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Abstract
Traditional and modern cryptosystems purely rely on mathematics and their algorithms
based on fundamental process of factoring large integers into their primes, which is said
to be intractable. But this type of cryptography vulnerable to both evolutions in mathemat-
ics and development of high computing power which can easily reverse one way functions.
Now the requirement is to design a new mechanism whose reverse computation is not
possible for any system. The robust security mechanism is necessary. The combination of
quantum mechanism and cryptography make it possible to develop such a secure communi-
cation systems that utilized different energy spectra for the transmission of information. The
combination of quantum mechanics and cryptography gives birth to quantum cryptography.
Quantum cryptography is one of the most remarkable application of quantum information
theory. To measure the quantum state of any system is not possible without disturbing that
system. The facts of quantum mechanics on traditional cryptosystems leads to a new proto-
col, algorithms and achieving maximum security for systems. The aim of this article is to
apply quantum spinning and rotation along with finite state machine to develop an efficient
cryptosystems for text encryption and decryption.

Keywords Quantum cryptography · Passive rotation operators · Quantum spinning · Finite
state machine

1 Introduction

In regular daily existence, there are numerous circumstances when it is important to hide the
actual contents of secret information transmitted over an insecure line of communication.
Many traditional cryptosystems were utilized to perform these tasks in order to encrypt the
confidential information. However, in a near future all these classical cryptosystems merely
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computational secure. The existing classical cryptographic algorithms fundamentally rely
on limited computationally development of computer power and mathematical structures.
Traditional cryptography experiences key distribution issue, how to convey the key safely
between two sets of clients. For quite a long time, it was trusted that the main plausibil-
ity to take care of the key dissemination issue was to send some physical medium. With
the advancement of technologies, this criterion is obviously unconventional. Moreover, it is
even impossible to validate the authentication, integrity and non-repudiation of the trans-
mitted digital contents. Public key cryptography addressed this issue in a quite decent way,
yet these algorithms are moderate and cannot be utilized to scramble a lot of information
at the same time. Asymmetric key cryptography endures in light of the fact that despite the
fact that restricted capacities have not been yet switched with innovative and mathematical
advances it is conceivable. The development of quantum cryptography can truly debilitate
their security. Previously, there has been a decent arrangement of another cryptographic
strategy whose security depends on the principal laws of quantum information science and
quantum cryptography. The principle accomplishment is that it can tackle the issue of key
distribution. From the reasonable perspective, it is fascinating that quantum cryptography
may properly be acknowledged by methods for quantum optics and the optical fiber fills
in as a transmission channel [9, 10]. To encode data for instance polarization (disparity,
division) or different phases can be utilized. The fundamental principle of quantum mech-
anism is that the light waves are comprised of a huge number of discrete quanta called
photons which are mass less and have energy, momentum and angular momentum called
spinning. The spinning of photon conveys the polarization. These photons are unified much
like atoms, it simply that they are units of lights [8] .

Photon polarization describes how light photons can have polarized in specific direc-
tions. Photon filter with the correct polarization can only detect a polarized photon. The one
way characteristics of photons along with the Heisenberg uncertainty principle make quan-
tum cryptography an attractive option to ensure the privacy and defeating eavesdroppers
[2]. Some particles, like electrons, neutrinos and quarks have half integer internal angular
momentum also called spin . We develop a spinor representation in this paper for spin 1/2
to give a new direction to cryptography via spinning operators of quantum mechanics [1],
[3]− [7]. We have shown here, not only the keys but the message can also be encrypted
via this technique. The important aspect of our suggested algorithm is phase information,
because phase is used to encrypt and decrypt the keys and message. To achieve maximum
security, we use different phases for key and message. To decrypt the message, first we
have to decrypt the keys by using phase information and then by using keys with phase
information of message to decrypt the message.

The rest of the paper is organized as follow. We have added basic definition of finite state
machine in Section 2. The derivation of rotation operator is given in Section 3. The proposed
quantum spinning and rotations based algorithm illustrate with example and sensitivity
analysis are given in Section 4. Finally, conclusion is given in Section 5.

2 Finite State Machine

Finite state automation (FSA) or finite state machines (FSM) are models of behaviors for a
system or a complex object, with a limited number of defined modes or conditions, where
mode transitions change in circumstances [7].



3586 International Journal of Theoretical Physics (2018) 57:3584–3594

A DFA (deterministic finite automation) is quintuple M = (X,
∑

, q0, ℘,�), where

X is state of finite sets,∑
is input symbols of finite set,

q0 is start state indicated by an arrow →,

℘ is transition function ℘ : X × ∑ → X, i.e.,, ℘(q0, a) = qi ∈ X,

� ⊂ X is a finite set of final set of final states.

