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Abstract The effect of intrinsic damping on the interaction between a two-level atom and
a multi-photon cavity field in the presence of an external classical field is studied. Under
certain conditions and use of a transformation, the system is transformed to a generalized
Jaynes Cummings model, with the influence of classical field included in the detuning
parameter. The temporal evolution of some statistical aspects such as, the atomic inversion,
the squeezing phenomena and linear entropy are obtained. In addition, we present the effects
of the intrinsic damping and detuning parameters on the above mentioned quantities, for
one and two photons. The entropy is used as a measure of the degree of entanglement, and
consequently discussed.

1 Introduction

Intrinsic damping is one of the methods to study damping in quantum mechanics [1]. In
general, a system suffers a damping rate due to coupling to some sufficiently large external
reservoir. The intrinsic damping approach has been investigated in the framework of several
models, in particular Jaynes -Cummings model(JCM) [2]. Furthermore, JCM was solved
for intrinsic damping in resonance case [3]. The collapse and revival phenomenon and the
photon-number distribution for multiphoton JCM in off-resonance case process were stud-
ied [4]. The influence of intrinsic damping on the growth of entropy and the entanglement
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for multiphoton JCM was studied analytically [5]. Another work studied the effect of intrin-
sic damping on the entropy squeezing of coupled field-superconducting charge qubit [6], a
general solution for the total correlation function between any two charge qubits initially
prepared in a mixed state in presence of intrinsic damping was explicitly investigated [7].
The phenomena of entanglement decay, sudden rebirth, and sudden death as well as for
the local quantum uncertainty, uncertainty-induced quantum non-locality under influence of
intrinsic decoherence have been discussed [8]. The model of two charged qubits, in a SC-
cavity field is studied, it is shown that the entanglement depend on the phase decoherence
rate [9]. The Negativity and the atomic population for the interaction between su(1,1) and
a two two-level in non-resonance case is obtained [10]. The quantum Fisher information
and von Neumann entropy are investigated numerically for N-level atomic system in the
presence of intrinsic decoherence, where it is found that the local maximum value of entan-
glement decrease [11]. The information about degree of entanglement a JCM with k-photon
process is obtained, by comparing the results for the atomic Wehrl entropy and negativity
with the analytical results [12]. The degree of entanglement was also discussed for JCM by
using quantum mutual entropy [13]. The interaction between a system of N two-level atoms
in a cavity of quantized field with a strong classical field has been studied and a method of
generating entanglement has been proposed [14]. The effect of damping on atomic variable
squeezing or squeezing in the entropy leads to degradation of squeezing [15]. The influence
of the external classical field on the interaction between a two level atom and a quantized
cavity field has been studied [16] and the existence of the classical field leads to a variation
in the atomic inversion. It has a great effect on the phenomenon of squeezing and the linear
entropy, as well as to improve the amount of entanglement [17].

In this paper, we study the influence of an external classical field on a two-level atom
interacting with a quantized field in presence of the intrinsic damping. In Section 2 we apply
the rotating wave approximation(RWA) and some canonical transformations for the excited
state and ground state to transform the system into a JCM with the classical field term
included in the detuning parameter. By using the exact solution of Milburn equation we get
the density operator for this system to investigate some statistical aspects. In Section 3, we
discuss the collapses and revivals of the atomic inversion for different values of classical
field and intrinsic damping parameters. Section 4 is devoted to he phenomenon of squeezing
by using the variance and entropy squeezing. Section 5 is devoted to examine influence of
classical field and damping parameters on the degree of entanglement by using the linear
entropy for the field. Finally, we conclude our work in Section 6.

