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Abstract Natural thermal entanglement between atoms of a linear arranged four coupled
cavities system is studied. The results show that there is no thermal pairwise entangle-
ment between atoms if atom-field interaction strength f or fiber-cavity coupling constant J

equals to zero, both f and J can induce thermal pairwise entanglement in a certain range.
Numerical simulations show that the nearest neighbor concurrence CAB is always greater
than alternate concurrence CAC in the same condition. In addition, the effect of temperature
T on the entanglement of alternate qubits is much stronger than the nearest neighbor qubits.

Keywords Quantum thermal entanglement · Concurrence · Coupled cavities system

1 Introduction

Entanglement is responsible for the non-local correlation, which is one of the most strik-
ing feature in quantum mechanics. It plays an essential role in the application of quantum
communication and quantum computation [1–4], such as dense coding [2], quantum telepor-
tation [3], quantum cryptographic protocols [4], etc. Consequently, studying the properties
of entanglement is of particular importance for both fundamental research and practical
applications.

A kind of interesting and innate entanglement, the so-called thermal entanglement (TE),
has been widely studied in recent years. Comparing with other kinds of entanglements, TE is
more stable than others due to it has taken thermal decoherence into account implicitly [5].
Besides that, TE demonstrates that entanglement can be generated thermally and persisted
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in the thermodynamic limit [6, 7]. Since the seminal works by Arnesen [6] et al. and
Nielsen [7], TE has been extensively investigated for different systems. The entanglement
of non-equilibrium thermal states has been widely studied in [8–11]. Also the quantum tele-
portation scheme via thermal entangled states has been reported in [12–15]. Nevertheless,
most of previous works are mainly limited to the Heisenberg spin chains. TE in the cavity
quantum electrodynamics (cavity-QED) model is scarcely considered.

We know that the atom-photon interaction is one of essential approaches to realize entan-
glement for quantum information processing (QIP) and cavity-QED describes the coherent
interaction between two-level atom and quantized cavity electromagnetic field. The cavity-
QED model, which is different from other schemes (e.g., the spin chain model) by its
advantages of easily addressing distinct cavities isolated from each other for avoiding cross-
talk, and it has become a suitable candidate to encode quantum information since the atoms
trapped inside cavities can have relatively long-lived atomic level [16–18]. Furthermore, the
cavity-QED makes a good model to enable us control and measure the atom-field subsystem
individually in the preparing process [19]. Hence, it has become a versatile and controllable
platform for QIP (e.g., quantum logic gates [20] and teleportation [21] have been realized
in cavity-QED platform).

The TE between nearest, next nearest in multiqubit Heisenberg spin chains was investi-
gated in [22, 23]. These works have been revealed some novel properties, e.g., the pairwise
entanglement undergoes two sudden changes, which may can be used as quantum entan-
glement switch [22]. These results inspire us to wonder whether the entanglement has
some interesting properties in the framework of cavity-QED model. Recently, Huang et al.
[24] have proposed an efficient scheme to generate multi-atom entangled states in coupled
cavities system. The significant advantage of the scheme is the much less requirement of
the interaction time, which can avoid decoherence as much as possible. Temperature can
influence states of systems, including the atoms and the photons, and lead to change of
entanglement [25]. From the practical point of view, with the technical support of laser
cooling and trapping, we can separately control the trapped atoms in cavity and manipulate
the atom-photon interaction with high accuracy. This motivated us to consider our current
study. Based on cavity-QED model, the present paper is thus devoted to study the atomic
subsystem entanglement of a linear arranged four coupled cavities system at an equilibrium
temperature T .

The outline of the paper is as follows. Various measures of thermal entanglement, such
as Wootters’ concurrence C, i concurrence ICi and global entanglement Q are in detail
introduced in the next section. Later, we present the physical model and the ground state
pairwise entanglement in Section 3. The influences of system interaction parameters and
environmental temperature on thermal entanglement are thoroughly discussed in Section 4.
Finally, the summary is given in Section 5.

