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Abstract An atom with only two energy eigenvalues is described by a two-dimensional
state space spanned by the two energy eigenstates is called a two-level atom. We consider
the interaction between a two-level atom system with a constant velocity. An analytic solu-
tion of the systems which interacts with a quantized field is provided. Furthermore, the
significant effect of the temperature on the atomic inversion, the purity and the informa-
tion entropy are discussed in case of the initial state either an exited state or a maximally
mixed state. Additionally, the effect of the half wavelengths number of the field-mode is
investigated.

Keywords Quantum information · Thermal state · Entropy

1 Introduction

The fundamental idea of the quantum computing and communications has been introduced
by Stephen Wiesner, when he introduced the principles of numerous developments of quan-
tum computing and cryptography field in 1970. She presented the fundamental concept of
the no-cloning theory which states that the quantum information can’t be replicated [1].
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Contrasting to the classical computer, the quantum computer can enhance the substan-
tial processing ability and achieve many tasks by applying all prospective transformations
simultaneously. Furthermore, the architecture of quantum computers is contradictory from
the classical one which is controlled by a number of transistors. The data can be represented
as bits (0 or 1) in the classical environment. On the other hand, the quantum environment
represented the data represented as quantum bits and in a superposition state. The super-
position state denotes that the quantum state can be 0, 1 or in both states simultaneously.
Quantum computers reveal hypothetical relationships with nondeterministic and probabilis-
tic computers [2–4]. By way of 2017, the improvement and growth of a real quantum
computer is still in early stages, but much practical and theoretical experimentation were
implemented by many research groups [5–27].

The most important principles of quantum computing are entanglement and entropy.
Quantum entanglement is a constructive area which can be used to measure the operation of
the quantum communication as Shor’s algorithm [28–30], Quantum teleportation [31–34],
and super dense coding [35–38]. Entanglement is one of the distinctive physical singularity
that defines the way of how the particles can be correlated to each other regardless of the
distance have been widely studied in [39–55]. A detection of new dynamical features of two
coupled spins with an antiferromagnetic environment at finite temperature in the thermo-
dynamics limit models are presented in [39]. In [40] relation between information entropy
approach and von Neumann entropy of multi-qubit Rabi system is introduced by utiliz-
ing different measurement schemes. In [42, 43] information-theoretic aspects of quantum
inseparability of mixed states are investigated in terms of α entropy inequalities and tele-
portation fidelity. A framework for a quantum mechanical information theory that is based
entirely on density operators, and gives rise to a unified description of classical correla-
tion and quantum entanglement is introduced in [44, 45]. The entangled maximum entropy
states compatible with data coming from nonentangled (separable) states are produced by
applying the Jaynes principle to the compound quantum system as shown in [46]. In [47]
a new measure of information in quantum mechanics is proposed which takes into account
that for quantum systems the only features known before an experiment is performed are the
probabilities for various events to occur. The problem of quantum-state inference and the
concept of quantum entanglement are studied using a non-additive measure in the form of
the Tsallis entropy indexed by the positive parameter q is introduced in [48]. A generalized
approach of the von Neumann mutual information in the context of Tsallis’ nonextensive
statistics is presented in [49]. A generalized non-additive entropies and quantum entangle-
ment by examining the inference of quantum density operators from incomplete information
by means of the maximization of general non-additive entropic forms are introduced in [53].

The information entropy has been developed during the past few decades for representing
the central concept in both classical and quantum systems. Information entropy measures
the uncertainty and the information content in the physical system state. The time evolution
of a dynamic quantum system has been interested for its various applications [56]. The im-
portant characteristics for the dynamic system are the atomic inversion and the purity. The
atomic population inversion appears when a system exists in a state in which more elements
of the system are in higher excited states than in lower ground states. The range of the purity
is between zero and 1

k
, (here, k is the dimension of the density matrix), which the first indi-

cates a completely pure state and the later to a completely mixed state. One of the most
important problems in quantum optics is the interaction between two or more quantum sys-
tems, like the field-atom interactions [56–63], or field-field interactions [64–72], or atom-
atom interactions [73–76]. In this paper, we study the system of a two-level atom with a
constant velocity which interacts with a quantized field. Furthermore, we focus on the effect
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of the temperature, the half wavelengths number of the field-mode and the initial state of
a two-level atom. This article is organized as; in Section 1, The Hamiltonian and the solu-
tion of our model in a particular case under the rotating-wave approximation are discus-
sed.Additionally, the time dependent reduced density operator of both a two-level atom with
a quantized field and the density operator of the whole system are discussed. In Section 2,
the atomic population inversion of the system is calculated. In Section 3, the purity and
the information entropy of the system is calculated. Subsequently, the results of the whole
system with different properties are discussed. Finally, Section 4 concludes the paper.

