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Abstract In this paper, we present a function package for to calculate quantum resource
measures and dynamics of open systems. Our package includes common operators and
operator lists, frequently-used functions for computing quantum entanglement, quantum
correlation, quantum coherence, quantum Fisher information and dynamics in noisy envi-
ronments. We briefly explain the functions of the package and illustrate how to use the
package with several typical examples. We expect that this package is a useful tool for future
research and education.
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1 Introduction

Quantum resource theory (QRT) can be constructed and understood through quantum entan-
glement theory. QRT has three ingredients, i.e. free states containing no resource (e.g.
separable states), resource states (e.g. entangled states), and the restricted or free operations
that cannot create resource states from any free states (e.g. local operations and classi-
cal communication, LOCC). The complete characterization of a particular resource theory
mainly consists of three aspects: (1) the clear definition; (2) the reasonable measures; (3)
the interconversions of resource states under the restricted operations.
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Any function satisfying some basic conditions and monotonicity under free operations
may be regarded as a bona fide measure for the resource under consideration, such as con-
currence [1] and negativity [2] for quantifying quantum entanglement, quantum discord [3,
4] for quantifying quantum correlation, and the relative entropy of coherence [5] and l1
norm of coherence [5] for quantifying quantum coherence.

In spite of the great importance of entanglement in quantum computation and quan-
tum information processing, entanglement does not account for all quantum correlation
because separable states can have nonclassical correlation. It has been found that many
tasks can be done with quantum correlation resource instead of entanglement. One kind of
resource can often be converted to another kind. Recently, Yao et al. [6] investigated the
hierarchical structure of quantum coherence, quantum discord, and quantum entanglement
in multipartite systems. Some papers [7, 8] studied the relation of quantum coherence and
quantum entanglement. Some authors [6, 9–11] studied the relation between coherence and
discord-type quantum correlation.

Quantum metrology aims to use quantum resources to develop new methods to measure
classical parameters and quantum parameters with high precision. In ideal quantum infor-
mation metrology, a maximally entangled state is regarded as the best resource for quantum
metrology [12]. Quantum coherence can improve sensitivity for parameter estimation [13].

In the real world, quantum system is inevitably affected by noise introduced by the inter-
action between the system and the surrounding environment. Noise leads to the loss of
quantum resource that initially presents in the system. Thus, it is fundamentally important
to explore the dynamics of various quantum resources measures in various noisy environ-
ment. Some authors studied the dynamics of quantum correlations under noisy environment
[14–21]. The behaviors of quantum coherence is investigated in open system [22–24].

In this paper, we present a Maple package for computing some quantum resource
measures, including entanglement, quantum correlation, quantum coherence, quantum
metrology, and some fundamentally basic evaluating functions for quantum information
and quantum resource dynamics. Some functions are written based on the Feynman pro-
gram [25–31]. The function package is a collection of tools in our research works, which is
widely useful in the research of quantum information.

The remainder of this paper is structured as follows. In Section 2, we recall some theo-
retical background related to the computing package. Section 3 introduces the functions of
our program package. We then present several illustrative examples in Section 4. A brief
conclusion is given in the last section.

2 Theoretical Background

2.1 Quantum Entanglement

A state is said to be separable if and only if it can be prepared via LOCC. It can be
represented as a convex combination of pure product states [32]:

ρsep =
∑

i

pi |ai〉〈ai | ⊗ |bi〉〈bi |, (1)

where the pure states |ai〉 and |bi〉 are the elements of the local Hilbert spaces HA and HB .
If a state cannot be written in this form, it is called entangled state. Quantum entanglement
was regarded as a key resource in quantum cryptography, quantum communication and
quantum computation. The amount of entanglement contained in a state is very essential,
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and many literatures proposed various entanglement measures. An entanglement measure
E satisfies the following properties:

1. E(ρ) = 0 iff ρ is a separable state.
2. Monotonicity under LOCC: E(ρ) ≥ E(�LOCC(ρ)).
3. Convexity: the mixing of states does not increase the entanglement, i.e. E(λρ + (1 −

λ)σ) ≤ λE(ρ) + (1 − λ)E(σ).