2 Measures of Thermal Entanglement

A quantum state, which is in thermal equilibrium at temperature T , can be represented by
the density operator

ρ(T ) = (1/Z) exp (−H/kT ), (1)

with Z = Tr[exp (−H/kT )] is the partition function, H is the system Hamiltonian, k

denotes the Boltzmann’s constant and k ≡ 1 is assumed herein. Since ρ(T ) represents a
thermal state, this entanglement is called thermal entanglement.
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The convenient way to measure the entanglement of two qubits is by means of Wootters’
concurrence C [26]. Firstly, we can obtain the reduced density matrix ρr(T ) of two qubits by
performing a partial trace over the remaining subsystems. Starting from the density matrix
ρr , the Wootters’ concurrence is then calculated by

C = max{λ1 − λ2 − λ3 − λ4, 0}, (2)

where the quantities λi(i = 1, 2, 3, 4) are the square roots of the eigenvalues of the operator

� = ρr(σ
y

1 ⊗ σ
y

2 )ρ∗
r (σ

y

1 ⊗ σ
y

2 ), (3)

in descending order. ρ∗
r represents the complex conjugate of ρr . The concurrence is avail-

able, no matter whether ρr is pure or mixed [25]. The value of the concurrence C ranges
from zero to one when the quantum state is changed from separable to maximally entangled
state.

Besides the concurrence C, the global entanglement Q also can be applied to quantify
the entanglement of N -qubit quantum pure states. The global entanglement Q was first
introduced by Meyer and Wallach [27] and then reformulated by Brennen [28], which reads
as

Q = 2

[
1 − (1/N)

∑N

i=1
Tr(ρ2

i )

]
, (4)

with ρi , the density matrix, reduced to a single qubit i. The so-called i-concurrence ICi [29,
30], which measures the entanglement between the single qubit i and the rest subsystem, is
also directly related to the reduced density matrix ρi , and ICi can be written as

ICi =
√

2[1 − Tr(ρ2
i )], (5)

based on (4) and (5) the global entanglement Q can be rewritten as

Q = (1/N)
∑N

i=1
IC2

i , (6)

here (6) elucidates the physical meaning of the global entanglement Q as an average over
the entanglement of each single qubit i against the rest subsystem.

3 The Model and the Ground State Pairwise Entanglement

3.1 The Model and Solutions

As illustrated in Fig. 1, we consider a physical system that four identical two-level atoms
(labeled as A, B, C, D) are trapped respectively in four spatially separated adjacent equidis-
tance single-mode cavities (labeled as I, II, III, IV), which are placed at a periodic linear
chain and connected by three optical fibers. Each two-level atom (its atomic transition
|g〉 ↔ |e〉) experiences the same field environment and resonantly interacts with the field
of its respective single-mode cavity via a one-photon hopping [18, 31–34]. Furthermore, in
this scheme, we only consider the influence of equilibrium environment temperature on the
system and ignore the other interactions between system and environment, i.e., cavity losses
and fiber photon leakages have been ignored [18, 24].

Under the dipole and rotating-wave approximation (RWA) the atom-cavity interaction
Hamiltonian is described by the Jaynes-Cumming model (� = 1)

Ha−c =
∑4

i=1
fi(a

†
i σi− + a

i
σi+), (7a)
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Fig. 1 (Color online) Schematic diagram of a linear arranged four coupled cavities system

where a
†
i and ai denote the creation and annihilation operator of field mode in the ith cav-

ity, respectively. σi+ = |e〉i〈g| and σi− = |g〉i〈e|, respectively, represent the raising and
lowering operator for the atomic system, with |e〉i (|g〉i ) being the excited (ground) states of
the ith atom fi is the interaction strength between ith atom and field mode of the ith cavity.
Similarly, in the short-fiber limit, and only considering one resonant fiber mode interacts
with the cavity mode [35], the coupling Hamiltonian between the fiber modes and the cavity
fields can be approximated to (� = 1)

Hf −c =
∑3

j=1
Jj [bj (a

†
j + a

†
j+1) + b

†
j (aj + aj+1)], (7b)

where b
†
j and bj denote the creation and annihilation operator associated with the resonant

mode of j th fiber, respectively. Jj is the coupling constant between fiber mode bj and cavity
mode aj and aj+1. Taking advantage of (7a) and (7b), one can acquire the total interaction
Hamiltonian