2 The Model

The interaction between an electromagnetic quantized field via k-photon and a two-level
atom in the presence of an external field can be described by the Hamiltonian (� = 1):

Ĥ = ωâ†â + ω0

2
σ̂z + iλ1(â

k + â†k)(σ̂+ − σ̂−) + λ2(σ̂+e−iωct + σ̂−eiωct ), (1)

where ω, ω0 and ωc are frequencies of the cavity field, the atomic transition and the classical
field respectively, σ̂z, σ̂+ and σ̂− are the Pauli spin operators; they are defined by ground
state (|g〉) and exited state (|e〉) of the atom as σ̂z = |e〉〈e| − |g〉〈g|, σ̂+ = |e〉〈g|, and σ̂− =
|g〉〈e|, such that [σ̂z, σ̂±] = ±2σ̂±, and [σ̂+, σ̂−] = σ̂z. While â, and â† are annihilation and
creation operators of the cavity field which satisfy the commutation relation [â, â†] = I ,
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λ1 and λ2 are the coupling constants of the interaction of the atom with the cavity field and
with the classical field respectively.

By using the transformation Û1 = e−iωcσ̂zt/2 to transform the Hamiltonian (1) to Ĥ1
where.

Ĥ1 = Û
†
1 Ĥ Û1 − iÛ

†
1

∂Û1

∂t
,

= ωâ†â + ω0 − ωc

2
σ̂z + iλ1(â

k + â†k)(σ̂+eiωct − σ̂−e−iωct ) + λ2(σ̂+ + σ̂−). (2)

If we define a new excited (ground) state as |+〉 (|−〉), and the operators Ŝ,s where
Ŝz = |+〉〈+|−|−〉〈−|, Ŝ+ = |+〉〈−| and Ŝ− = |−〉〈+| which satisfy commutation relations
[Ŝz, Ŝ±] = ±2Ŝ± and [Ŝ+, Ŝ−] = Ŝz which are related to the states |e〉 and |g〉 by the
following form:

|+〉 = cosξ |e〉 + sinξ |g〉 , |−〉 = cosξ |g〉 − sinξ |e〉 ,

ξ = 1

2
tan−1

(
2λ2

ω0 − ωc

)
,

−π

2
< ξ <

π

2
. (3)

So, we can write the Ŝ,s operators in terms of the σ̂,s operators as following:⎡
⎣ Ŝz

Ŝ+
Ŝ−

⎤
⎦ =

⎡
⎣ cos 2ξ sin 2ξ sin 2ξ

− 1
2 sin 2ξ cos 2ξ − sin 2ξ

− 1
2 sin 2ξ − sin 2ξ cos 2ξ

⎤
⎦

⎡
⎣ σ̂z

σ̂+
σ̂−

⎤
⎦ (4)

At λ2 = 0 i.e. ξ = 0 it is easy to see that |+〉 = |e〉 and |−〉 = |g〉. After applying this
transformation and using the rotating wave approximation, the Hamiltonian (2) can be cast
in the following form:

Ĥ2 = ωâ†â + �

2
Ŝz + iλ1cos2ξ(âkŜ+eiωct − â†kŜ−e−iωct ), (5)

where � =
√

(ω0 − ωc)2 + 4λ2
2, we note that the classical field parameter is now included

in � as well as in the new coupling λ1cos2ξ . Now, we use the transformation Û2 = eiωcŜzt/2

to transform the Hamiltonian (5) to Ĥ = Û
†
2 Ĥ2Û2 − iÛ

†
2

∂Û2
∂t

.
Then, we can rewrite it in the rotating reference frame as follows:

Ĥ = ωâ†â +
(

� + ωc

2

)
Ŝz + iλ1cos2ξ(âkŜ+ − â†kŜ−), (6)

which is a general form of the JCM with the atomic frequency shifted to � + ωc.
Milburn assumed that [1, 3], the system changes stochastically in the presence of suffi-

ciently short time steps. Based on this assumption, he obtained the rate of change of density
operator ρ̂(t) which alters the Schrödinger dynamics as follows:

dρ̂

dt
= γ

(
e

−i
γ

Ĥ
ρ̂(t)e

i
γ

Ĥ − ρ̂(t)
)