Let us recall two frequently-used entanglement measures. For bipartite systems, the
entanglement of formation [1] is one of the most popular and frequently used entanglement
measures, which is a monotonically increasing function of the concurrence. For two-qubit
mixed states, the concurrence is defined as

CE(ρ) = max{0, 2 max{√λ1,
√

λ2,
√

λ3,
√

λ4}
−√

λ1 − √
λ2 − √

λ3 − √
λ4}, (2)

where λi are the eigenvalues of ρρ̃ in decreasing order, and ρ̃ = (σ2 ⊗σ2)ρ
∗(σ2 ⊗σ2) with

ρ∗ being the complex conjugated density matrix.
For X states, the concurrence is given as CE(ρX) = max(0, C1, C2) with C1 = 2(|ρ41|−√

ρ33ρ22) and C2 = 2(|ρ32| − √
ρ44ρ11), where ρij denote the corresponding elements of

state ρ.
The positivity of the partial transpose of a density operator is a necessary condition for

separability. Therefore the ‘negativity’ in the spectrum of the partial transpose can quantify
entanglement. The negativity is defined [2] as

N(ρ) = ‖ρTA‖1 − 1

d − 1
, (3)

where ‖X‖1 = Tr(
√

X†X) is the trace norm, ρTA denotes the partial transpose of the state
with respect to the subsystem A in the overall system composed of the subsystems A and
B, and d = min(dA, dB) is the dimension of the smaller subsystem.

2.2 Quantum Correlation

A state is said to be classically correlated if it can be written as [33]:

ρcc =
∑

i,j

pij |i〉〈i| ⊗ |j〉〈j |, (4)

where the {|i〉|} and {|j〉} are the orthogonal states in the Hilbert spaces HA and HB , respec-
tively. Otherwise the state is called quantum correlated. Every classically correlated state
is also separable, but a separable state is not necessarily classically correlated. In a similar
way we can also define classical-quantum state and quantum-classical state as

ρcq =
∑

i

pi |i〉〈i| ⊗ ρi,

ρqc =
∑

j

pjρj ⊗ |j〉〈j |, (5)

where the ρi and ρj are states in the Hilbert spaces HA and HB , respectively.
In general, a quantum correlation measure Q should satisfy the following conditions

[34]:

1. Q is nonnegative.
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2. Q is invariant under local unitary operations.
3. Q is zero for classically correlated states.

In the following, we present some important measures of quantum correlation. Quan-
tum discord is historically the first measure of quantum correlation, which is proposed by
Ollivier et al. [3] and by Henderson et al. [4] and has received considerable attention. Con-
sidering a bipartite system AB in a Hilbert space H = HA ⊗ HB . For a bipartite quantum
state ρ, quantum discord is defined as

Q(ρ) = I(ρ) − C(ρ), (6)

where I(ρ) and C(ρ) are the quantum mutual information and the measurement-based
mutual information. I(ρ) is defined by

I(ρ) = S(ρA) + S(ρB) − S(ρ), (7)

where S(ρ) = −Tr(ρ log ρ) is the the von Neumann entropy. Here, C(ρ) is given by

C(ρ) = sup
{�k}

{S(ρB) −
∑

k

pkS(ρk)}, (8)

where ρk = 1
pk

(�k ⊗ I )ρ(�k ⊗ I ) is the post-measurement state associated with the
outcome k with the probability pk = Tr[(�k ⊗ I )ρ(�k ⊗ I )]. Projection operators {�k}
describe a von Neumann measurement for subsystem A.

Closed analytic expressions of quantum discord are provided only for some special two-
qubit states, such as Bell-diagonal states [35] and X states [36].

