
bipartite systems, various measures of entanglement have been proposed [17, 18, 20, 22–
29]. Entanglement measure (EM) quantifies how much entanglement is in a bipartite or
multipartite systems. Properly it is any non-negative real function of a state which cannot
increment under local operations and classical communication (LOCC) [30], and is zero
for product state or separable state. An LOCC operation is an element of the class LOCC,
which contains all local quantum operations and classical communication. In other words,
an LOCC operation would be doing a local quantum operation or doing some classical
communication [22–25]. A good and rigorous definition of LOCC is not so easy, see [30]
for a nice review on LOCC. One of general applications of abstract entanglement measures
(EMs) is to show that certain task cannot be obtained by means of LOCC [22–25, 30]. One
does it by showing that if the task could be done, then some of EMs would increment. EMs
are also classified based on their properties, e.g. additivity, convexity and continuity. This
approach to EMs is known as axiomatic approach [31]. An EM for a bipartite system is
a state functional that vanishes on separable states and does not increase under separable
operations.

3 Multipartite Systems

The issue of defining multipartite entanglement is more difficult and there is no unique def-
inition [32]. Hence, a good definition of multipartite entanglement should hinge upon some
statistical information concerning the system. Some recent works have focused on clarifying
concept of multipartite entanglement [33, 34]. Facchi et al. began the study of multipartite
entanglement from [35] where multipartite entanglement has been characterized in terms
of a probability distribution, namely the distribution of bipartite entanglement over all the
possible bipartition. This is motivated by the fact that, due to the presence of many pos-
sible bipartitions, the characterization of multipartite entanglement resembles a complex
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system. This is taken into account since entanglement is not measured by a single number
but by a whole probability distribution (thus all its moments). Facchi et al. have recasted the
characterization of multipartite entanglement in terms of a fictitious statistical mechanical
problem [36, 37], a technique that is often used in optimization problems. In this statistical
mechanical approach, the hamiltonian is a suitable function that represents some features
of multipartite entanglement (like one of the above moments or a combination of them),
the configuration space is the set of all pure states, and the temperature is a parameter that
fixes isoentangled (with respect to the features specified in the hamiltonian) subspaces [36].
Correlation functions, high temperature expansions, and other techniques from statistical
mechanics are used to characterize multipartite entangled states. This approach can also
be seen as defining ensembles of random isoentangled states [36]. The statistical mechan-
ical approach has also been applied to gaussian states, to the characterization of bipartite
entanglement of large systems, where phase transitions are identified and phases represent
random states with support on subsets with different entanglement features [38], and to
mixed states where now it is not entanglement to be characterized but local purities of the
parties [39]. In this framework, a state is maximally entangled if it is maximally entangled
according to all bipartition. This condition is highly nontrivial, however, generically impos-
sible for qubit systems or gaussian states except in the case of small number of constituents:
different bipartitions interfere similarly to how local interactions do in frustrated systems
[40, 41]. Therefore, the problem of maximizing multipartite entanglement is nontrivial for
two aspects: one is the complex nature of its characterization that jointly involves many
quantities (the moments of the above distributions that all together carry the same infor-
mation of the distribution itself), the second is the possible frustration in the optimization
procedure due to the interference among bipartitions.

The study of multipartite entanglement has attracted much attention in the last years
[43–48]. From the theoretical side, multipartite entanglement may be a key element to
improve various applications like quantum information processing or quantum metrology,
or to understand and simulate physical systems, such as quantum spin chains undergoing a
quantum phase transition. For multipartite systems, several measures of entanglement have
been proposed. For example, generalized concurrence [42, 49], global entanglement [50],
Scott measure (or generalized Meyer-Wallach measure) [51–54], geometric measures [55],
etc. Multipartite entanglement has been extensively investigated as a resource for quantum
enhanced measurements. In the multipartite setting there are EMs that simply are func-
tions of sums of bipartite EMs. For these multipartite EMs the monotonicity under LOCC
is simply inherited from the bipartite measures. But there are also EMs which were con-
structed specifically for multipartite states. As required by an excellent or good EM, it can be
checked that both bipartite and multipartite entanglement are two non-increasing EMs under
LOCCs. Therefore it is natural to ask how much entanglement can be obtained from the
incompletely entangled states which arise, for example, during the sharing of a completely
entangled state between two observers using only LOCC. About fundamental questions of
quantum information theory, of which tasks such as the characterization and general com-
prehension of entanglement belong to, LOCC operations are of importance because of their
locality. As the concept of entanglement is strongly related to the nonlocal properties of a
physical state [56], LOCC operations cannot affect the inherent nature of entanglement. By
using LOCC operations different equivalence classes of states can be defined; representa-
tives of each class can be used in experiments to carry out the same tasks, though with a
different probability [22–25, 30].
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4 Conclusions

The amount of entanglement does not really have a meaning apart from a well-defined
measure. An ideal measure of entanglement should have the following characteristics: it is
non-vanishing if and only if the state is entangled; it is maximized by some recognizably
maximally-entangled states; it has an operational interpretation (i.e., it quantifies the abil-
ity to carry out some quantum information protocol); it is monotonic (non-increasing under
local operations and classical communication); and it is easy to calculate. For bipartite pure
states there is a measure that satisfies all of those requirements: the entropy of entangle-
ment, which is monotonic, straightforward to calculate, nonzero for all entangled states and
zero for all product states, and which quantifies the number of maximally entangled pairs
which can be produced asymptotically from many copies of the given state. However, for
mixed states and multipartite states, there is no measure that satisfies all of these require-
ments as far as we know. There are variety of different measures that may satisfy some of
these requirements but not others. Some (like negativity) are widely used in numerical mod-
eling because they are easy to calculate, but in general they do not have a direct operational
interpretation, and may not be nonzero for all entangled states. Others have great theoret-
ical importance (like the entanglement of formation) but cannot generally be calculated in
closed form for most states. They require difficult optimizations, or regularized expressions,
or both. Recently, Huang [57] has proved that computing an EM is NP-hard if the measure
is nonzero for all entangled states. Therefore, efficient algorithms or even closed analyti-
cal formulas for such EMs (including, but not limited to, entanglement of formation) are
impossible unless P=NP.

Acknowledgments We would like to thank Yichen Huang, Yu-Bo Sheng, Ugo Marzolino, Todd A. Brun
and Paul Erker for useful discussions. The authors very much appreciate the anonymous referees for their
detailed and gainful comments which were a great help to improve the paper. Saeed Haddadi would like to
thank Marianne Bigornia and Somaye Ebrahimi for their helpful comments and the final edition of the paper.

References

1. Schrödinger, E.: Naturwissenschaften 23, 807 (1935). ibid. 23, 823 (1935); ibid. 23, 844 (1935)
2. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. A 47, 777 (1935)
3. Bell, J.S.: Physics 1, 195 (1964)
4. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)
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