2 The Model and Solution

The nonlinearity effect has been discussed in [77, 78]. In [77] it is shown that the motion
of a two-level atom through a spatially varying single-mode field gives rise to nonlinear
transient effects which are similar to self-induced transparency and adiabatic following. The
effect of atomic motion on Rydberg atoms undergoing two-photon transitions in a lossless
cavity is examined in [78]. For our proposed model, we consider a system of a two-level
atom with a constant velocity which interacts with a quantized field under the effect of one-
photon transition. We study the system in the resonance case as discussed in [77, 78] . The
Hamiltonian model under the rotating-wave approximation can be written as in (1)

H = ωa†a + ωσz + gR(z)(σ+a + a†σ−), (1)

where a and a† are the annihilation and the creation operators of the single-mode cavity
field with the frequency of the field ω. σ+ and σ− represent the raising and the lowering
operators of the two-level atom respectively, and g is the field-atom coupling constant.
We study the motion of the two-level atom along the Z −direction; therefore, the motion
function depends only on Z. The motion of the atom will be combined with the shape
function of the cavity field mode R(z) as discussed in [79] and represented by (2).

R(z) −→ R(vt). (2)

Where, v represents the velocity of the atomic motion; therefore, the cavity field-mode
can be defined as shown by (3).

R(vt) = cos

(
πPvt

L

)
. (3)

Where, P represents the half wavelengths number of the field-mode inside a cavity of
length L. The time evolution operator of a two-level atom interacting resonantly with a
single-mode radiation field can be obtained by exploiting the standard techniques as shown
by (4).

H̀U = i
∂U

∂t
. (4)

Where, H̀ is the Hamiltonian in the interaction picture. By applying successive calcula-
tions, the time evolution operator can be written as in (5).

U = cos(gφ(t)
√

a†a) |−〉 〈−| + cos(gφ(t)
√

aa†) |+〉 〈+| (5)

− ia†√
aa†

sin(gφ(t)
√

aa†) |−〉 〈+| − ia√
a†a

sin(gφ(t)
√

a†a) |+〉 〈−| .
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Where |+〉 and |−〉 represent both the excited and the ground state of a two-level atom,
respectively. φ(t) correspond to the subsequent time-dependent function φ(t) = ∫

R(vt)dt .
To simplify the subsequent time-dependent function, For simplicity, the velocity of the
atomic motion is chosen to be v = gL

π
, so φ(t) can be written as in (6).

φ(t) =
∫

R(vt)dt (6)

=
∫ t

0
cos

(
πPvt̀

L

)
dt̀

= sin(gP t)

gP
.

By assuming that the initial density operator of a two-level atom is given by (7).

ρA(0) = Be |+〉 〈+| + Bg |−〉 〈−| . (7)

Where 0 ≤ Be ≤ 1, Bg = 1 − Be. While Be has three different values which are 1, 0
and 0.5. These values correspond to the atom in the excited state, the ground state and the
maximally mixed state, respectively. Moreover, the cavity field which is initially presented
by the single-mode thermal state can be written as in (8).

ρF (0) =
∞∑

n=0

Pn |n〉 〈n| , Pn = mn

(m + 1)n+1
, m =

(
exp

(ω

T

)
− 1

)−1
. (8)

Where, m corresponds to the mean photon number of the cavity field for thermal equi-
librium, T is a certain temperature. The initial density operator of the whole system can be
stated by (9).

ρAF (0) = ρF (0) ⊗ ρA(0) (9)

= Be

∞∑
n=0

Pn |n,+〉 〈+, n| + Bg

∞∑
n=0

Pn |n,−〉 〈−, n| .

But, we know that the time dependent density operator can be given by (10).

ρAF (t) = UρAF (0)U†. (10)

So, the time dependent density operator of the whole system can be described by (11).

ρAF (t) =
∑
n

Pn(Beρe(t) + Bgρg(t)). (11)

Where,

ρe(t) = cos2(gφ(t)
√

n + 1) |n, +〉 〈+, n| (12)

+ sin2(gφ(t)
√

n + 1) |n + 1, −〉 〈−, n + 1|
+i cos(gφ(t)

√
n + 1) sin(gφ(t)

√
n + 1) |n, +〉 〈−, n + 1|

−i cos(gφ(t)
√

n + 1) sin(gφ(t)
√

n + 1) |n + 1, −〉 〈+, n| ,

ρg(t) = sin2(gφ(t)
√

n − 1) |n − 1, +〉 〈+, n − 1| (13)

+ cos2(gφ(t)
√

n) |n, −〉 〈−, n|
−i cos(gφ(t)

√
n) sin(gφ(t)

√
n) |n − 1, +〉 〈−, n|

+i cos(gφ(t)
√

n) sin(gφ(t)
√

n) |n,−〉 〈+, n − 1| .
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So, the time dependent reduced density operator of a two-level atom is given by (14).

ρA(t) = T rF (ρAF (t)) (14)

= μ1(t) |+〉 〈+| + μ2(t) |−〉 〈−| ,
Furthermore, the time dependent reduced density operator of the cavity field is given by
(15).