The input symbols can be letters or digits. We say that a string M is accepted by DFA
(Deterministic Finite Automaton-self operating machine), if the set of languages accepted
by a DFA ‘X’ is denoted by L(X). In DFA, there is only one transition out of each state
on the same input symbol. NDFA (Nondeterministic Finite Automaton) can also be consid-
ered here as a mathematical model. In NDFA, we considered here a Moore machine and
we use NDFA in our algorithm. In Moore machine, the output depends on the transitions
(Fig. 1).

3 Derivation of Rotation Operators

The laws of physics not depend on what axis we choose for our coordinate system (rotational
symmetry). If we make an infinitesimal rotation (through and angle dφ) about ther−axis,
we get the transformed coordinates [5],

p
′ = p − dφq,

q
′ = q + dφp. (1)

Fig. 1 Finite state machine algorithm
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Apply Taylor series on (1) to expand the function.

f (p′, q ′) = f (p, q) − ∂f

∂p
dφq + ∂f

∂q
dφp =

(
1 + ι

h
dφSr

)
f (p, q),

Rr(dφ) =
(
1 + ι

h
dφSr

)
,

where his internal angular momentum. A finite rotation can be made by applying the
operator for an infinitesimal rotation over and over. Let θr = ndφ, then

Rr(θ) = lim
n→∞

(

1 + ι

h

θ

n
Sr

)n

= eiθ Sr
h . (2)

If we make an infinitesimal rotation about the q−axis, we get the transformed coordinates

p
′ = p − dφr

r
′ = r + dφp (3)

Apply Taylor series on (3) to expand the function given below

f (p
′
, r

′
) = f (p, r) − ∂f

∂p
dφr + ∂f

∂r
dφp =

(
1 + ι

h
dφSq

)
f (p, r),

Rq(dφ) =
(
1 + ι

h
dφSq

)
.

A finite rotation can be made by applying the operator for an infinitesimal rotation over and
over. Let θq = ndφ, then

Rq(θ) = lim
n→∞

(

1 + ι

h

θ

n
Sq

)n

= eiθ
Sq
h . (4)

If we make an infinitesimal rotation about the p−axis, we get the transformed coordinates

q
′ = q − dφr,

r
′ = r + dφq. (5)

Apply Taylor series on (5) to expand the function.

f (q
′
, r

′
) = f (q, r) − ∂f

∂q
dφr + ∂f

∂r
dφq =

(
1 + ι

h
dφSp

)
f (q, r),

Rp(dφ) =
(
1 + ι

h
dφSp

)
.

A finite rotation can be made by applying the operator for an infinitesimal rotation over and
over. Let θp = ndφ, then

Rp(θ) = lim
n→∞

(

1 + ι

h

θ

n
Sp

)n

= eiθ
Sp
h . (6)
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3.1 Derive Spin 1
2 Operators

We use eigenstates of Sr as the basis states [6]

X+ =
(
1
0

)

,

X− =
(
0
1

)

,

Sr X± = ±h

2
X±,

Sr = h

2

(
1 0
0 −1

)

.

It must be diagonal, since the basis states are eigenvectors of the matrix. Now to perform
the raising and lowering operators [6], we have

S+X− =
S+X+=0,√

s(s + 1) − m(m + 1)hX+ = hX+,

S+ = h

(
0 1
0 0

)

,

S−X− = 0,

S−X+ = √
s(s + 1) − m(m − 1)hX− = hX−,

S− = h

(
0 0
1 0

)

.

Now we can calculate Sp and Sq .

Sp = 1

2
(S+ + S ) = h

2

(
0 1
1 0

)

, (7)

Sq = 1

2ι
(S+ − S ) = h

2ι

(
0 −ι

ι 0

)

. (8)

The Pauli spin matrices are defined as [4],

Si = h

2
σi . (9)

Compare (7)-(8) and (9) with (10) to get σ (Pauli matrices).

σp =
(
0 1
1 0

)

,

σq =
(
0 −ι

ι 0

)

,

σr =
(
1 0
0 −1

)

. (10)
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These are traceless Hermitian matrices, and σ 2
p = σ 2

q = σ 2
r = I (identity) [1]. Now put

(10) in (2), (4) and (6) to get rotation operators with respect to σ .

Rp(θ) = ei θ
2 σp ,

Rq(θ) = ei θ
2 σq ,

Rr(θ) = ei θ
2 σr , (11)

ei θ
2 σj =

∞∑

n=0

(
i θ
2

)n

n! σn
j . (12)

Now deriving the rotation operators of (11) with the help of (12) [6].