, (7)

where γ is the decay rate and corresponds to a sufficiently short time step. The system
develops gradually with a probability P(τ ) = γ τ . Also, the von Neumann equation for the
density matrix is recovered in the limit γ −→ ∞ (time step equal zero). For the first order
in γ −1 the time evolution density operator is obtained:

dρ̂

dt
= −i[Ĥ , ρ̂] − 1

2γ
[Ĥ , [Ĥ , ρ̂]]. (8)
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We express the solution for the density operator ρ̂(t) in (8) by using superoperator
technique [18] and applying it on the Hamiltonian (6) thus we have:

ρ̂(t) = eR̂t eŜt eT̂ t ρ̂(0), (9)

where the three superoperators are defined as R̂ρ̂ = 1
γ
Ĥ ρ̂Ĥ , Ŝρ̂ = −i[Ĥ , ρ̂] and

T̂ ρ̂ = − 1
2γ

{
Ĥ 2, ρ̂

}
so that:

eR̂t ρ̂(t) =
∞∑

m=0

1

m!
(

t

γ

)m

Ĥ mρ̂(t)Ĥ m,

eŜt ρ̂(t) = e−iĤ t ρ̂(t)eiĤ t ,

eT̂ t ρ̂(t) = e
− t

2γ
Ĥ 2

ρ̂(t)e
− t

2γ
Ĥ 2

. (10)

Also, ρ̂(0) is the initial density operator of the system (atom-field). To assume the effect
of intrinsic damping on the system, we consider ρ̂(0) = |+, α〉〈+, α|, where the atom is
prepared initially in its new excited state |+〉 and the field in the coherent state.

|α〉 = e− 1
2 |α|2

∞∑
n=0

(αn/
√

n!)|n〉. (11)

The Hamiltonian (6) can be written as Ĥ = Ĥ0 + ĤI , where [Ĥ0, ĤI ] = 0. By using
λ = λ1cos2ξ , then Ĥ0, and ĤI can be written as:

Ĥ0 = ω

(
â†â + k

2
Ŝz

)
, ĤI = δ

2
Ŝz + iλ(âkŜ+ − â†kŜ−), (12)

where δ = � + ωc − kω.
Also, Ĥ0, ĤI can be written in the matrix representation as follows:

Ĥ0 =
[

ω
(
n̂ + k

2

)
0

0 ω
(
n̂ − k

2

)
]

, ĤI =
[

δ
2 iλâk

−iλâ†k −δ
2

]
. (13)

The square of the Hamiltonian (6) takes the form Ĥ 2 = Â + B̂, where [Â, B̂] = 0 so Â

and B̂ take the following forms:

Â =
[

ω2
(
n̂ + k

2

)2 + M̂2
1 0

0 ω2
(
n − k

2

)2 + M̂2
2

]
, (14)

B̂ = 2

[
ωδ
2

(
n̂ + k

2

)
iλω

(
n̂ + k

2

)
âk

−iλω
(
n̂ − k

2

)
â†k −δω

2

(
n̂ − k

2

)
]

, (15)

where M̂1 =
√(

δ
2

)2 + λ2âk â†k and M̂2 =
√(

δ
2

)2 + λ2â†kâk .
By using the definition (10) we can write:

ρ̂2(t) = eŜt eT̂ t ρ̂(0) = e−iĤI t e
− t

2γ
B̂
ρ̂1(t)e

− t
2γ

B̂∗
eiĤI t ,

ρ̂1(t) = |ψ(t), +〉〈+, ψ(t)|, (16)

where |ψ(t)〉 = e
− t

2γ
Â|α〉 = exp

(
− t

2γ

(
ω2

(
n̂ + k

2

)2 + M̂2
1

))
|α〉.
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We can write the operator exp
(
− t

2γ
B̂

)
as:

e
− t

2γ
B̂ =

[
X̂+(n + k, t) X̂3(n + k, t)âk

−X̂3(n, t)â†k X̂−(n, t)

]
, (17)

where X̂+(n + k, t) = cosh
(

t
γ
q̂+

)
− δ

2M̂1
sinh

(
t
γ
q̂+

)
, X̂−(n, t) = cosh

(
t
γ
q̂−

)
+

δ

2M̂2
sinh

(
t
γ
q̂−

)
, X̂3(n + k, t) = −iλ

M̂1
sinh

(
t
γ
q̂+

)
, q+ = ω

(
n̂ + k

2

)
M̂1 and q− =

ω
(
n̂ − k

2

)
M̂2.

