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Abstract We present a q-deformed local representations of the (1 +1) extended Galilei
group acting on the space of wave-functions defined in the Bargmann space-time. This
paper is a development of the work made by F. Bonechi et al on the induced representations
of (1+1) quantum Galilei.
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1 Introduction

The group theory approach plays a fundamental role in theoretical physics. The story goes
back to the work of Wigner, who proposed the well-known classification of elementary
particles according to the irreducible representations of the Poincaré group [7]. Later devel-
opments have come to light through the work ofWightman. Indeed, Wightman [8], using the
technique of induced representations, gave an algebraic meaning to the notion of localiza-
tion of elementary particles in space-time. Later, B. Mensky [5], using the same technique,
managed to construct a relativistic quantum field theory without needing to define quantized
fields [5, 9]. In his work, the local properties of the particle are described by an induced rep-
resentation of the symmetry group, and the global properties are described by an irreducible
representation, which can also be induced from a smaller symmetry. Then the quantum
properties are a result of the intertwining of these two types of representation.
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Moreover, in Ref. [5], taking the Poincaré group as the symmetry group, this approach
was applied to free relativistic particles and in [9], by taking the Galilei group as the sym-
metry group, it was applied to the case of nonrelativistic particles. This approach uses two
kinds of induced representations of the Galilei group. The first is the family of unitary, irre-
ducible representations or momentum representation and the second kind of representation
is the local representation which is induced from the stabilizer group.

More recently the quantum group approach has invaded theoretical physics and in this
context Quantum Galilei algebras is a generalization of the symmetries associated to Galilei
group, so we are tempted to generalize this approach to the case of quantum groups. To this
end we need to give a local representation and a momentum representation of the Galilei
quantum algebra.

In [2] F. Bonechi and co-authors constructed a q-deformed version of the local repre-
sentation, or ”configuration representation”, of the Galilei quantum algebra and arrived at a
‘deformed’ quantum mechanics. The construction of a ”configuration” induced representa-
tion on the space of wave functions, defined on space-time, for the deformed algebra of the
(1+1)-Galilei group presented two problems. First, in the monomial basis, the generators of
the space-time coordinates are not isolated in a side, and second, the generators related to
space and time coordinate do not close a subalgebra.

This paper is a development of [2], where induced representations of (1+1) quantum
Galilei group are studied. In this paper we develop some aspects of the work made in [2],
but we take a new alternative and we construct the configuration induced representation not
on ordinary space-time but on Bargmann space. The 3-dimensional approach, used here, is
based on a space so that the (1+1)-Galilei group elements acts on the extended space-time
coordinates represented by (μ, x, t). Given that we can embed the usual configuration space
(x, t) into a three dimensional space (μ, x, t) then the extra coordinate μ transforms under
Galilean transformations as follow μ → μ + xv + 1

2v
2t .

In Section 2, we present some aspects of the (1+1)-Galilei group, we also recall its pro-
jective representation acting on the Hilbert space of a non-relativistic quantum particle. In
Section 3, we briefly recall the theory of induced representation and construct two essential
representations, the momentum representation and the configuration representation. Finally,
in Section 4 we give a short conclusion.

2 Extended Galilei Algebra

In a space-time with one dimension of space x and one dimension of time t , we define the
(1 + 1) −Galilei group, as being a Lie group of transformations. An arbitrary element g, of
the Galilei group, can be parameterized by three variables (t, v, x), so we can formally write

g ≡ (t, v, x), (1)

where t is a time translation, x and v are space translations and Galilean boosts respectively.
The group law is then

(t ′, v′, x′)(t, v, x) = (t + t ′, v + v′, x + x′ + tv′). (2)

In the context of this work the relevant representations of the Galilei group are projective,
which are representations with group with an extra phase factor [6]

U(g)U(g′) = e
im

(
vx′+ 1

2 v2t ′
)
U(gg′). (3)
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To avoid such projective representation, we consider the ordinary representation of an
extension Ḡ of the group. This extension is realized using an auxiliary 1-parameter group,
whose elements μ are defined so that they commute with all elements of the Galilei group.
Elements of the extended group are then ḡ ≡ (μ, t, v, x) with the group law given by