Rp(θ) = ei θ
2 σp =

⎛

⎜
⎜
⎜
⎝

∞∑
n=0,2,4,...

(
i θ
2

)n

n!
∞∑

n=1,3,5,...

(
i θ
2

)n

n!
∞∑

n=1,3,5,...

(
i θ
2

)n

n!
∞∑

n=0,2,4,...

(
i θ
2

)n

n!

⎞

⎟
⎟
⎟
⎠

=
(

cos θ
2 ι sin θ

2
ι sin θ

2 cos θ
2

)

, (13)

Rq(θ) = ei θ
2 σq =

⎛

⎜
⎜
⎜
⎝

∞∑
n=0,2,4,...

(
i θ
2

)n

n! −ι
∞∑

n=1,3,5,...

(
i θ
2

)n

n!

ι
∞∑

n=1,3,5,...

(
i θ
2

)n

n!
∞∑

n=0,2,4,...

(
i θ
2

)n

n!

⎞

⎟
⎟
⎟
⎠

=
(

cos θ
2 sin θ

2− sin θ
2 cos θ

2

)

,

(14)

Rr(θ) = ei θ
2 σr =

⎛

⎜
⎜
⎜
⎝

∞∑
n=0

(
i θ
2

)n

n! 0

0
∞∑

n=0

(
−i θ

2

)n

n!

⎞

⎟
⎟
⎟
⎠

=
(

ei θ
2 0

0 e−i θ
2

)

. (15)

4 Proposed Algorithm

We have derived the rotation operators around p, q and r axis. By using the results, we
encrypt the key and message by following algorithm. We ignore the imaginary numbers and
used real axis for calculations.

a =
(
1 0
0 1

)

= I,

b =
(
cos θ

2 sin θ
2

sin θ
2 cos θ

2

)

= Rp(θ),

c =
(

cos θ
2 sin θ

2− sin θ
2 cos θ

2

)

= Rq(θ),

d =
(

e
θ
2 0

0 e− θ
2

)

= Rr(θ). (16)
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Let entangle 2 × 2 matrices of (16) to form the set A of 4 × 4 entangle matrices. The
elements of the set A are:

A1 =
[

a b

c d

]

=

⎡

⎢
⎢
⎢
⎣

1 0 cos θ
2 sin θ

2
0 1 sin θ

2 cos θ
2

cos θ
2 sin θ

2 e
θ
2 0

− sin θ
2 cos θ

2 0 e− θ
2

⎤

⎥
⎥
⎥
⎦

A2 =
[

a b

d c

]

=

⎡

⎢
⎢
⎢
⎣

1 0 cos θ
2 sin θ

2
0 1 sin θ

2 cos θ
2

e
θ
2 0 cos θ

2 sin θ
2

0 e− θ
2 − sin θ

2 cos θ
2

⎤

⎥
⎥
⎥
⎦

,

A3 =
[

a d

b c

]

=

⎡

⎢
⎢
⎢
⎣

1 0 e
θ
2 0

0 1 0 e− θ
2

cos θ
2 sin θ

2 cos θ
2 sin θ

2
sin θ

2 cos θ
2 − sin θ

2 cos θ
2

⎤

⎥
⎥
⎥
⎦

,

A4 =
[

a d

c b

]

=

⎡

⎢
⎢
⎢
⎣

1 0 e
θ
2 0

0 1 0 e− θ
2

cos θ
2 sin θ

2 cos θ
2 sin θ

2− sin θ
2 cos θ

2 sin θ
2 cos θ

2

⎤

⎥
⎥
⎥
⎦

,

A5 =
[

a c

d b

]

=

⎡

⎢
⎢
⎢
⎣

1 0 cos θ
2 sin θ

2
0 1 − sin θ

2 cos θ
2

e
θ
2 0 cos θ

2 sin θ
2

0 e− θ
2 sin θ

2 cos θ
2

⎤

⎥
⎥
⎥
⎦

A6 =
[

a c

b d

]

=

⎡

⎢
⎢
⎢
⎣

1 0 cos θ
2 sin θ

2
0 1 − sin θ

2 cos θ
2

cos θ
2 sin θ

2 e
θ
2 0

sin θ
2 cos θ

2 0 e− θ
2

⎤

⎥
⎥
⎥
⎦

,

A7 =
[

b a

c d

]

=

⎡

⎢
⎢
⎢
⎣

cos θ
2 sin θ

2 1 0
sin θ

2 cos θ
2 0 1

cos θ
2 sin θ

2 e
θ
2 0

− sin θ
2 cos θ

2 0 e− θ
2

⎤

⎥
⎥
⎥
⎦

,

A8 =
[

b a

d c

]

=

⎡

⎢
⎢
⎢
⎣

cos θ
2 sin θ

2 1 0
sin θ

2 cos θ
2 0 1

e
θ
2 0 cos θ

2 sin θ
2

0 e− θ
2 − sin θ

2 cos θ
2

⎤

⎥
⎥
⎥
⎦

,

...