Calculating the quantum discord based on a numerical optimization procedure is a hard
work, which led Dakić et al. [37] to introduce a geometric quantum discord. The geometric
quantum discord of a bipartite quantum state ρ in Hilbert space HA ⊗ HB is defined [37,
38] as

DG(ρ) = min
ρcq∈�0

‖ρ − ρcq‖2
2, (9)

where ‖X‖2 = √
Tr(X†X) denotes the Hilbert-Schmidt norm and �0 is the set of zero-

discord states (classical-quantum states). An arbitrary two-qubit state can be represented
by

ρ = 1

4
(I ⊗ I +

3∑

i=1

xiσi ⊗ I +
3∑

i

I ⊗ yiσi +
3∑

i,j=1

tij σi ⊗ σj ), (10)

with xi = Tr(ρσi ⊗ I ), yi = Tr(ρI ⊗ σi), tij = Tr(ρσi ⊗ σj ) being real parameters, and
σi being Pauli matrices. According to the above equation, geometric quantum discord can
be calculated by [37, 38]

DG(ρ) = 1

4
(‖x‖2 + ‖T ‖2

2 − λmax), (11)

where x = (x1, x2, x3)
t is a column vector, ‖x‖2 = ∑

i x2
i , T = (tij ) is a matrix, and λmax

is the largest eigenvalue of the matrix xxt + T T t .
Actually, there is an alternative concise calculating method of geometric quantum

discord, reading [17]

DG(ρ) = 1

4
(
∑

i

λ2
i − max

i
λ2

i ), (12)

with λi being the singular values of the matrix T ′ = (x, T ), a 3 × 4 matrix.
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2.3 Quantum Coherence

Quantum coherence resulting from quantum state superpositon is the central feature of
quantum mechanics that differentiates quantum world from the classical one, which plays
a key role in quantum physics and quantum information processing. Baumgratz et al. [5]
introduced a rigorous framework for quantifying coherence and identifying computable
measures of coherence. By fixing a particular reference basis {|i〉} in the d-dimensional
Hilbert space, all density operators of the form

ρI =
d∑

i=1

pi |i〉〈i| (13)

are called incoherent states, and we label this set of quantum states by I . A quantum oper-
ation ρ → ∑

n KnρK
†
n is called an incoherent operation if the condition KnIK

†
n ⊂ I is

satisfied for all n. A good measure of quantum coherence C should satisfy the following
conditions according to the resource theory [5]:

1. C(ρ) = 0 iff ρ ∈ I .
2. Monotonicity under non-selective incoherent completely positive and trace preserving

(ICPTP) maps: C(ρ) ≥ C(�ICPTP(ρ)), where �ICPTP(ρ) = ∑
n KnρK

†
n and {Kn} is a

set of Kraus operators with
∑

n K
†
nKn = I and KnIK

†
n ⊂ I .

3. Monotonicity under selective measurements on average: C(ρ) ≥ ∑
n pnC(ρn), where

ρn = KnρK
†
n/pn, pn = Tr(KnρK

†
n) for all {Kn} with

∑
n K

†
nKn = I and KnIK

†
n ⊂

I
4. Convexity:

∑
n pnC(ρn) ≥ C(

∑
n pnρn) for any set of states {ρn} with probability

pn ≥ 0 and
∑

n pn = 1.

There are several coherence measures that satisfy the above conditions, such as the l1
norm of coherence and relative entropy of coherence [5]. Coherence properties of a quantum
state are usually attributed to the off-diagonal elements of its density matrix with respect to a
selected reference basis. l1 norm of coherence is a very intuitive quantification of coherence
related to the off-diagonal elements of the considered quantum state, given by

Cl1(ρ) =
∑

i �=j

|ρi,j |. (14)

The relative entropy of coherence is defined according to quantum relative entropy:

CR(ρ) = min
σ∈I S(ρ‖σ) = min

σ∈I{Tr(ρ log ρ) − Tr(ρ log σ)}. (15)

There is a closed evaluating expression for CR , given by

CR(ρ) = S(ρdiag) − S(ρ), (16)

where ρdiag = ∑
i〈i|ρ|i〉|i〉〈i| and S denotes the von Neumann entropy.