ρF (t) = T rA(ρAF (t)) (15)

= (μ1(t) + μ2(t)) |n〉 〈n| .
Where,

μ1(t) = Be

∑
n

Pn cos
2(gφ(t)

√
n + 1) + Bg

∑
n

Pn+1 sin
2(gφ(t)

√
n + 1), (16)

μ2(t) = Be

∑
n

Pn−1 sin
2(gφ(t)

√
n) + Bg

∑
n

Pn cos
2(gφ(t)

√
n).

3 Results and Discussion

The atomic population inversion is considered as one of the quantities which is simple and
important. It is defined as the difference between the probabilities of finding the atom in the
exited state |+〉 and in the ground state |−〉. It can be presented as in (17 and 18).

〈σz〉 = ρ++ − ρ−− (17)

= μ1(t) − μ2(t) (18)

The purity evolution PA(t) is given by (19).

PA(t) = T rA(ρ2
A(t)) (19)

= ρ2++ + 2 |ρ+−|2 + ρ2−−
= μ1(t)

2 + μ2(t)
2

Where, ρA(t) is the reduced density matrix of a two-level atom.
The information entropy of the system is defined as in [80, 81] and given by (20).

H(σz) =
N∑

i=1

Pi(σz) lnPi(σz), (20)

The information entropy of the atomic operator σz in case of N = 2 (two-level atom) and
applying the atomic reduced density operator ρA(t) can be written in the form of (21).

H(σz) = −
(
1

2
+ 〈σz〉

)
ln

(
1

2
+ 〈σz〉

)
−

(
1

2
− 〈σz〉

)
ln

(
1

2
− 〈σz〉

)
, (21)

Therefore,
H(σz) = −μ1(t) ln(μ1(t)) − μ2(t) ln(μ2(t)). (22)

The effect of the temperature T on the atomic inversion 〈σz〉, the purity PA(t) and the
information entropy H(σz) in case of the half wavelengths number of the field-mode P = 1
and ρA(0) = |+〉 〈+| , (the two-level atom is initially in exited state) is studied in Fig. 1.
The atomic inversion 〈σz〉, the purity PA(t) and the information entropy H(σz) have regular
and periodic oscillations. Furthermore, when the atomic inversion 〈σz〉 and the information



2324 Int J Theor Phys (2018) 57:2319–2329

entropy H(σz) start from their minimum value until they reach the maximum value , we
observed that while the temperature increases, the maximum value and the amplitude of both
the oscillations of the atomic inversion 〈σz〉 and the information entropy H(σz) increase.
On the contrary, when the purity PA(t) starts from its maximum value until it reaches the
minimum value, we observed that while the temperature increases, the minimum value
decreases, but the amplitude of the oscillations increases. Therefore, we can conclude that
the temperature has a clear effect when the initial state is an exited state
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Fig. 1 Show the case in which ω = 1, g = 1, P = 1, Bg = 0, Be = 1, where solid, blue and dot curves
correspond, respectively, to T = 5, T = 1 and T = 0.5
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In Fig. 2, We discuss the effect of the temperature T in case of the two-level atom is
initially in exited state and the half wavelengths number of the field-mode P = 2. The effect
is similar to the one discussed in Fig. 1 except the number of oscillations. From Fig. 2, we
observed that the number of oscillations is increased apparently compared to the result of
Fig. 1. This difference is a consequence of the effect of the half wavelengths number of the
field-mode P .
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Fig. 2 Show the case in which ω = 1, g = 1, P = 2, Bg = 0, Be = 1, where solid, blue and dot curves
correspond, respectively, to T = 5, T = 1 and T = 0.5
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The effect of the temperature T on the atomic inversion 〈σz〉, the purity PA(t) and the
information entropy H(σz) in case of the half wavelengths number of the field-mode P = 1
and ρA(0) = 1

2 |+〉 〈+|+ 1
2 |−〉 〈−| , (the two-level atom is initially in the maximally mixed

state) is studied in Fig. 3.When the atomic inversion 〈σz〉 and the information entropyH(σz)

start from their maximum value until they reach to the minimum value , we observed that
while the temperature increases, the minimum value of both atomic inversion 〈σz〉 and the
information entropy H(σz) increase but the amplitude of the oscillations decrease. On the
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correspond, respectively, to T = 5, T = 1 and T = 0.5
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contrary, when the purity PA(t) starts from its minimum value until it reaches the maximum
value, we observed that while the temperature increases, the maximum value the ampli-
tude of the oscillations of the purity PA(t) decrease. Therefore, we can conclude that the
temperature has also a clear effect when the initial state is a maximally mixed state.

4 Conclusion

In this paper, we studied the system of a two-level atom with a constant velocity which inter-
acts with a quantized field under the effect of one-photon transition. Moreover, it studied in
the resonance case and the rotating-wave approximation. We focus on the effect of the tem-
perature, the half wavelengths number of the field-mode and the initial state of a two-level
atom for atomic inversion, the purity and the information entropy. We can conclude that the
temperature has a clear effect when the initial state is either an exited state or a maximally
mixed state. Additionally, the number of oscillations is changed accordingly to the effect of
the half wavelengths number of the field-mode.
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