Similarly, the operator exp(−iĤI t) can be written in the form:

e−iĤI t =
[

R̂+(n + k, t) R̂12(n + k, t)âk

R̂21(n, t)â†k R̂−(n, t)

]
, (18)

where R̂+(n + k, t) = cos(M̂1t) − iδ

2M̂1
sin(M̂1t), R̂−(n, t) = cos(M̂2t) + iδ

2M̂1
sin(M̂2t),

R̂12(n + k, t) = λ

M̂1
sin(M̂1t), and R̂21(n, t) = −λ

M̂2
sin(M̂2t).

The m-th power of the Hamiltonian (6) can be also written in the form:

Ĥ m =
⎡
⎢⎣ f̂

(m)
+ iλ

φ̂
(m)
−
M̂1

âk

−iλ
φ̂

(m)
+
M̂2

â†k f̂
(m)
−

⎤
⎥⎦ , (19)

where f̂
(m)
+ = φ̂

(m)
+ + δ

2M̂1
φ̂

(m)
− , f̂

(m)
− = �̂

(m)
+ − δ

2M̂2
�̂

(m)
− , and the operators φ̂

(m)
± and

�̂
(m)
± are defined by: φ̂

(m)
± = 1

2 ((ŝ
(m)
+ ) ± ŝ

(m)
− ), �̂

(m)
± = 1

2 ((v̂
(m)
+ ) ± v̂

(m)
− ), also ŝ± =

ω
(
n̂ + k

2

) ± M̂1 and v̂± = ω
(
n̂ − k

2

) ± M̂2.
Finally, we obtain the exact solution of the master (8) for t > 0 as follows:

ρ̂(t) = ρ̂11(t)|+〉〈+| + ρ̂12(t)|+〉〈−| + ρ̂21(t)|−〉〈+| + ρ̂22(t)|−〉〈−|, (20)

where the elements of the density operator are ρ̂ij (t) = ∑
m=0

1
m!

(
t
γ

)m

�̂
(m)
ij , and we define

�̂(m) = Ĥ mρ̂2(t)Ĥ m, so we can write:

�̂
(m)
11 = f̂

(m)
+ ψ11f̂

(m)
+ − λ2 φ̂

(m)
−
M̂1

âkψ22
φ̂

(m)
−
M̂1

â†k

+ iλf̂
(m)
+ ψ12

φ̂
(m)
−
M̂1

â†k + iλ
φ̂

(m)
−
M̂1

âkψ21f̂
(m)
+ , (21)

�̂
(m)
22 = −λ2â†k φ̂

(m)
−
M̂1

ψ11
φ̂

(m)
−
M̂1

âk − f̂
(m)
− ψ22f̂

(m)
−

+ iλâ†k φ̂
(m)
−
M̂1

ψ12f̂
(m)
+ + iλf̂

(m)
− ψ21

φ̂
(m)
−
M̂1

âk, (22)

�̂
(m)
12 = iλf̂

(m)
+ ψ11

φ̂
(m)
−
M̂1

âk − iλ
φ̂

(m)
−
M̂1

âkψ22f̂
(m)
−

− f̂
(m)
+ ψ12f̂

(m)
− − λ2 φ̂

(m)
−
M̂1

âkψ21
φ̂

(m)
−
M̂1

â†k, (23)
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and
�̂

(m)
21 = (�̂

(m)
12 )†. (24)

By using (3), the solution of the master (8) takes the following form using the original
atomic states (|e〉, |g〉):

Now, we use these results to study the influence of the intrinsic damping as well as the
classical field on the dynamics of the system and discuss some aspects for different values
of damping and detuning parameter. Also, we compare previous results with the present
system.