HI = Ha−c + Hf −c

=
∑4

i=1
fi(a

†
i σi− + a

i
σi+) +

∑3

j=1
Jj [bj (a

†
j + a

†
j+1) + b

†
j (aj + aj+1)]. (7)

Only considering one excitation number of the entire system case, the whole system evolves
in subspace ∀, which can be spanned by the following basic state vectors:

|ϕ1〉 = |eggg〉a |0000〉c|000〉f ,

|ϕ2〉 = |gegg〉a |0000〉c|000〉f ,

|ϕ3〉 = |ggeg〉a |0000〉c|000〉f ,

|ϕ4〉 = |ggge〉a |0000〉c|000〉f ,

|ϕ5〉 = |gggg〉a|1000〉c|000〉f ,

|ϕ6〉 = |gggg〉a|0100〉c|000〉f ,

|ϕ7〉 = |gggg〉a|0010〉c|000〉f ,

|ϕ8〉 = |gggg〉a|0001〉c|000〉f ,

|ϕ9〉 = |gggg〉a|0000〉c|100〉f ,

|ϕ10〉 = |gggg〉a|0000〉c|010〉f ,

|ϕ11〉 = |gggg〉a|0000〉c|001〉f . (8)

where the subscript {a, c, f } denotes the state of atoms, cavities mode and fibers mode,
respectively. |0〉 and |1〉 represent the Fock state of resonant field mode.
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For the sake of simplicity, we take ∀fi=f (i = 1, 2, 3, 4) and ∀Jj=J (j = 1, 2, 3)

(there should be no difficulty to achieve a homogeneous system experimentally [18]). In
the following, we will work in units unless it is specially stressed. In the subspace ∀, the
eigenvalues of total Hamiltonian (7) are explicitly given by

E1 = E2 = E3 = 0, E4 = −f,E5 = f,

E6 = −
√

f 2 + 2J 2, E7 =
√

f 2 + 2J 2,

E8 = −
√

f 2 + (2 − √
2)J 2, E9 =

√
f 2 + (2 − √

2)J 2,

E10 = −
√

f 2 + (2 + √
2)J 2, E11 =

√
f 2 + (2 + √

2)J 2. (9)

Due to E1 = E2 = E3 = 0, it is obvious that their eigenstates are three-fold degenerate.
Taking advantage of Gram-Schmidt process, one can obtain the corresponding orthonormal
eigenstates

|φ1〉 = J/

√
f 2 + 2J 2(|ϕ3〉 + |ϕ4〉 − f/

√
f 2 + 2J 2|ϕ11〉),

|φ2〉 = A2,2|ϕ2〉 + A2,3|ϕ3〉 + A2,4|ϕ4〉 + A2,10|ϕ10〉 + A2,11|ϕ11〉,
|φ3〉 = A3,1|ϕ1〉 + A3,2|ϕ2〉 + A3,3|ϕ3〉 + A3,4|ϕ4〉 + A3,9|ϕ9〉 + A3,10|ϕ10〉 + A3,11|ϕ11〉,
|φ4〉 = 1/2

√
2(|ϕ1〉 − |ϕ2〉 + |ϕ3〉 − |ϕ4〉 − |ϕ5〉 + |ϕ6〉 − |ϕ7〉 + |ϕ8〉),

|φ5〉 = 1/2
√

2(−|ϕ1〉 + |ϕ2〉 − |ϕ3〉 + |ϕ4〉 − |ϕ5〉 + |ϕ6〉 − |ϕ7〉 + |ϕ8〉),
|φ6〉 = f/2

√
2f 2 + 4J 2(−|ϕ1〉 − |ϕ2〉 + |ϕ3〉 + |ϕ4〉) + 1/2

√
2(|ϕ5〉 + |ϕ6〉 − |ϕ7〉 − |ϕ8〉)