(μ′, t ′, v′, x′)(μ, t, v, x) = (μ + μ′ + 1

2
v′2t + xv′, t + t ′, v + v′, x + x′ + tv′). (4)

This defines the (1 + 1)-extended Galilei group Ḡ.
On the space F(Ḡ) of functions on Ḡ, we define the bialgebra structure by mean of

coproduct �, antipode S and counit ε, derived from the multiplication rule (4)

�(t) = t ⊗ I + I ⊗ t, (5)

�(x) = x ⊗ I + I ⊗ x + v ⊗ t,

�(v) = v ⊗ I + I ⊗ v,

�(μ) = μ ⊗ I + I ⊗ μ + v ⊗ x + 1

2
v2 ⊗ t,

and

S(t) = −t, S(x) = −x + vt, (6)

S(v) = −v, S(μ) = xv − 1

2
v2t − μ,

ε(.) = 0.

The quantum Galilei group can now be constructed as a deformation of the Lie bialgebra
(5) by means of a non trivial 1−cocycle with values in �2

(
LieḠ

)
, which defines a Lie-

Poisson structure on the space F(Ḡ)

{μ, x} = −2aμ, {μ, v} = av2, {x, v} = 2av, {t, .} = 0, (7)

where a is a deformation parameter. The quantum deformation of (5) in the direction of this
last Poisson brackets gives us the quantum Galilei group Fq(Ḡ)

[
μ̂, x̂

] = −2aμ̂,
[
μ̂, v̂

] = av̂2,
[
x̂, v̂

] = 2av̂,
[
t̂ , .

] = 0. (8)

To simplify the notation, we will not use the notation with hat in the rest of the paper. After
the definition of the structure of quantum Galilei group, the next task is the structure of its
dual Hopf algebra, (the quantum Lie algebra). As is well known, we can construct a dual
Hopf algebra by duality rule (or pairing), using the following standard rule

〈XY,�〉 = 〈X ⊗ Y,��〉 , 〈X,��〉 = 〈�X,� ⊗ �〉 , (9)

and the involution defined by
〈
X∗,�

〉 =
〈
X, S−1 (

�∗)〉 . (10)

The quantum (enveloping) algebra Uq

(
Ḡ

)
can be expressed in terms of the generators

{I, P,H, N} so that, the bilinear form of the duality between Uq

(
Ḡ

)
and Fq(Ḡ) is given

by [1] 〈
IαP βHγ Nδ, μα′

xβ ′
tγ

′
vδ′ 〉 = α!β!γ !δ!δα,α′δβ,β ′δγ,γ ′δδ,δ′ , (11)

with the non vanishing commutations

[N, I ] = ae−2aP I 2, [N,P ] = e−2aP I, [N,H ] = 1

2a

(
1 − e−2aP

)
. (12)



2478 Int J Theor Phys (2018) 57:2475–2484

The generators of algebra are associated with transformations of coordinates μ, x, t as fol-
lows: the generator I to the transformation of μ, the generator P to the spatial translations,
the generator H to the temporal translations and finally the generator N to the change of
velocities”

3 Induced Representations

Given a subgroup K of G, any linear representation χ of the subgroup K (acting in a linear
space Lχ ) can induce a linear representation Uχ , noted Uχ = χ(K) ↑ G, of G. This
induced representation acts in the space Hχ = {

ϕ : G → Lχ

}
. Functions ϕ are restricted

by the equivariance condition
ϕ (kg) = χ (k) ϕ (g) . (13)

The induced representation Uχ is defined as follows
(
Uχ(g)ϕ

) (
g′) = ϕ

(
g′g

)
, (14)

Equivalently, one may consider ϕ as a function on the quotient space X = G/K of the
group with respect to the subgroup K , on which the group G acts transitively. The subgroup
K is the stabilizer for some origin x0 ∈ X

K = {k ∈ G; kx0 = x0} . (15)

If xG is a representative of the coset gK , we have the system of factors [5]

g′xG = (
g′x

)
G

(
g′, g

)
K

, (16)

where
(
g′, g

)
K

∈ K (see [5] for more details). Then a vector inHχ is a function on X with
values in Lχ , and the action becomes

(
Uχ(g′)ϕ

)
(x) = χ (k) ϕ

(
xg′) , (17)

with k = (
g, g′)

K
.