3 Collapses and Revivals of the Atomic Inversion

In this section, we use the analytic expression of the atomic inversion for this system to
study this phenomenon. The atomic inversion gives us information about the atom during
the scaled time of the interaction and probabilities of the atom being found in its excited
state or ground state. By using the solution (25), it is easy to write the atomic inversion of
the system as:

〈σ̂z(t)〉 =
∞∑

n=0

(〈n|ρ̂ee(t)|n〉 − 〈n|ρ̂gg(t)|n〉). (26)

We discuss the effect of intrinsic damping and the classical field terms on the atomic
population inversion for one photon and two photon interactions. In Fig. 1, we plot the
atomic inversion for one photon (k = 1) against the scaled time λ1t with different values
of the decay parameter γ and the coupling constant for classical field λ2, where the atom
initially in the excited state and the cavity field is prepared initially in a coherent state with
|α|2 = 25, and ω0 = ω = λ1. In Fig. 1a, if we take γ = 106 and λ2 = 0(� = 0), the system
shows behavior similar to that of the atomic inversion in the JCM as would be expected
[19]. When we consider γ = 5 ∗ 104 and λ2 = 0, we note that the amplitude of the function
decreases as the time develops and consequently tend to zero that is evident in Fig. 1b [20].
When we take the effect of classical field into account by setting λ2 = 3λ1 in Fig. 1c and
the decay parameter γ = 106, we observe a decrease in its amplitude of revivals and the
atomic inversion has periodic oscillatory envelope oscillates around zero, where collapses
and revivals are similar to the case in [16]. When we take the decay factor γ = 5 ∗ 104

and classical field parameter λ2 = 3λ1 in Fig. 1d, we see that change in envelope of the
amplitude of collapse and revivals while it osculates around zero but as the time increases
the amplitudes of the revivals tend to zero and mixed state is obtained.

In Fig. 2, we plot the atomic inversion for two photon (k = 2) with w = λ1, ω0 = 3λ1
under the same condition on the atom and the cavity field. In Fig. 2a, if we take λ2 = 0
and γ = 106, we find that the atomic population inversion agrees with the two-photon JCM
and the revival time is periodic after every 2π [21]. When we take the decay parameter

ρ̂(t) = [ρ̂11(t) cos2(ξ)+ρ̂22(t) sin2(ξ)−sin(ξ) cos(ξ)(ρ̂12(t)+ρ̂21(t))]|e〉〈e|
+ [ρ̂11(t) sin2(ξ) + ρ̂22(t) cos2(ξ) + sin(ξ) cos(ξ)(ρ̂12(t) + ρ̂21(t))]|g〉〈g|
+ [ρ̂12(t) cos2(ξ) − ρ̂21(t) sin2(ξ) + sin(ξ) cos(ξ)(ρ̂11(t) − ρ̂22(t))]|e〉〈g|
+ [−ρ̂12(t) sin2(ξ) + ρ̂21(t) cos2(ξ) + sin(ξ) cos(ξ)(ρ̂11(t) − ρ̂22(t))]|g〉〈e|

=
∑

r,s=e,g

ρ̂rs |r〉〈s|. (25)
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a b

c d

Fig. 1 The atomic inversion 〈σ̂z(t)〉 for k = 1 against the scaled time λ1t with α = 5 where a γ = 106,
λ2 = 0, b γ = 5 ∗ 104, λ2 = 0, c γ = 106, λ2 = 3λ1 and d γ = 5 ∗ 104, λ2 = 3λ1

(γ = 104) and keeping λ2 = 0, we observe that amplitudes of revivals tend to zero with
time increasing see Fig. 2b. The effect of classical field on the population inversion is shown
in Fig. 2c, where we see that the oscillatory envelope of collapses and elongation of the

a b

c d

Fig. 2 The atomic inversion 〈σ̂z(t)〉 for k = 2 against the scaled time at λ1t with α = 5 where a γ = 106,
λ2 = 0, b γ = 104, λ2 = 0, c γ = 106, λ2 = 3λ1 and d γ = 104, λ2 = 3λ1
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collapse period. When we take γ = 104 with classical field λ2 = 3λ1, we note that the
envelope of the function is oscillates around zero and tends to zero as the time develops
(see Fig. 2d), for more information we may refer to [16, 22]. Generally, the classical field
parameter plays two roles firstly, it weakens the interaction between the cavity field and the
atom and secondly, it delays the decay. Furthermore, the decay parameter plays the role of
making the state of the atom tends to a mixed state.