+J/

√
2f 2 + 4J 2(−|ϕ9〉 + |ϕ11〉),

|φ7〉 = f/2
√

2f 2 + 4J 2(−|ϕ1〉 − |ϕ2〉 + |ϕ3〉 + |ϕ4〉) − 1/2
√

2(|ϕ5〉 + |ϕ6〉 − |ϕ7〉 − |ϕ8〉)
+J/

√
2f 2 + 4J 2(−|ϕ9〉 + |ϕ11〉),

|φ8〉 = A8,1(|ϕ1〉 + |ϕ4〉 + A8,2|ϕ2〉 + |ϕ3〉) −
√

2 + √
2/4(|ϕ5〉 + |ϕ8〉)

+
√

2 − √
2/4(|ϕ6〉 + |ϕ7〉) + A8,9(|ϕ9〉 + |ϕ11〉) + A8,10|ϕ10〉,

|φ9〉 = A9,1(|ϕ1〉 + |ϕ4〉 − A9,2|ϕ2〉 + |ϕ3〉) +
√

2 + √
2/4(|ϕ5〉 + |ϕ8〉)

−
√

2 − √
2/4(|ϕ6〉 + |ϕ7〉) + A9,9(|ϕ9〉 + |ϕ11〉) − A9,10|ϕ10〉,

|φ10〉 = A10,1(|ϕ1〉 + |ϕ4〉 + A10,2|ϕ2〉 + |ϕ3〉) −
√

2 − √
2/4(|ϕ5〉 + |ϕ8〉)

−
√

2 + √
2/4(|ϕ6〉 + |ϕ7〉) + A10,9(|ϕ9〉 + |ϕ11〉) + A10,10|ϕ10〉,

|φ11〉 = A11,1(|ϕ1〉 + |ϕ4〉 + A11,2|ϕ2〉 + |ϕ3〉) +
√

2 − √
2/4(|ϕ5〉 + |ϕ8〉)

+
√

2 + √
2/4(|ϕ6〉 + |ϕ7〉) + A11,9(|ϕ9〉 + |ϕ11〉) + A11,10|ϕ10〉, (10)

in which Am,n stands for the normalized factor of the eigenstates. The integer subscript
{m, n} both range from to 11. For the reason of succinct presentation, we omit the analytical
form of Am,n.
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3.2 The Ground State Pairwise Entanglement

The system is in the ground state when T = 0. From (9), we can find that the ground-state

energy is E10 = −
√

f 2 + (2 + √
2)J 2. Considering two different types pairwise entangle-

ment, we denote the entanglement of the nearest neighbor qubits (i.e., atom A, B) and of
the alternate qubits (i.e., atom A, C) by CAB and CAC , respectively. With the help of (2),
(3) and ground state |φ10〉 , it is straightforward to obtain CAB and CAC

CAB = CAC = 2A10,1 ∗ A10,2 = (2 + √
2)f 2

8(1 + √
2)f 2 + 8(4 + 3

√
2)J 2

, (11)

with the two normalized factors of |φ10〉, i.e., A10,1 = f

2
√

2(2+√
2)f 2+4(3+2

√
2)J 2

and

A10,2 = (2+√
2)f

4
√

(2+√
2)f 2+2(3+2

√
2)J 2

. The (11) means that the nearest neighbor concurrence

equals to the alternate concurrence, namely, the value of concurrence is independent of the
sites of atoms for the ground state case.

The ground-state concurrence CAB and CAC as functions of fiber-cavity coupling con-
stant J and atom-cavity interaction strength f are depicted in Fig. 2a. From Fig. 2a, one can
see that CAB and CAC are monotone increasing as a function of the atom-cavity interaction
strengthf . Contrarily, as the fiber-cavity coupling constant J increases, the concurrence

Fig. 2 (Color online) The ground-state concurrence CAB and CAC are plotted vs. J and f in (a); CAB and
CAC are plotted vs. the ratio J/f in (b)
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decreases. Besides that, when J or f equals to zero, there is no pairwise entanglement
between atoms in ground state. In Fig. 2b, we give the plot of ground-state concurrence as
a function of the ratio J/f . Evidently, the entanglement is decreasing with increasing ratio
to be zero; the maximum entanglement value is about 0.177 when the ratio is extremely
close to zero. Therefore, it means that if we keep f 
 J , then we will induce high quality
pairwise entanglement of ground state in certain experimental situations. The further infor-
mation about how the ratio J/f effects on the behaviors of thermal pairwise entanglement
between atoms when T �= 0 will be discussed later.