The induced representations scheme, can be easily reformulated in a Hopf algebra frame-
work [2]. In general representations of a Lie group can be transferred to representations
of its Lie algebra by a standard way. Take an element in the vicinity of the identity and
extracted representation of the generators of the Lie algebra. The action (14) becomes

(
Uχ(1 + ε.X)ϕ

)
(x) = ϕ (x) + εUχ (X) ϕ (x) + O

(
ε2

)
. (18)

Now, in a quantum algebra framework, to the subgroup K corresponds a quantum sub-
algebra Uq (K) of Uq

(
Ḡ

)
, dual of Fq (K) and acting on C by right (left) characters χK(k),

k ∈ Uq (K) (C is the complex field). The induced representation Uχ

(
Ḡ

)
acts on the repre-

sentative spaceHχ = HomUq (K)

(
Uq

(
Ḡ

)
,C

)
, whose elements ψ are those of Fq(Ḡ) that

satisfy the reformulated equivariance condition (13)

ψ (Xk) = ψ (X) k. (19)

3.1 Momentum Representation

In this subsection we consider the representation χα,β,γ of the deformed subalgebra
generated by {I, P, H } (translation sector) in C, given by

z � IpP qHr = zαpβqγ r , z, α, β, γ ∈ C. (20)
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The representative space Hα,β,γ is a subspace of Fq

(
Ḡ

)
and the elements � ∈ Hα,β,γ

satisfy the condition (19 ). One can deduce the general form of any element �, using the
equivariance condition and a basis, μixj tkvl ofFq

(
Ḡ

)
. Let� = ∑

i,j,k,l ci,j,k,lμ
ixj tkvl ∈

Hα,β,γ be an element ofHα,β,γ then the pairing (11) gives〈
IpP qHrNs, �

〉 = p!q!r!s!cp,q,r,s , (21)

and the equivariance condition (19) gives〈
IpP qHrNs,�

〉 = 〈
Ns,�

〉 � IpP qHr (22)

= s!c0,0,0,sαpβqγ r .

From (21) and (22) we have

cp,q,r,s = c0,0,0,s
αpβqγ r

p!q!r! , (23)

so for any element ofHα,β,γ we obtain

� =
∑
i,j,k

(αμ)i (βx)j (γ t)k

i!j !k!
∑

l

clv
l, (24)

where c0,0,0,l = cl . Finally the representative space Hα,β,γ is the space of elements of the
form

� = eαμeβxeγ tϕ(v), (25)
where ϕ is a formal series of v.

The momentum induced representation corresponds to the induced action (�) of the
elements X of Uq

(
Ḡ

)
on the spaceHα,β,γ , this action is given by

� � X =
∑

p,q,r,s

cs

αpβqγ r

p!q!r! μpxqtrvs � X

=
∑

p,q,r,s

∑
i,j,k,l

cs

αpβqγ r

p!q!r! X
(p,q,r,s)
i,j,k,l μixj tkvl . (26)

Consider a general form for the action on the ordered monomials μpxqtrvs

μpxqtrvs � X =
∑

i,j,k,l

X
(p,q,r,s)
i,j,k,l μixj tkvl, (27)

the matrix elements X
(p,q,r,s)
i,j,k,l can be calculated by the use of the pairing

X
(p,q,r,s)
i,j,k,l =

〈
I iP jHkNl, μpxqtrvs � X

〉

i!j !k!l! . (28)