4 Variance and Entropy Squeezing

In this section, we shall employ the uncertainty relation to discuss the entropy and variance
squeezing for k-photon proses especially k = 1 and k = 2. Also, we display the effect
of classical field and decay parameter on the phenomenon of squeezing. The uncertainty
relation for a two-level atom characterized by Pauli operators σ̂x , σ̂y and σ̂z is defined by:

Δσ̂xΔσ̂y ≥ 1

2
|〈σ̂z〉|, (27)

where Δσ̂i =
√

〈σ̂ 2
i 〉 − 〈σ̂i〉2 and i = x, y, while 〈σ̂i〉2 for this system are given by:

〈σ̂x〉 = 2Re〈ρ̂eg(t)〉, 〈σ̂y〉 = 2Im〈ρ̂eg(t)〉, and 〈σ̂z〉 = 〈ρ̂ee(t) − ρ̂gg(t)〉. (28)

For the atomic variance squeezing for the following condition has to be satisfied.

Vi(t) =
(

�σ̂i(t) −
√ |〈σ̂z(t)〉|

2

)
< 0 , i = x, y (29)

To investigate the information entropy of the variable σk in an even N -dimensional
Hilbert space for sets of N + 1 complementary observable with the non-degenerate
eigenvalues, we use the inequality [23–25].

N∑
k=1

H(σ̂k) ≥
(

N

2
ln

N

2
+ (1 + N

2
) ln(1 + N

2
)

)
. (30)

Entropies of atomic operators σ̂x , σ̂y and σ̂z for a two-level atom by use the reduced
atomic density operator can be written as:

H(σ̂l) = −
[

1

2
+ 〈σ̂l〉

]
ln

[
1

2
+ 〈σ̂l〉

]
−

[
1

2
− 〈σ̂l〉

]
ln

[
1

2
− 〈σ̂l〉

]
,

where l = x, y, z. But if we know for N = 2, we have 0 ≤ H(σ̂i) ≤ ln 2 and these entropies
satisfy the inequality.

H(σ̂x) + H(σ̂y) + H(σ̂z) ≥ 2ln2. (31)

When we set δH(σ̂i) = exp(H(σ̂i)), then we can write [26, 27].

δH(σ̂x)δH(σ̂y)δH(σ̂z) ≥ 4. (32)

Now, we state that the system has the entropy squeezing, or the fluctuation in component
σ̂j , j = x, y of the atomic dipole, if entropies H(σ̂j ) satisfy the condition:

E(σ̂j ) =
(

δH(σ̂j ) − 2√
δH(σ̂z)

)
< 0, j = x or y, (33)

where E(σ̂j ) is the entropy squeezing parameter. Now, we discuss results for variances
squeezing and entropy squeezing.
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In Fig. 3, we have plotted Vx (solid curve) and Vy (dash curve) against the scaled time
λ1t , when we take k = 1 with the same parameters as in Fig. 1. At first we restrict our
examination for λ2 = 0 and γ = 106, where the system turns to almost JCM in resonance
case. In this case, we see that the phenomenon of squeezing can be only observed in the first
quadrature Vx but no squeezing in Vy as observed in Fig. 3a. On the other hand, when we
choose λ2 = 0 and γ = 5 ∗ 104, we can see that there is no squeezing in either quadrature
Vx or Vy except after the onset of the interaction in Vx , see Fig. 3b. Different behavior can
be seen when we take the classical external field into account and adjust λ2 = 3λ1 and
γ = 106 Fig. 3c. We note that the squeezing occurs in both quadratures Vx and Vy after
the start of the interaction which agrees with the (A.3) at λ2 = 3λ1, while the variance
squeezing takes the value 
 −0.2 at t = 0, for more details see Appendix. In Fig. 3d, we
display the phenomenon of squeezing at λ2 = 3λ1 and γ = 5 ∗ 104 where we observe
that Vx and Vy almost coincide as time grows but here in an extremely short period at the
beginning of the interaction, we note that there is squeezing for Vy and Vx .