4 The Thermal Entanglement

In the following, we mainly focus on the effect of the fiber-cavity coupling constant J ,
atom-field interaction strength f and temperature T on the pairwise thermal entanglement
from different perspectives. In addition, we investigate the global entanglement Q and the
i-concurrence ICi as a function of J andf for a low temperature case T = 0.01.

4.1 The Pairwise Thermal Entanglement

If we consider the thermal entanglement between the nearest neighbor qubits (i.e., atom
A, B), we need to obtain the reduced density matrix ρAB by tracing out all the remain-
ing degrees of freedom for the other subsystems [33]. Hence we have ρAB = TrR−Sρ(T )

(the subscript R − S stands for the remaining subsystems), in the standard atomic basis
{|gg〉, |ge〉, |eg〉, |ee〉}, one can acquire

ρAB(T ) = 1

Z

⎛
⎜⎜⎝

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
0 0 0 0

⎞
⎟⎟⎠ , (12)

where ρij (i, j = 1, 2, 3, 4) represents the matrix element. Taking advantage of (12) and
the definition of concurrence, one can acquire the nearest neighbor concurrence CAB at the
finite temperature,

CAB = 2
√

|ρ23|2/Z, (13)

in which the partition function Z = 3 + 2 cosh (f/T ) + 2 cosh (μ/T ) + 2cosh (η/T ) +
cosh (ξ/T ). We also obtain the matrix element ρ23, ρ∗

23 in the basis {|gg〉, |ge〉, |eg〉, |ee〉}

ρ23 = ρ∗
23 = 1

8

⎛
⎝−2 cosh

(
f

T

)
+ 2f 2 cosh

(
μ
T

)
μ2

+
√

2f 2 cosh
(

ξ
T

)
ξ2

−
√

2f 2 cosh
( η

T

)
η2

⎞
⎠

+J 2(f 4 + 3f 2J 2 + J 4)

μ2ξ2η2
(14)

with the elements

μ =
√

f 2 + 2J 2,

ξ =
√

f 2 + (
√

2 + 2)J 2,

η =
√

f 2 − (
√

2 − 2)J 2. (15)
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Similarly, for the alternate qubits (i.e., atom A,C), we also can calculate ρAC(T ) and
obtain the alternate concurrence CAC

ρAC(T ) = 1

Z

⎛
⎜⎜⎝

λ11 0 0 0
0 λ22 λ23 0
0 λ∗

23 λ33 0
0 0 0 0

⎞
⎟⎟⎠ , (16)

CAC = 2
√

|λ23|2/Z, (17)

with the matrix element λ23, λ∗
23

λ23 = λ∗
23 = 1

8

⎛
⎝2 cosh

(
f

T

)
− 2f 2 cosh

(
μ
T

)
μ2

+
√

2f 2 cosh
(

ξ
T

)
ξ2

−
√

2f 2 cosh
( η

T

)
η2

⎞
⎠

−J 4(f 2 + J 2)

μ2ξ2η2
(18)

Based on numerical results of CAB and CAC , the evolution of CAB (solid line) and CAC

(dashed line) with respect to temperature T are illustrated in Fig. 3a with f = 1.5 for
various values of J and in Fig. 3b with J = 1.5 for different values of f , respectively. As
depicted in Fig. 3, CAB shares the same initial entanglement value with CAC at T = 0,
where the system is still in its ground state |φ10〉. As the thermal fluctuation is introduced
into the system, the ground state will be mixed with some excited states. This effect will
change the magnitude of entanglement. As the temperature T increases, the entanglement
between the alternate qubits CAC drops off monotonically until disappears. Contrarily, the
nearest neighbor concurrence CAB in the beginning increases with T to its maximum value
Cmax

AB , then decays off gradually due to the thermal decoherence.