Now, using a reformulation of (17)〈
I iP jHkNl, μpxqtrvs � X

〉
=

〈
I iP jHkNlX, μpxqtrvs

〉
, (29)

we deduce

X
(p,q,r,s)
i,j,k,l =

〈
I iP jHkNlX,μpxqtrvs

〉

i!j !k!l! . (30)

Several cases are to be treated, X ∈ {I, P,H, N}. First we have the following interesting
identities [(

e−2aP
)n

,N
]

= n (2a) I
(
e−2aP

)n+1
, (31)

[
In,N

] = n (−a) e−2aP In+1, (32)
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Proposition 1 Using (31) and (32) we get

NnI = INn + (n) ae−2aP I 2Nn−1 (33)

Nne−2aP = e−2aP Nn +
n∑

σ=1

(−a)σ
n! (σ + 1)

(n − σ)! Iσ
(
e−2aP

)σ+1
Nn−σ (34)

Proof We use the formula of iterated commutators

BnA = ABn +
n∑

k=1

n! (−1)k

k! (n − k)! [... [[A,B] , B] ...B]Bn−k.

Then it is straightforward to have (33) because of [[I,N ] , N ] = 0. Now using (33) and the
identity, for k− itterated commutators,

[
...

[[
e−2aP ,N

]
, N

]
...N

]
= ak (k + 1)!I k

(
e−2aP

)k+1
,

we have (34).

Return to the matrix elements of the generators, by applying what has been obtained
above we have

NlP = PNl + le−2aP INl−1 + 1

2
l(l − 1)a

(
e−2aP

)2
I 2Nl−2

+
l∑

ν=1

l−ν∑
σ=1

(−a)σ
(l − ν)! (σ + 1)

(l − ν − σ)! Iσ+1
(
e−2aP

)σ+1
Nl−σ−1

+a

l∑
ν=1

l−ν∑
σ=1

(−a)σ
(l − ν)! (σ + 1)

(l − ν − σ − 1)! I
σ+2

(
e−2aP

)σ+2
Nl−σ−2, (35)

NlH = HNl + l

2a

(
1 − e−2aP

)
Nl−1

− 1

2a

l∑
ν=1

l−ν∑
σ=1

(−a)σ
(l − ν)! (σ + 1)

(l − ν − σ)! Iσ
(
e−2aP

)σ+1
Nl−σ−1, (36)

NlI = INl + lae−2aP I 2Nl−1, (37)

the matrix elements of the generator I are

I
(p,q,r,s)
i,j,k,l = pδ

p

i+1δ
q
j δr

kδ
s
l + ap (p − 1) δ

p

i+2

[
q! (−2a)q−j

j ! (q − j)!

]
δr
kδ

s
l−1, (38)
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of the generator P

P
(p,q,r,s)
i,j,k,l = qδ

p
i δ

q

j+1δ
r
kδ

s
l + pδ

p

i+1

(
(−2a)q−j q!
j ! (q − j)!

)
δr
kδ

s
l−1

+a

2
p (p − 1) δ

p

i+2δ
r
kδ

s
l−2

(
(−4a)q−j q!
j ! (q − j)!

)

+ (−a)p−i δr
k

q! (−2a (p − i + 1))q−j

j ! (q − j)!

∣∣∣∣∣
q≥j

p!
i! δ

s+p

l+i−1

δk
r a

l∑
ν=1

l−ν∑
σ=1

(−a)σ
(l − ν)! (σ + 1)

(l − ν − σ − 1)! (σ + i + 2)!

(l − σ − 2)!
i!l!

q! (−2a (σ + 2))q−j

j ! (q − j)!

∣∣∣∣∣
q≥j

δs
l−σ−2δ

p

σ+i+2, (39)

of the generator H

H
(p,q,r,s)
i,j,k,l = rδi

pδ
j
q δk+1

r δl
s + 1

2a
δi
pδ

j
q δk

r δ
l−1
s − 1

2a

(−2a)q−j q!
j ! (q − j)! δi

pδk
r δ

l−1
s

∣∣∣∣∣
q≥j

− 1

2a
(−a)p−i δk

r

q! (−2a (p − i + 1))q−j

j ! (q − j)!