3 Package Overview

The computing package is developed based on the computer algebra system, i.e. Maple 17.
Maple is a powerful math computation software, which makes education and research more
easily and efficiently. Maple offers convenient symbolic calculating functionality, abundant
built-in functions and strong drawing functions. Our program is written as a text-based file
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format: MPL (Maple Language File). MPL files can be executed using the read statement.
Copy the base.mpl to a special path, such as D:\. Open a Maple documents (MW format)
file and write:

read(′D : \\base.mpl′) :
with(base) :

Our program is written mainly based on the LinearAlgebra package and the Feynman
package. Firstly, Our program package includes some common operators (matrices) and
operator lists.

1. σ1, σ2, σ3 are the standard Pauli operators.
2. a0 = (1, 0)T and a1 = (0, 1)T are the commonly used computational base in two-

dimensional Hilbert space. Here, we do not use the subscript form because a is often
used as a variable in calculation and this is done to avoid confusion.

3. I2, I3, I4 are the 2 × 2, 3 × 3, 4 × 4 identity operators.
4. bases = [I2, σ1, σ2, σ3] and Paulis = [σ1, σ2, σ3] are the common operators lists.

Secondly, we make a brief description of each function.

1. KK(l): returns the tensor product of a matrix list. This is a generalization to
KroneckerProduct function of LinearAlgebra package.

2. Kρ(φ): returns the density matrix of a pure state φ, which is a succinct and useful
function.

3. CJ(m): returns the conjugate of a matrix m.
4. DV(v,p): computes derivative vector of vector function. Parameter v is a vector com-

posed of functions. Parameter p is the derivative variable. This function is useful in
computing quantum Fisher information and other evaluation.

5. HL(l,x): returns the value of x logl x. This function is useful in computing entropy
and quantum correlation.

6. HE(x): computes classical entropy −HL(2, 1 − x) − HL(2, x), the function is used
in computing quantum correlation.

7. entropy(ρ): computes the von Neumann entropy −Tr(ρ log ρ), which calls the func-
tion HL(l,x) and is used in computing quantum discord and relative entropy of
coherence, and other evaluation. The function is different from the entropy function
defined in Feynman package, since the entropy function of the Feynman package
employs base-2 logarithm, and yet our entropy function employs base-d logarithm.

8. BaseNumber(ρ,n1,base1,n2,base2): returns the coefficients of the representational
form with SU(n) generators of density matrix of a single system or a bipartite sys-
tem. When n1 = 0 or n2 = 0, returns the coefficients of one system with vector
form; When n1 �= 0 and n2 �= 0, returns the coefficients of a bipartite system with
matrix form. Parameter base1 and base2 are SU(n) generators list. The function is
very convenient and useful in obtaining density matrix representation versus SU(n)

algebra, such as the Bloch representation of two-qubit state, and computing quantum
correlation, such as geometric quantum discord.

9. DC1(ρ,E): returns a density matrix of one system under decoherence. Parameter ρ is
the system initial state, and E is the Kraus operator list. In realistic world, decoherence
is a non-unitary evolution that results from the interaction between the system and the
environment. Quantum operation provides a way to describe the evolution of quantum
states in a noisy environment. A quantum operation, �, is a trace-preserving and com-
pletely positive linear map (

∑
i E

†
i Ei = I ), that can be expressed in Kraus operator



2394 Int J Theor Phys (2018) 57:2388–2403

sum [39] as �(ρ) = ∑
i EiρE

†
i . Compared with the quantum operation functions in

the Feynman package [28], our function can perform calculation for multidimensional
system more flexibly.

10. DC2(ρ,E,F): returns a density matrix of a bipartite system under decoherence. Param-
eter ρ is the system initial state, and E and F are Kraus operator lists corresponding
to two subsystem. That is to say, it returns the density matrix �(ρ) = ∑

i,j (Ei ⊗
Fj )ρ(Ei ⊗ Fj )

†. Our function can better support the calculation of multidimensional
and two-party system than the quantum operation function in Feynman package [28]
which is mainly suitable for two-dimensional qubit systems.