Fig. 3 (Color online) CAB (solid line) and CAC (dashed line) are plotted vs. temperature T , for f = 1.5 with
J = 0.3, 0.5, 1.0 (Curve color: black, red, blue, respectively) in (a) and for J = 1.5 with f = 0.3, 0.5, 1.0
(Curve color: black, red, blue, respectively) in (b)
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As is evident from Fig. 3, the curve of CAC varies greater than CAB as a function of
temperature T , it explicitly reflects that the effect of temperature T on thermal pairwise
entanglement between atoms is much stronger for alternate qubits than nearest neighbor
qubits, although the interaction between the nearest neighbor qubits is much stronger. This
result is consistent with the previous study for Heisenberg XX chain case [22].

Furthermore, for f = 1.5 in Fig. 3a, it can be seen that CAB and CAC will be decreased
with the increase in fiber-cavity coupling J at a fixed temperature. The maximum value
Cmax

AB as well as the temperature T0 at which it occurs, are also shown to strongly depend
upon J . Besides, in Fig. 3b, for the case of J = 1.5, CAB and CAC increase with the stronger
atom-field interaction, and the Cmax

AB and its corresponding T0 are also strongly depend upon
f .

By comparing Fig. 3a and b, we can see that as the value of J/f becomes smaller,
both CAB and CAC become greater. On the contrary, the existence region of entanglement
is diminishing since the decay rate increases as J/f decreases. Therefore, it is reasonable
to conjecture that the ratio J/f not only affects the ground-state pairwise entanglement,
but also influences the quality of thermal pairwise entanglement. That is to say, we may
maintain a robust atomic subsystem entanglement by adjusting suitable system parameters.

In what follows, we give the results about how the CAB and CAC vary with J (in Fig. 4a)
and f (in Fig. 4b) for different temperatures (i.e., T = 0.01, 0.1, 0.5). From Fig. 4, it is
easily found that there is no thermal pairwise entanglement between atoms if f or J equals
to zero, which can be explained that since the correlation between atoms is vanish, each of
atoms is not entangled with another atom. In addition, as shown in Fig. 4, as the strength
of interaction f and J increases, both CAB and CAC initially increase rapidly to reach their
maximum value Cmax and then gradually decrease to zero. Accordingly, the maximum value
Cmax decreases with the increasing temperature.

Fig. 4 (Color online) CAB (solid line) and CAC (dashed line) are plotted vs. J , for f = 1.5 in (a); CAB and
CAC are plotted vs. f for J = 1.5 in (b). Both in (a) and (b), the curves are plotted with various temperature
T (from top to bottom T = 0.01, 0.1, 0.5)
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We also observe from Fig. 4 that when the value of J (in Fig. 4a) or f (in Fig. 4b)
changes, the thermal entanglement of nearest-neighbor qubits always varies greater than
that of alternate qubits. That is to say, since the interaction between the nearest-neighbor
qubits is more directly and stronger the effects of J and f on CAB is much stronger than
CAC . Meanwhile, as is evident from Figs. 3a–b and 4a–b, the value of CAB is always greater
than that of CAC in the same condition. It implies that the further the qubits sites are, lesser
is the magnitude of the entanglement between them.

4.2 Behaviors of the Global Entanglement Q and i-Concurrence ICi When
T = 001

In this section, we investigate in detail the behaviors of the global entanglement Q between
atoms and i-concurrence ICi of each atom for a low temperature (T = 0.01) case (so
that the entanglement is predominantly determined by the ground state). Due to the sites of
qubits are of symmetry, each ICi satisfies the following relations:

IC1 = IC4,

IC2 = IC3. (19)

By virtue of the definition of i-concurrence [see (5)], we can obtain the reduced density
matrix ρi of a subsystem i (i.e., ith atom) in the basis {|g〉, |e〉}

ρi =
(

1 − ρii 0
0 ρii

)
, (20)

where ρii is the diagonal matrix element of given ρ in (1). ρ stands for the thermal equilib-
rium state of total system. It is straightforward to calculate: Tr(ρ2

i ) = 2ρ2
ii −2ρii +1. Thus,

we find

ICi = 2
√

ρii − ρ2
ii . (21)