∣∣∣∣∣
q≥j

p!
i! δl

s+p−i+1 (40)

and of the generator N

N
(p,q,r,s)
i,j,k,l =

〈
I iP jHkNl+1, μpxqtrvs

〉

i!j !k!l! = sδ
p
i δ

q
j δr

kδ
s
l+1. (41)

The right actions of the generators of Uq

(
Ḡ

)
are given by

� � I =
[

∂

∂μ
+ ave−2aβ ∂2

∂μ2

]
�, (42)

� � P =
{

∂

∂x
+ ve−2aβ ∂

∂μ
+ a

2
v2e−4aβ ∂2

∂μ2
+ 1

a
ln

(
1 + aαe−2αβv

)}
�,

� � H =
{

∂

∂t
+ v

2a

[
1 − e−2aβ − e−2aβ

1 + αave−2aβ

]}
�,

� � N = ∂

∂v
�.
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Instead of functions eαμeβxeγ tϕ(v) ∈ Fq , we can use formal power series C [[v]] where
the action of the generators become

ϕ(v) � I = α
[
1 + aαe−2aβv

]
ϕ(v), (43)

ϕ(v) � P =
{
β + ve−2aβα + a

2
v2e−4aβα2 + 1

a
ln

(
1 + aαe−2αβv

)}
ϕ(v),

ϕ(v) � H =
{

γ + v

2a

[
1 − e−2aβ − e−2aβ

1 + αave−2aβ

]}
ϕ(v),

ϕ(v) � N = ∂

∂v
ϕ(v).

3.2 Configuration Representation

Construction of an induced representation of local type turns out not possible for two facts,
first the generators x and t are not isolated on a side of the chosen monomial basis, second
{ImNn} do not span a subalgebra. We use the Bargmann space, which is a generalization
of the ordinary Newtonian space (x, t). The points of the Bargmann space are here labeled
by three parameters (μ, x, t), time t , location x and an extra term μ, so that μ transforms
under Galilean transformations as [3, 4]

μ′ = μ + xv + 1

2
v2t. (44)

In this subsection, we consider the representation �θ , in C, of the deformed subalgebra
generated by {N} given by

Ns  z = zθs, z, θ ∈ C. (45)

The representative space Hθ is a subspace of Fq

(
Ḡ

)
and the elements � ∈ Hθ are

equivariant according to (19).
Let � = ∑

i,j,k,l ci,j,k,lμ
ixj tkvl ∈ Hθ then the pairing (11) gives
〈
IpP qHrNs,�

〉 = p!q!r!s!cp,q,r,s , (46)

and the equivariance condition (19) give
〈
IpP qHrNs,�

〉 = Ns  〈
IpP qHr,�

〉
(47)

= p!q!r!cp,q,r,0θ
s,

from (46) and (47) we have

cp,q,r,s = cp,q,r,0
θs

s! , (48)

so for any element ofHθ we obtain

� =
∑

l

(θv)l

l!
∑
i,j,k

ci,j,kμ
ixj tk, (49)

where ci,j,k,0 = ci,j,k . Finally the representative space Hθ is the space of elements of the
form

� = eθvψ(μ, x, t), (50)

where ψ is a formal series of μ, x and t .
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The configuration induced representation corresponds to the induced action () of the
elements X of Uq

(
Ḡ

)
on the spaceHθ , and is given by

X  � =
∑

p,q,r,s

cp,q,r

θ s

s! X  μpxqtrvs . (51)

Consider a general form for the action on the ordered monomials μpxqtrvs , the matrix
elements X

(p,q,r,s)
i,j,k,l can be calculated by the use of the pairing

X̃
(p,q,r,s)
i,j,k,l =

〈
I iP jHkNl,X  μpxqtrvs

〉

i!j !k!l! . (52)