Now, we discuss the phenomenon of the variance squeezing for two photon (k = 2) and
for the same conditions of the system. In Fig. 4, we have plotted Vx and Vy with the same
values of the parameters in Fig. 2. We note that in Fig. 4a, a squeezing Vx occurs only at the
revival time λ1t = nπ, n = 0, 1, 2, . . . but squeezing disappears in the quadrature Vy [21].
In Fig. 4b, we can see that there is no squeezing in quadrature Vy while Vx has a short period
of squeezing just after the onset of the interaction then there is no squeezing. In Fig. 4c,
Vy reaches to 1 at some point and has nearly a similar behavior of Vx . However, only Vx

a b

c d

Fig. 3 Variance squeezing Vx (solid curve), Vy (dashed curve)for k = 1 against the scaled time with the same
parameters in Fig. 1
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has a squeezing at the some points, also the starting point has negative value as observed in
Fig. 4c. In Fig. 4d, Vx and Vy have almost the same behavior, we note that the squeezing
occurs for Vx just after the onset of interaction.

Now, we examine the behavior of the entropy squeezing E(σ̂x) (solid line) and E(σ̂y)

(dashed line) for one and two photon against the scaled time λ1t , we considered α = 5 and
the same value of ω′s as in Fig. 1, these are shown in Figs. 5, 6 for one-photon (k = 1)
and two-photon (k = 2) processes respectively. We note that when we take the parameters
λ2 = 0 and γ = 106, we get a usual JCM for one photon [24] and for two photon [21].
While we plot Figs. 5a, 6a, to see that the squeezing occurs at several periods of time in the
first quadrature of the entropy squeezing E(σ̂x), but it is absent from E(σ̂y). When we take
the damping into consideration ( λ2 = 0 and γ = 5 ∗ 104 for k = 1 or γ = 104 for k = 2),
there is no squeezing in both E(σ̂x) and E(σ̂y) except just after the onset of interaction
in E(σ̂x), see Figs. 5b, 6b. We note a different behavior when we consider λ2 = 3λ1 and
γ = 106, then both E(σ̂x) and E(σ̂y) have squeezing at the beginning see Figs. 5c, 6c. But
for k = 2 the squeezing is absent from the second quadrature E(σ̂y). Finally, we can see that
the function of the entropy squeezing, when we take λ2 = 3λ1 and γ = 5 ∗ 104 one photon
has almost the same behavior for both E(σ̂x) and E(σ̂y) (see Fig. 5d). At k = 2 there is no
squeezing for E(σ̂y) at λ2 = 3λ1 and γ = 104, while the behavior E(σ̂x) is different in this
case (see Fig. 6d).

a b

c d

Fig. 4 Variance squeezing Vx (solid curve), Vy (dashed curve)for k = 2 against the scaled time where the
parameters are the same as those of Fig. 2
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a b

c d

Fig. 5 Entropy squeezing Ex (solid line), Ey (dashed line)for k=1 against the scaled time with the same
parameters in Fig. 1

a b

c d

Fig. 6 Entropy squeezing Ex (solid line), Ey (dashed line)for k = 2 against the scaled time with the same
parameters in Fig. 2
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a b

c d

Fig. 7 The Linear entropy P(t) for k = 1 against the scaled time with the same parameters in Fig. 1

5 Linear Entropy

Finally, we discuss the purity of the system by using linear entropy as an indicator. Further,
in atomic states preparation through interacting quantum systems to determine cavity field
through the disentanglement of the two quantum systems [28, 29]. On the other hand, for
the system consisting of two subsystems and being prepared in a pure state the condition
T r(ρ̂2

a ) = 1 is satisfied, but if the system is in a mixed state then T r(ρ̂2
a ) < 1, the maximum

value of the mixed state is T r(ρ̂2
a ) = 0.5. In general, the linear entropy is much simpler to

compute than the von Neumann entropy [30] because there is no need to diagonalize the
density matrix. We start with definition of the linear entropy [29], which is given by:

P(t) = 1

2

(
1 −

√
〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2

)
, (34)

where 〈σ̂i〉, i = x, y, z are defined in (28), we draw the linear entropy to discuss entangle-
ment. In Fig. 7, we plot the function P(t) against the scaled time λ1t for k = 1, where we
consider the atom in the excited state, |α|2 = 25 and ω = ω0 = λ1 with different values of
the coupling parameter of the classical field λ2 and the decay parameter γ . In Fig. 7a, we
observe that when we take γ = 106 and λ2 = 0 the function shows almost the JCM behavior
for which the system shows periods of entanglement. In Fig. 7b, the influence of damping
γ = 5 ∗ 104 without classical external field is shown, where we can see that increases in
the maximum value of the entanglement and it is sustained for larger values of λ1t . But we
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a b

c d

Fig. 8 The Linear entropy P(t) for k = 2 against the scaled time with the same parameters in Fig. 2

note decreases in entanglement when we add the influence of classical field λ2 = 3λ1 with
damping γ = 106, which is shown in Fig. 7c. While in Fig. 7d, the influence of the classical
field λ2 = 3λ1 with an increases of damping parameter γ = 5 ∗ 104, where we note that the
entanglement is increasing with time, and it is sustained for larger values of the scaled time.

In Fig. 8, the function P(t) is studied against the scaled time λ1t with k = 2 for the
same values of parameters in Fig. 2. In Fig. 8a, we see that the maximum value of the
function P(t) = 0.5, which reaches to a pure state every nπ, n = 0, 1, 2, . . ., but under
influence of damping the maximum value decreases as time developed, see Fig. 8b. The
classical field λ2 = 3λ1 leads to a decrease in the maximum value of function P(t) to 0.45,
see Fig. 8c. In Fig. 8d, we note that P(t) reaches to zero at the onset interaction, and the
maximum value decreases as the time increases. It is to be noted that once damping is taken
into consideration, then the system never reaches a pure state. In the case of the two photon
interaction, pure state can be reached even when classical field is present, provided damping
is being absent.

6 Conclusion

In this paper, we have investigated the effect of classical field, and multiphoton processes
in the presence of intrinsic damping. By using some transformations we managed to cast the
problem in a generalized JCM and by applying the Milburn’s equation for intrinsic damping
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we obtained the density operator. Then, we used the results to investigate some statistical
aspects. We studied the atomic inversion for the system with various values of damping and
classical field parameters, we found that the classical field plays important roles on shift-
ing and elongation of the collapse periods. The damping on the other hand decreases the
amplitude of revivals as time increases and results in the atom end up in a mixed state.
Furthermore, we discussed the effect of damping and classical field on the phenomenon
of squeezing. It is shown that the damping plays a role in washing out the squeezing phe-
nomenon, while the classical field increases the squeezing for the quadrature Vy . Finally,
the results show that the damping parameter increases the entanglement and system never
reaches a pure state with time grows. While, in the presence of the classical field and absence
of the damping the system shows partial entanglement with rapid fluctuations. The pure
state can be reached periodically for the case of two photon interaction, even with classical
field being present.

Appendix

We derive the formula of the variance squeezing at the initial time. From (4) we get:

〈σ̂x〉 = 〈Ŝx〉 cos 2ξ + 〈Ŝz〉 sin 2ξ

〈σ̂y〉 = 〈Ŝy〉
〈σ̂z〉 = 〈Ŝz〉 cos 2ξ − 〈Ŝx〉 sin 2ξ (A.1)

then
〈σ̂ 2

x 〉 = 1 , 〈σ̂x〉 = sin 2ξ and 〈σ̂z〉 = cos 2ξ (A.2)

by using (29) then :
Vx = cos 2ξ − √| cos 2ξ | (A.3)

Similarly, we can calculate Vy and determine starting point.
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