11. DC3(ρ,E,F,G): returns a density matrix of a tripartite system under decoherence.
Parameter ρ is the system initial state, and E, F and G are Kraus operator lists cor-
responding to three subsystems. That is to say, it returns the density matrix �(ρ) =∑

i,j,k(Ei ⊗ Fj ⊗ Gk)ρ(Ei ⊗ Fj ⊗ Gk)
†.

12. VI(E,F): verifies whether
∑

i,j (Ei ⊗ Fj )
†(Ei ⊗ Fj ) = I .

13. negativity(ρ,d1,d2): computes negativity according to (3). Parameter d1 and d2 are
the subsystem dimension of a bipartite system. Our function is more efficient than
the corresponding function in the Feynman package [27]. We rewrite the negativity
function because the corresponding function in the Feynman package often can not
get the expected results when the system is in high dimension, and our function can
better support the computation of three or higher dimensional systems.

14. CRX(ρ): computes the concurrence of two-qubit X states. Our function is more effi-
cient than the corresponding function in the Feynman package [27] when the X state is
complicated. We find that when the density matrix of X state includes relatively more
parameters, the computing concurrence command in the Feynman package often does
not obtain the expected results, so we rewrite the function for computing concurrence
of X states with simple special algorithm (see the presentation in Section 2.1).

15. QDB(ρ): computes the quantum discord of Bell-diagonal state. The function is written
based on the algorithm of Ref. [35].

16. QDX(ρ): computes the quantum discord of two-qubit X states. The function is written
based on the algorithm of Ref. [36].

17. QDX2(ρ): computes the quantum discord of two-qubit X states. The function is
written based on the algorithm of Ref. [40].

18. GQD(ρ,base1,base2): computes the geometric quantum discord of a 2 × n bipar-
tite system. ρ is the density operator of a 2 × n bipartite system, base1 is the bases
list defined as above, and base2 is a list composed of identity operator and SU(n)

generators. The function algorithm is a generalization of (12).
19. QFI(ρ,p): performs calculation of quantum Fisher information (QFI) according to Eq.

(9) of Ref. [41]. ρ is the input state and p is the estimated parameter. QFI is significant
in quantum metrology and quantum information theory. QFI plays an important role
in quantum statistical inference through its inextricable relationship with Cramér-Rao
inequality [42, 43] which limits the precision of the estimator from optimal data pro-
cessing. Moreover, QFI also has various applications in other quantum information
tasks such as characterization of non-Markovianity [44], investigation of uncertainty
relations [45, 46], and entanglement detection [47], and so on.

20. QFI2(v,p): performs the calculation of QFI of one-qubit states according to Eq. (11)
of Ref. [48]. v is the Block vector of the input qubit states and p is the estimated
parameter.

21. L1NC(ρ): computes l1 norm of coherence, according to (14).
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22. REC(ρ): computes relative entropy of coherence, according to (16).
23. L1N(ρ): computes l1 norm, i.e., returns the value of

∑
i,j |ρij |.

24. DM(ρ,p): calculates partial differential of a matrix function. p is the derivative vari-
able. The function is used in computing QFI and for other calculation, for example,
solving the master equation of an evolution system.

25. QFI3(ρ,p): performs the calculation of QFI according to Eq. (6) of Ref. [49]. ρ is the
two-dimensional density matrix; p is the estimated parameter.

26. GQD1(ρ): computes the trace-norm (Schatten 1-norm) geometric quantum discord
of X states according to Eq. (15) of Ref. [50]. ρ is the density matrix of the X state.
The trace norm geometric quantum discord satisfies reasonable criteria expected for
correlation measures [51, 52], unlike the above mentioned geometric quantum discord
based on Hilbert-Schmidt norm which lacks of contractivity under trace-preserving
maps.