A24 =
[

d b

a c

]

=

⎡

⎢
⎢
⎢
⎣

e
θ
2 0 cos θ

2 sin θ
2

0 e− θ
2 sin θ

2 cos θ
2

1 0 cos θ
2 sin θ

2
0 1 − sin θ

2 cos θ
2

⎤

⎥
⎥
⎥
⎦
.
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4.1 Encryption

1. Define the phase for defined rotation matrices (known to sender and receiver only),
2. Convert the message into numeric vector of order 4 × n, say M ,
3. Define finite state machine,
4. Decide a key for secret communication,
5. Convert they key into binary,
6. Start with left most bit for encryption of message with rotation matrices and add one

by one the key bits towards right and convert to decimal at each step and mod the key
to 24. Round of encryption depends on key length,

7. Convert the numeric matrix into alphabets at each step to get different ciphers,
8. Finally, cipher alphabets received by using the full length of the key, say Mc.

4.2 Decryption

1. Enter the phase where the message was encrypted,
2. Convert alphabetical cipher message into numeric matrix of order 4 × n, say Mc,
3. Enter the key for which the message encrypted and convert it into binary,
4. Now start with full length key undermod 24 and operate the cipher with inverse rotation

matrices and then subtract 1 by 1 bit from right side under mod 24 to operate with
rotation matrices,

5. The final numeric vector obtained by performing the inverse rotation matrix of left most
bit with previous cipher,

6. Convert the numeric matrix into alphabetical vector to get original message.

4.3 Example

Let us consider a message ‘INCOMPREHENSIBLE’ to be encrypted and decrypted at phase
θ = 320◦ with key 59.

M = INCOMPREHENSIBLE =

⎡

⎢
⎢
⎣

8 13 2 14
12 15 17 4
7 4 13 18
8 1 11 4

⎤

⎥
⎥
⎦ .

4.3.1 Finite State Machine

The mathematical expression of finite state machine which will be used in our proposed
algorithm is given below

qk+1 = qk × [
R(sec ret code in decimal form mod 24)

]output qk+1 state .

4.3.2 Encryption

The following components are basic requirement for the encryption of plain text ‘INCOM-
PREHENSIBLE’ (see Table 1).

We are now utilizing the fundamental components which are selected in Table 1, by
transforming the plaintext into a ciphertext. A comprehensive procedure of our proposed
encryption algorithm is given in Table 2.
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Table 1 Basic components for encryption of proposed algorithm

Phase Encryption key

Decimal form Binary form Rounds Binary input Decimal input Key matrix

320 59 111011 1 1 1 A1

2 11 3 A3

3 111 7 A7

4 1110 14 A14

5 11101 5 A5

6 111011 11 A11

4.3.3 Decryption

The decryption is an inverse process of encryption to transform the ciphertext into a plain-
text. The fundamental steps in decryption of information in proposed algorithm are same
but apply in a reverse way (see Tables 3 and 4).

