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Abstract Within a SO(3, 1)−gauge invariant pseudo-orthonormal (Cartan) formalism, in
the present paper, we are going to deal with the Einstein–Nambu–Goldstone system of equa-
tions, for a manifold with at least G4 up to G6 group of motion and a massless source-field
excited along the z−direction. This is also equivalent with the pure radiation energy–
momentum tensor coming from circularly polarized waves generated by a rotating magnetic
field. The corresponding essential equation which establishes the connection between the
spacetime geometry and the matter-field is solved in some physically interesting cases.

Keywords Einstein–Goldstone equations · Pure radiation · Mathieu functions ·
Nambu–Goldstone bosons

1 Introduction

In the last decades, the pure radiation metrics have been an active field of investigations and
a classification of homogeneous pure radiation solutions has been performed in [1], based
on the results publishes by Wils and Steele [2, 3].

Recently, it has been shown that all these spacetimes are satisfying the Einstein–Maxwell
equations [4] and a conformal approach for the analysis of the non-linear stability of pure
radiation cosmologies has been performed in [5].

In spite of their simple appearance, such spacetimes have peculiar properties as for
example they may generate stable closed timelike curves [6].

Soon after Wils obtained what he claimed to be the only conformally flat, pure radiation
metric which is not a plane wave [7], his result was generalized by Edgar and Ludwig [8].
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They also have shown that the class of metrics which are not plane waves and permits neither
massless scalar fields, nor neutrino fields, can be completed with a subset of plane-fronted
waves, subjected to special conditions on the Weyl tensor.

In terms of techniques, once Koutras [9] pointed out that the Wils’s spacetime does
not admit Killing vectors, the Geroch–Held–Penrose (GHP) formalism [10] has been
considered as particularly suitable [11].

In what it concerns the so-called Nambu–Goldstone bosons which are geometrodynam-
ically supporting our spacetime, these appear in models exhibiting a spontaneously broken
continuous symmetry and remain massless as long as the symmetry is not also explicitly
broken. Discovered by Yoichiro Nambu in the context of the Bardeen–Cooper–Schrieffer
(BCS) superconductivity mechanism [12], this type of particles has been encountered in a
large variety of domains. Today it is believed that studies on both Goldstone and pseudo-
Goldstone modes have potentially far reaching future perspectives in high energy physics
and cosmology.

2 The Einstein–Nambu–Goldstone System

The “would be” Goldstone particle, which gets eaten by the gauge field, is the well-known
feature of the celebrated Higgs Mechanism. In its own rights, the Nambu–Goldstone field
is characterized by the SO(3, 1)−invariant Lagrangian density

L[φ] = − 1

2
gikφ,i φ,k , (1)

on a Lorentzian base-manifold endowed with the signature +2 metric, ds2 = gikdxidxk .
In terms of pseudo-orthonormal tetrads, defining the bases B on T (M4), Ea = Ei

a(x)∂i ,
with g(Ea,Eb) = ηab = diag[1, 1, 1, −1], the line element becomes ds2 = ηab �a�b. The
1-forms �a = �a

i (x)dxi define the dual pseudo-orthonormal bases B∗, on T ∗(M4), so that
〈�a, Eb〉 = δa

b .
The Lagrangian density (1) achieves the manifestly SO(3, 1)−gauge invariant expres-

sion

L[φ] = − 1

2
ηabφ|aφ|b , (2)

where φ|c = Ec(φ) = Ei
cφ,i , with c = 1, 4 and the corresponding Euler–Lagrange equation

gets the form

ηabφ|ab − ηab�c
abφ|c = 0 . (3)

The connection coefficients build up the 1-forms �a
b = �a

bc�
c which decode the Cartan’s

first structure equation (with no torsion)

d�a + �a
b ∧ �b = 0 ⇒ d�a = �a[bc]�b ∧ �c (4)

with 1 ≤ b < c ≤ 4 and �d[bc] = �dbc − �dcb, where �dbc = ηda�
a
bc.

In coordinate-free formulation, the curvature tensor components Ra
bcd are given by the

Cartan’s second equation

Ra
b = d�a

b + �a
c ∧ �c

b , (5)

where the curvature 2-forms are defined as

Ra
b = Ra

bcd �c ∧ �d ,
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with 1 ≤ c < d ≤ 4. The corresponding Ricci tensor components, scalar curvature and the
Einstein tensor components will be given by the well-known relations Rab = ηcdRcadb,
R = ηabRab and

Gab = Rab − 1

2
ηab R .