27. GQD2(ρ): computes the trace-norm (Schatten 1-norm) geometric quantum discord of
Bell-diagonal states [53]. Compared with function GQD1, the function is simpler for
computing the trace-norm geometric quantum discord of Bell-diagonal states.

28. QIP1(ρ): computes quantum interferometric power for 2 ⊗ n quantum systems [54].
Quantum interferometric power is a measure of quantum correlation, which is defined
by QFI.

29. QIP2(ρ): computes quantum interferometric power for n ⊗ 2 quantum systems [55].
30. LQU(ρ): computes local quantum uncertainty for 2 ⊗ n quantum systems [56]. Local

quantum uncertainty allows us to define and investigate a class of measures of bipartite
discord-type quantum correlations.

31. MIN(ρ): computes measurement-induced nonlocality for 2⊗2 quantum systems [57].
Measurement-induced nonlocality is dual to the geometric quantum discord [37, 38].

4 Some Examples

In this section we demonstrate several applications of our package, which is similar to those
studied results in some recent literatures. Our emphasis is on illustrating how to use the
package rather than producing new results. The present package can be applied to comput-
ing quantum resources measures and dynamics of open system in many cases, and is able
to reproduce results in many related literatures and produce new results, for example, our
recent papers [58–63].

4.1 Example 1: Quantum Correlation Under Noisy Channels

In a realistic situation, the quantum systems have a nontrivial dynamics because their inter-
action with the environment may disturb the important properties of quantum information.
Here, we investigate the dynamics of quantum correlation measures in two typical noise
channels for two-qubit Bell-diagonal states. We first set the variable range

assume(0 ≤ p ≤ 1, −1 ≤ c1 ≤ 1, −1 ≤ c2 ≤ 1, −1 ≤ c3 ≤ 1)

Then a Bell-diagonal state is written as

ρ := simplify(
1

4
(I4 +

3∑

i=1

(ci
′KK([σi, σi])′))
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⎡

⎢⎢⎣

1
4 + 1

4 c3 0 0 1
4 c1 − 1

4 c2

0 1
4 − 1

4 c3
1
4 c1 + 1

4 c2 0
0 1

4 c1 + 1
4 c2

1
4 − 1

4 c3 0
1
4 c1 − 1

4 c2 0 0 1
4 + 1

4 c3

⎤

⎥⎥⎦

Then the system travels through the phase damping channel:

E :=
[[

1 0
0

√
1 − p

]
,

[
0 0
0

√
p

]]
:

ρf := DC2(ρ, E,E) :

Doing some simplification, we have the final evolution density matrix:

ρf := 1
4

⎡

⎢⎢⎣

1 + c3 0 0 (1 − p)(c1 − c2)

0 1 − c3 (1 − p)(c1 + c2) 0
0 (1 − p)(c1 + c2) 1 − c3 0

(1 − p)(c1 − c2) 0 0 1 + c3

⎤

⎥⎥⎦ :

which is equal to Eq. (5) of Ref. [15] that is a Bell-diagonal state. With the function QDB,
we obtain quantum discord of the Bell-diagonal state:

Qρ := QDB(ρf ) :

With the function Feynman measures, we have the mutual information

Iρ := Feynman measures(′′mutual inf ormation′′, qregister(id, 2, ρf ), [1], [2]) :

By the function GQD, we have the the geometric quantum discord

Gρ := GQD(ρf, bases, bases) :

1

4
p2c1

2 + 1

4
p2c2

2 − 1

2
pc1

2 − 1

2
pc2

2 + 1

4
c1

2 + 1

4
c2

2 + 1

4
c3

2

−1

4
max(c3

2, c1
2(−1 + p)2, c2

2(−1 + p)2)

We plot the dynamics of quantum discord (solid line), mutual information (dot line), classi-
cal correlations (dash line), and geometric quantum discord (dashdot line) as functions of t

for c1 = 1, c2 = − 3
5 , c3 = 3

5 .