In addition, based on the definition of global entanglement Q, putting (21) into (6) and
taking N = 4, one can obtain

Q =
∑4

i=1
ρii − ρ2

ii . (22)

Based on the above analysis, taking f = 1.5 and T = 0.01, we can obtain the evolu-
tion of global entanglement Q and i-concurrence ICi with respect to J , as depicted Fig. 5a.
From the figure, it is found that Q and IC1(IC4) decrease monotonically with the increas-
ing value of J . Contrarily, IC2(IC3) at first increases to its maximum value, which equals
to 0.79, and then decreases to zero. Note that, when J = 0 is given, there is no interaction
between fiber and cavity (i.e., no information exchange among the them). According to the
physical meaning of Q and ICi , we have Q = ICi = 0, thus, there are discontinuity points
at J = 0 in Fig. 5a. Meanwhile, in Fig. 5b, we show the dependence of Q and ICi on f

when T = 0.01 and J = 1.5. If we assume that atom-field interaction vanishes (i.e., f = 0)

in Fig. 5b, there is also no i-concurrence and the global entanglement between atoms. There-
fore, by combining with the previous results in Fig. 4a and b, we can conclude that there
should be no entanglement for the atomic subsystem in the case of f = 0 or J = 0.

We also observe in Fig. 5b that the global entanglement Q and each i-concurrence ICi

will initially increase to their maximum value Emax as the atom-field interaction goes up.
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Fig. 5 (Color online) With a low temperature T = 0.01. Q (purple solid line), IC1&IC4 (purple solid line)
and IC2&IC3 (purple solid line) are plotted vs. J , for f = 1.5 in (a); Q and each ICi are plotted vs. f , for
J = 1.5 in (b). There are discontinuity points at J = 0 in (a)

In order to forecast the changeable trend of Q and each ICi , the first step is to obtain their
maximum value Emax and the corresponding parameter f max

0 . After a straight calculation,
we obtain

f max
0 → 33660.6 Emax ≈ 0.6609, for IC1, IC4;

f max
0 → 32.1 Emax ≈ 0.8163, for IC2, IC3;

f max
0 → 284976 Emax = 0.4375, for Q; (23)

Besides that, in the limit of f → ∞, one can acquire Q and each ICi :
lim

f →∞ ICi ≈0.6614, lim
f →∞Q ≈ 0.4375. Hence IC2(IC3) will decrease after the increasing

parameter f exceed f max
0 . From the two figures, we also find that atomic global entan-

glement and i-concurrence will keep a high value when the atom-field interaction is far
stronger than fiber-cavity coupling.

5 Conclusions

To summarize, in a linear arranged four coupled cavities system, we have investigated the
thermal entanglement between atoms and thoroughly discussed the dependence of the ther-
mal entanglement on the atom-field interaction strength f , fiber-cavity coupling constant J

and temperature as well. We have found that the atomic entanglement exists at zero temper-
ature and the concurrence are the same for both nearest neighbor qubits and alternate qubits.
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Our results indicate that the temperature affects the alternate qubits concurrence CAC is
much stronger than nearest neighbor qubits CAB , which accords with the conclusions in
[22]. In addition, we also showed that in the same condition the further the qubits sites are,
lesser is the magnitude of the entanglement between them. Based on numerical evidences,
we have conjectured that both the ground state entanglement and thermal entanglement
strongly depends on J and f , especially their ratio J/f . Moreover, the robust entanglement
can be prepared experimentally by choosing an appropriate interaction parameter and lower-
ing temperature. We also have studied the atomic global entanglement Q and i-concurrence
ICi for a low temperature.

For a realistic quantum system, the influence of dissipation cannot be completely ignored
[36], how we preserve entanglement is still a big challenge for current technology. In
the future we will investigate how to create stable thermal entanglement in the case of
decoherence effect. We expect that our investigation of the results in the framework of cou-
pled cavities systems broaden the theoretical study of thermal entanglement and related
applications.
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