Using the general expression of the conservative energy–momentum tensor, valid for any
set of matter-fields governed by the invariant Lagrangian density (2), namely

Tab = φ|aφ|b − 1

2
ηab φ|cφ|c , (6)

in the celebrated Einstein Equations Gab = κ0Tab, the whole Einstein–Nambu–Goldstone
system reads

Rab − 1

2
ηabR = κ0

[
φ|aφ|b − 1

2
ηab φ|cφ|c

]
;

ηabφ|ab − ηab �c
ab φ|c = 0 . (7)

In the followings, let us discuss the simplest clues of symmetry on choosing the metric.
Thus, once the source-field is excited just along the z−direction, its independence of the
planar coordinates x and y brings in the three generators of the Euclidean plane R2 isome-
tries, K̂1 = ∂x , K̂2 = ∂y , K̂3 = x∂y − y∂x , which should be shared by the generated
spacetime too, so that the metric reads

ds2 = e2f (z,t)δAB dxAdxB + (dz)2 − (dt)2 , (8)

whereA,B = 1, 2 and we have kept flat and orthogonal the two “active” directions {∂z, ∂t }.
One additional reason comes from the massless character of φ(z, t), that basically demands
the activation of at least one of the two null directions and their respective coordinates

u = 1√
2
(t − z) , v = 1√

2
(t + z) ,

i.e. the metric (8) can be also written in the very suggestive form

ds2 = e2f (u,v)δAB dxAdxB − 2 dudv . (9)

The essential Cartan components of the energy–momentum tensor Tab being

T11 = 1

2

[
(φ,4 )2 − (φ,3 )2

]
= T22 ,

T33 = 1

2

[
(φ,4 )2 + (φ,3 )2

]
= T44 and T34 = φ,3 φ,4 ,

once we impose the progressive propagation of the Nambu–Goldstone wave, only the
retarded null-coordinate “u” gets dynamized, so that the plane symmetric components van-
ish as well. The remaining three components achieve the highly algebraically symmetric
expression

T33 = −T34 = T44 = 1

2

(
dφ

du

)2

,

which casts the whole energy–momentum tensor of the progressively propagating Nambu–
Goldstone field into the form of pure radiation

Tab = 1

2

(
dφ

du

)2 [
δ4a − δ3a

] [
δ4b − δ3b

]
. (10)
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To see it clearly, in terms of the spacetime metric written as

ds2 = δAB ωAωB − 2ω3ω4 ,

where

ω1 = �1 , ω2 = �2 , ω3 = 1√
2

(
�4 − �3

)
, ω4 = 1√

2

(
�4 + �3

)
;

e1 = E1 , e2 = E2 , e3 = 1√
2

(E4 − E3) , e4 = 1√
2

(E4 + E3) ,

with g
âb̂

= g
(
eâ, eb̂

)
given by the ±1 values, gAB = δAB and g34 = −1, we take the

corresponding geometric object

T[φ] = Tab �a ⊗ �b = 1

2

(
dφ

du

)2 [
�4 − �3

]
⊗

[
�4 − �3

]
=

(
dφ

du

)2

du ⊗ du ,

which, with the proper energy density

w(φ) = 1

2

(
dφ

du

)2

,

turns into the well-known form, in null-tetrad bases,

T[φ] = 2w(φ)ω3 ⊗ ω3 ,

where ω3 = du and ω4 = dv. Thus, the only non-vanishing covariant component of T[φ]
is T3̂3̂[φ] = 2w(φ) and the whole components can be written as

T
âb̂

= 2w(φ)δ3
â
δ3
b̂
.

This clearly shows a radiative field propagating at the speed of light along the z−direction,
the dynamized null-coordinate being the retarded one, “u”.

3 The Pseudo-orthonormal Frame Picture

For the sake of completeness, we give below the calculations on the geometrodynamics
of the system, in terms of pseudo-orthonormal basis. Thus, defining the dual pseudo-
orthonormal tetrad corresponding to (8), i.e.