plot ([subs(p = 1 − e−2t), c1 = 1, c2 = −3

5
, c3 = 3

5
, Qρ), subs(p = 1 − e−2t,

c1 = 1, c2 = −3

5
, c3 = 3

5
, Iρ), subs(p = 1 − e−2t, c1 = 1,

c2 = −3

5
, c3 = 3

5
, Qρ − Iρ), subs(p = 1 − e−2t, c1 = 1,

c2 = −3

5
, c3 = 3

5
, Gρ)], t = 0..8, linestyle = [solid, dot, dash, dashdot])
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The figure above is similar to Fig. 1 of Ref. [15]. Here ,we take γ = 1. From the figure
above, we can see geometric quantum discord has a sudden transition, which results from
the maximization process in computing geometric quantum discord.

We continue to study dynamic of the system in amplitude damping channel.

E :=
[[

1 0
0

√
1 − p

]
,

[
0

√
p

0 0

]]
:

ρf := DC2(ρ, E,E) :

By simple simplification, we have the final evolution state in amplitude damping channel:

ρf := 1
4

⎡

⎢⎢⎣

p2(1 + c3) 0 0 0
0 p(1 − p)(1 + c3) 0 0
0 0 p(1 − p)(1 + c3) 0
0 0 0 (1 − p)2(1 + c3)

⎤

⎥⎥⎦ :

The state is an X state. With functions QDX, GQD and CRX, we have quantum discord,
geometric quantum discord and concurrence, respectively:

Qρ := QDB(ρf ) :
Gρ := GQD(ρf, bases, bases) :
Cr := CRX(ρf ) :

We plot the dynamics of quantum discord (solid line), geometric quantum discord (dash
line), and concurrence (dot line) as functions of p for c1 = 1, c2 = − 3

5 , c3 = 3
5 .

plot ([subs(c1 = 1, c2 = −3

5
, c3 = 3

5
, Qρ), subs(c1 = 1, c2 = −3

5
, c3 = 3

5
,Gρ),

subs(c1 = 1, c2 = −3

5
, c3 = 3

5
, Cr)], p = 0..1, linestyle = [solid, dash, dot])
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This result is the same as the result described in Fig. 4 of Ref. [18] when correlated
parameter u = 0.

4.2 Example 2: Quantum Coherence Under Amplitude Damping Channel

Noise can cause the destruction of quantum superpositions that result in quantum coherence.
According to the above result, with function L1NC and REC, we have the l1 norm of
coherence and relative entropy of coherence, respectively:

L1 := L1NC(ρf ) :
Rc := REC(ρf ) :

We plot the dynamics of l1 norm of coherence (solid line), and relative entropy of
coherence(dash line) as functions of p for c1 = 1, c2 = − 3

5 , c3 = 3
5 .

plot ([subs(c1 = 1, c2 = −3

5
, c3 = 3

5
, L1), subs(c1 = 1, c2 = −3

5
, c3 = 3

5
, Rc)],

p = 0..1, linestyle = [solid, dash])

From the figure above, we can see l1 norm of coherence presents a linear decrease with
decoherence parameter p. However relative entropy of coherence nonlinearly decreases
with decoherence parameter p.
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4.3 Example 3: QFI in Noninertial Frames

Here, we analyse the behaviors of QFI under the Unruh-Hawking effect. In the context
of relativistic quantum information theory, QFI as an important measure of the quantum
information content, has rich and subtle physical structures. Suppose that two-qubit pure
states are given by

ϕ := cos(θ)KK([a0, a0]) + sin(θ)eiφKK([a1, a1]) :
The unknown arguments θ and φ are to be estimated. With the function QFI, we can easily
obtain the QFI with respect to θ and φ as

Fθ := QFI(Kρ(ϕ), θ)

4

Fφ := QFI(Kρ(ϕ), φ)

4 sin(θ)2 cos(θ)2

which is the same as Eq. (12) of Ref. [41]. Through the Unruh channel for the Dirac case,
according to Eq. (29) of Ref. [41], we can get the reduced density matrix of the system