Now, with a reformulation of (17)〈
I iP jHkNl,X  μpxqtrvs

〉
=

〈
XIiP jHkNl, μpxqtrvs

〉
, (53)

we deduce the matrix elements of the generators I , P , H and N

Ĩ
(p,q,r,s)
i,j,k,l = pδi+1

p δ
j
qδk

r δ
l
s (54)

P̃
(p,q,r,s)
i,j,k,l = qδi

pδ
j+1
q δk

r δ
l
s (55)

H̃
(p,q,r,s)
i,j,k,l = rδi

pδ
j
q δk+1

r δl
s (56)

Ñ
(p,q,r,s)
i,j,k,l = sδ

p
i δ

q
j δr

kδ
s
l+1 + 1

2a
δ
p
i δ

q
j δr

k−1δ
s
l − 1

2a
δ
p
i

q! (−2a)q−j

j ! (q − j)! δr
k−1δ

s
l

+p (p − 1) δ
p

i+2
q! (−2a)q−j+1

(j − 1)! (q − j + 1)!δ
r
kδ

s
l

− (−a) p (p − 1) δ
p

i+1
q! (−2a)q−j

j ! (q − j)! δr
kδ

s
l . (57)

Then the right action of the generators of Uq

(
Ḡ

)
is

I  � = ∂

∂μ
�, (58)

P  � = ∂

∂x
�,

H  � = ∂

∂t
�,

N  � =
[

∂

∂v
+ t

2a

(
1 − e−2a∂x

)
+ (x − a) e−2a∂x

∂2

∂μ2

]
�.

In term of functions ψ(μ, x, t) the action of the generators becomes

I  ψ(μ, x, t) = ∂

∂μ
ψ(μ, x, t), (59)

P  ψ(μ, x, t) = ∂

∂x
ψ(μ, x, t),

H  ψ(μ, x, t) = ∂

∂t
ψ(μ, x, t),

N  ψ(μ, x, t) =
[
θ + t

2a

(
1 − e−2a∂x

)
+ (x − a) e−2a∂x

∂2

∂μ2

]
ψ(μ, x, t).
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The representative space Hθ can be identified with the space of C∞−functions, and
therefore can be endowed with a scalar product

(
ψ, ψ ′)

θ
=

∫
dμ

∫
dx

∫
dtψ(μ, x, t)ψ ′(μ, x, t). (60)

With this inner product (60) we have
(
X � ψ, ψ ′) = (

ψ, X∗ � ψ ′) for any genarators.

4 Concluding Remarks

The problem of induced representations of the (1 + 1) −quantum Galilei group has been
studied in [2]. In this work we obtained the momentum representation labeled by three
parameters (α, β, γ ) (43). However, in [2], this same representation is defined as a two
parametric family induced from a one dimensional character labeled by two parameters
(m, u) and given by ωm,u = exp

[−i(mμ̂ + ut̂)
]
([2]). Instead of using the generators{

M,K,K−1, T , B
}
as in [2] , which gives a non diagonal pairing, in this paper the quantum

enveloping algebra is expressed in terms of the generators {I, P,H, N} with relation (12).
In this paper we have defined a representation of the deformed sub algebra generated by
{I, P,H } labeled by three parameters (α, β, γ ) (43) and constructed from them a family of
induced representations including those presented in [2]. The purpose of this paper is a con-
tribution and some extent of the extended work made in [2]. We wish to show that the work
made in [2] can be achieved by considering a 3-dimensional setting from the very begin-
ning. Whereas in this paper, the construction of the configuration representation is new. As
mentioned in the introduction, our work is part of the schema undertaken by M. B. Mensky
for the Galilei, Poincaré and de Sitter groups. Our goal is to provide a platform for the con-
struction of a deformed quantum mechanics based on the symmetry of the quantum Galilei
algebra. The intertwining of the two representations will logically give us the counterpart of
the propagator for the distorted symmetry and we hope to predict the effects of deformation
of the symmetry. It remains an open task to investigate first if we obtain new irreducible
representations, but this parts of the problem are not of great importance to us. On the other
hand, our next purpose is the intertwining of the two constructed representations as done for
the classical Galilei group in [5].
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