�1 = ef dx , �2 = ef dy , �3 = dz , �4 = dt ,

the first Cartan’s Equations (4) give the essential 1-forms

�13 = f,3 �1 , �23 = f,3 �2 , �14 = f,4 �1 , �24 = f,4 �2 , (11)

which are leading, through the second Cartan’s Eq. (5), to the non-vanishing curvature 2-
forms

R12 =
[
(f,4 )2 − (f,3 )2

]
�1 ∧ �2 ,

R13 = −
[
f,33 + (f,3 )2

]
�1 ∧ �3 − [f,34 +f,3 f,4 ]�

1 ∧ �4 ,

R23 = −
[
f,33 + (f,3 )2

]
�2 ∧ �3 − [ f,34 +f,3 f,4 ]�

2 ∧ �4 ,

R14 = − [f,34 +f,3 f,4 ]�
1 ∧ �3 −

[
f,44 + (f,4 )2

]
�1 ∧ �4 ,

R24 = − [f,34 +f,3 f,4 ]�
2 ∧ �3 −

[
f,44 + (f,4 )2

]
�2 ∧ �4 . (12)



2284 Int J Theor Phys (2018) 57:2280–2292

With the essential components of the Einstein tensor

G11 = f,33 −f,44 + (f,3 )2 − (f,4 )2 = G22 ;
G33 = (f,3 )2 − 2f,44 −3 (f,4 )2 ; G44 = (f,4 )2 − 2f,33 −3 (f,3 )2 ;
G34 = −2 [f,34 +f,3 f,4 ] , (13)

the Einstein–Nambu–Goldstone system does fully read

f,33 −f,44 + (f,3 )2 − (f,4 )2 = κ0

2

[
(φ,4 )2 − (φ,3 )2

]
;

(f,3 )2 − 2f,44 −3 (f,4 )2 = κ0

2

[
(φ,4 )2 + (φ,3 )2

]
;

(f,4 )2 − 2f,33 −3 (f,3 )2 = κ0

2

[
(φ,4 )2 + (φ,3 )2

]
;

f,34 +f,3 f,4 = − κ0

2
φ,3 φ,4 ;

φ,33 −φ,44 +2f,3 φ,3 −2f,4 φ,4 = 0 . (14)

There are few comments now, shedding a brighter light onto the deep connection between
Geometry and Physics. Firstly, the metric itself is radiating, since G34 
= 0, as the field
is exciting along the z−direction. However, that is not the genuine gravitational radiation,
made of freely propagating gravitons, because the corresponding components of the Weyl
tensor, even though diagonal and good-looking, i.e.

C1212 = − 1

3
[f,44 −f,33 ] = −C3434 ,

C1313 = 1

6
[f,44 −f,33 ] = C2323 , C1414 = − 1

6
[f,44 −f,33 ] = C2424 ,

do all vanish for either out-going or in-coming massless perturbations, the resulting planar
symmetric manifold becoming conformally flat. Nevertheless, the essential off-diagonal
sectional curvatures,

R1314 = R1413 = R2423 = R2324 = κ0

2
φ,3 φ,4 ,

are either progressively or regressively propagated, supporting the Umov 3-vector of the
excited Nambu-Goldstone field,


3 = T 34 = −T34 = −φ,3 φ,4 = ±1

2

(
dφ

du

)2

.

Thence, in brief, each of the initially spacelike blades

d�2 = dz ∧ dx = 1

2
ε2βγ dxβ ∧ dxγ , d�1 = dy ∧ dz = 1

2
ε1βγ dxβ ∧ dxγ ,

achieves a supplementary (coherent) curvature in the time-direction, which preserves as
common sites the respective planar directions dx and dy, forming therefore the blades
dσ1 = dx ∧ dt , for d�2 and dσ2 = dy ∧ dt , for d�1.

The other interesting feature of the system regards a geometry-governing equation, which
comes from the fact the T33 = T44, independently of weather the field is progressively
or regressively propagating. Thus, equating the G33 and G44 components of the Einstein’s
tensor (13), one finds the important differential equation

2f,44 +4 (f,4 )2 = 2f,33 +4 (f,3 )2 , (15)
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which does simply become the suggestive wave-equation