Table 2 Encryption process of proposed algorithm

Cipher Cipher matrix Cipher message

C1 (A1 × M) =

⎡

⎢
⎢
⎢
⎢
⎣

3 9 17 22

6 15 9 4

15 13 17 24

2 6 20 13

⎤

⎥
⎥
⎥
⎥
⎦

DJRWGPJEPNRYCGUN

C2 (A7 × C2) =

⎡

⎢
⎢
⎢
⎢
⎣

0 17 23 14

15 1 1 24

19 13 3 17

17 24 7 13

⎤

⎥
⎥
⎥
⎥
⎦

LT XRIMUSECLCUIUN

C3 (A7 × C2) =

⎡

⎢
⎢
⎢
⎢
⎣

0 17 23 14

15 1 1 24

19 13 3 17

17 24 7 13

⎤

⎥
⎥
⎥
⎥
⎦

ARXOPBBYT NDRRYHN

C4 (A14 × C3) =

⎡

⎢
⎢
⎢
⎢
⎣

17 16 0 3

1 24 0 11

18 6 14 14

18 0 21 5

⎤

⎥
⎥
⎥
⎥
⎦

RQADBYALSGOOSAV F

C5 (A5 × C4) =

⎡

⎢
⎢
⎢
⎢
⎣

13 1 7 21

12 25 15 4

3 17 25 3

15 9 8 20

⎤

⎥
⎥
⎥
⎥
⎦

NBHV MZPEDRZDPJIU

C6 (A11 × C5) =

⎡

⎢
⎢
⎢
⎢
⎣

7 1 7 13

17 10 14 6

18 17 1 19

1 4 20 4

⎤

⎥
⎥
⎥
⎥
⎦

HBHNRKOGSRBT BEUE
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Table 3 Basic components for decryption of proposed algorithm

Phase Encryption key

Decimal form Binary form Rounds Input binary Input decimal Key matrix

320 59 111011 1 111011 11 A11

2 11101 5 A5

3 11101 14 A14

4 111 7 A7

5 11 3 A3

6 1 1 A1

4.4 Sensitivity Analysis

We have applied, our designed algorithm on different texts in which some texts shown in
Table 5. By changing the phase, key or both lead to change the cipher. The beauty and
versatility of designed algorithm is to change any term (either key or phase) lead to change

Table 4 Decryption process of proposed algorithm

Cipher Cipher matrix Cipher message

C5

(
A−1
11 × C6

)
=

⎡

⎢
⎢
⎢
⎢
⎣

13 1 7 21

12 25 15 4

3 17 25 3

15 9 8 20

⎤

⎥
⎥
⎥
⎥
⎦

NBHV MZPEDRZDPJIU

C4

(
A−1
5 × C5

)
=

⎡

⎢
⎢
⎢
⎢
⎣

17 16 0 3

1 24 0 11

18 6 14 14

18 0 21 5

⎤

⎥
⎥
⎥
⎥
⎦

RQADBYALSGOOSAV F

C3

(
A−1
14 × C4

)
=

⎡

⎢
⎢
⎢
⎢
⎣

0 17 23 14

15 1 1 24

19 13 3 17

17 24 7 13

⎤

⎥
⎥
⎥
⎥
⎦

ARXOPBBYT NDRRYHN

C2

(
A−1
7 × C3

)
=

⎡

⎢
⎢
⎢
⎢
⎣

11 19 23 17

8 12 20 18

4 2 11 2

20 8 20 13

⎤

⎥
⎥
⎥
⎥
⎦

LT XRIMUSECLCUIUN

C1

(
A−1
3 × C2

)
=

⎡

⎢
⎢
⎢
⎢
⎣

3 9 17 22

6 15 9 4

15 13 17 24

2 6 20 13

⎤

⎥
⎥
⎥
⎥
⎦

DJRWGPJEPNRYCGUN

M
(
A−1
1 × C1

)
=

⎡

⎢
⎢
⎢
⎢
⎣

8 13 2 14

12 15 17 4

7 4 13 18

8 1 11 4

⎤

⎥
⎥
⎥
⎥
⎦

INCOMPREHENSIBLE
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Table 5 Sensitivity analysis of proposed algorithm

Message Phase Key Final ciphertext

INCOMPREHENSIBLE 320◦ 59 HBHNRKOGSRBT BEUE

INCOMPREHENSIBLE 280◦ 59 KHPEHHJIRV HJJSOK

INCOMPREHENSIBLE 320◦ 63 T CUKNRRT KMEYCGNG

ELECT ROMAGNET ISM 150◦ 37 OLDLEMZV NDV FDRPI

ELECT ROMAGNET ISM 220◦ 37 HUPFMCEMQNHLXGKT

the cipher and it is not possible to retrieve the plaintext exactly. The reverse process of this
scheme by knowing the key is not possible because phase θ has infinite points.

5 Conclusion

The efficiency of designed algorithm test on texts, by changing the phase only 0.010 lead
to change the cipher. Both parties can do secure data transmission with limited key space
in very short time and can encrypt/ decrypt data character by character in defined range of
phases. The above results of plain texts have different ciphers clarified that by changing
either key or phase to get different results. We can create million of ciphers by changing
phases of one original plain text. In this paper, the algorithm refers symmetric cryptogra-
phy. The described algorithm refers to half spinning, so the points in between −720◦to720◦
are infinite and possible combinations of rotation matrices are 24!. It is not possible for
any machine to store infinite points in each of 24! matrices. All of these rotation matri-
ces become the identity matrix for rotations through 720◦ and are minus the identity for
rotations through 360◦. The purpose of using FSM is to enhance the security.
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