ϕ := cos(θ)KK([a0, cos(r)KK([a0, a0]) + sin(r)KK([a1, a1])])
+ sin(θ)eiφKK([a1, a1, a0])) :
ρ := simplify(Feynman evaluate(′′partial trace′′, Kρ(ϕ), [2, 2, 2], [3])) :
Feynman print (ρ)

(1 − cos(θ)2)|11 >< 11| + (− cos(θ)2 cos(r)2 + cos(θ)2)|01 >< 01|
+ cos(θ)2 cos(r)2|00 >< 00| + cos(θ) cos(r) sin(θ)e−iφ |00 >< 11|
+ sin(θ)eiφ cos(θ) cos(r)|11 >< 00|

By simple simplification, the equation above is equal to Eq. (30) of Ref. [41]. With the
function QFI, we can easily obtain the QFI with respect to φ as

Fφ := QFI(ρ, φ)

−4
cos(θ)2 cos(r)2(−1 + cos(θ)2)

cos(θ)2 cos(r)2 − cos(θ)2 + 1

This equation is equal to Eq. (36) of Ref. [41]. The contour plot of Fφ as a function of the
acceleration parameter r and θ is given by

with(plots) :
contourplot (Fφ, θ = 0..

π

2
, r = 0..

π

4
, f illedregions = true,

contours = [0.1, 0.3, 0.5, 0.7, 0.9])
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The figure above is the same as the Fig. 2 of Ref. [41].

4.4 Example 4: QFI in Non-Markovian Noisy Environment

Due to the memory effect, in non-Markovian environment, reversible decay appears and
information flow can return to the system from environment. Now consider that the state ϕ

is effected by Non-Markovian environment [64]. The state becomes

ψ := sin θeiφ√
pKK[a1, a0] + √

1 − pKK[a0, a1]
+cosθKK[a0, a0]

⎡

⎢⎢⎣

cos θ

sin θeiφ√
1 − p

sin θeiφ√
p

0

⎤

⎥⎥⎦

By taking the partial trace over the environment, the reduced density matrix of the system
state is given by

ρ :=
[

cos θ2p − p + 1 cos θ sin θe−iφ√
p

sin θeiφ√
p cos θ sin θ2p

]
:

The density operator above includes three parameters. We find that it is hard to compute
QFI with the function QFI. But due to being the case of single qubit, with function QFI2,
we can obtain the QFI easily. Firstly, by function BaseNumber, the Block vector of the
matrix is
v := BaseNumber(ρ, 2, P aulis, 0, P aulis)

⎡

⎣
2 cos θ sin θ

√
p cos φ

2
√

p sin θ cos θ sin φ

2 cos θ2p − 2 p + 1

⎤

⎦

Secondly with the function QFI2, we can quickly obtain the QFI with respect to θ and φ as

Fθ := QFI2(v, θ)

4p

Fφ := QFI2(v, φ)

4p cos θ2 sin θ2

From the formula above, It is easily seen that Fφ is symmetric with respect to θ = π
4 .
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The figure above depicts the behaviors of Fθ (Fig. (a)) as a function of dimensionless
quantity γ0t and Fφ (Fig. (b)) as a function of dimensionless quantity γ0t and amplitude
parameter θ in non-Markovian regime (λ = 1

20γ0) [64]. We can observe that QFI periodi-
cally vanishes according to the zero points of the function pt [64], with a damping of revival.
The revival phenomenon results from the memory effect of non-Markovian reservoir. By
changing the parameter λ, it is easily found that the stronger non-Markovian memory effect
yields the larger revival height. With the increasing of parameter γ0t , the revival height
drops off asymptotically.

5 Conclusion

In the present work, we have described our function package and given some examples for
demonstrating how to use the function package. From these examples, it can be seen that
our package greatly simplifies the process of calculation, and allows us to better understand
physical processes and focus on physical applications at hand. We will further improve and
extend our package in the future so that the package has a much wider variety of applications
in research and education. For example, we will implement more common functions for
computing quantum resource measures.
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