G,33 −G,44 = 0 , where G = e2f (z,t) = g11(z, t) = g22(z, t) ,

for the two planar components of the metric tensor g, in coordinate bases. Thence, if T33 =
T44, the necessary condition for the planary symmetric metric

ds2 = G(z, t)δAB dxAdxB + (dz)2 − (dt)2

to be an exact solution to the corresponding Einstein Equations, is that the warp function G

satisfies the d’Alembert equation onto the flat Lorentzian part spanned by {(z, t) ∈ R×R}.
This mini-theorem has a series of immediate consequences on the calculations and onto

the available exact solutions of the Einstein–Nambu–Goldstone system. For instance, if
one considers the complementary two cases of either a static or a purely coherent Nambu–
Goldstone field, then, the “generated” spacetimes come into light on the spot, as being
respectively described by the metrics

ds2st = |Kz + G0|δAB dxAdxB + (dz)2 − (dt)2 ,

and
ds2ch = |�t + G0|δAB dxAdxB + (dz)2 − (dt)2 .

The corresponding Einstein Equations fall to just one, namely

(f,3 )2 = κ0

2
(φ,3 )2 ⇒ φ(z) = φ0 ± 1√

2κ0
log |Kz + G0| ,

and respectively

(f,4 )2 = κ0

2
(φ,4 )2 ⇒ φ(t) = φ0 ± 1√

2κ0
log |�t + G0| .

In spite of their simple appearance, each of these spacetimes is highly pathological and
represents, in fact, a very good exactly solvable model for studying naked singularities,
non-trivial embeddings and geodesical (in)completeness.

At the end of this section, we are going to manage, mainly algebraically, the equations
in (14) in such a way to get them obviously completely integrable. During this process, one
would be able to notice the key role played by the “radiative” equation G34 = κ0T34 in the
system diagonalization. Using the geometry governing Eq. (15), the first Einstein equation
in (14) becomes

(f,4 )2 − (f,3 )2 = κ0

2

[
(φ,4 )2 − (φ,3 )2

]
(16)

and is going to be important a little bit later.
For now, from the first Einstein Equation in (14) and from the sum of the ones

corresponding to G33 and G44, we get the following relations

f,33 + (f,3 )2 = −κ0

2
(φ,3 )2 ; f,44 + (f,4 )2 = −κ0

2
(φ,4 )2 ,

which bring the initial Einstein system in (14) to the much clearer form

(a) f,44 −f,33 +2
[
(f,4 )2 − (f,3 )2

]
= 0;

(b) (f,4 )2 − (f,3 )2 = (ψ,4 )2 − (ψ,3 )2 ;
(c) f,33 + (f,3 )2 = − (ψ,3 )2 ;
(d) f,44 + (f,4 )2 = − (ψ,4 )2 ;
(e) f,34 +f,3 f,4 = − ψ,3 ψ,4 , (17)



2286 Int J Theor Phys (2018) 57:2280–2292

where

ψ =
√

κ0

2
φ

denotes the physically dimensionless and gravitationally normalized Nambu–Goldstone
field. Next, we have to form the linear combinations (c) + (d) + 2(e) and (c) + (d) − 2(e)
and to express everything in terms of the null-coordinates {u, v}, yielding

(1) f,uv +2f,u f,v = 0

(2) f,u f,v = ψ,u ψ,v

(3) f,uv +f,u f,v = −ψ,u ψ,v

(4) f,vv + (f,v )2 = − (ψ,v )2

(5) f,uu + (f,u )2 = − (ψ,u )2

(6) ψ,uv +f,v ψ,u +f,u ψ,v = 0 , (18)

where we have added the corresponding form of the massless Gordon equation for
completeness.

4 The Progressive Essential Einstein Equation and Some Exact Solutions

With respect to the Einstein–Nambu–Goldstone system written in terms of null-coordinates,
once we look for progressive exact solutions, ψ,v = 0 = f,v , it automatically breaks down
to just one equation, namely

d2f

du2
+

(
df

du

)2

= −
(

dψ

du

)2

⇒ d2F

du2
+

(
dψ

du

)2

F = 0 , (19)

where F(u) = ef (u), which we term here as the Essential Equation. That is because it
establishes a two-way connection between the spacetime geometry, controlled by the metric
function F(u) and the excitation matter-field of Nambu–Goldstone nature, with the essential
component of the energy momentum tensor

T44 = T33 = 1

κ0

(
dψ

du

)2

= −T34 .

In some respect, this fact is quite intriguing since if one had started with two unknown
functions (φ for physics and f for the geometry), one would have expected to get a pair
of nonlinearly coupled differential equations, for the two fields and not just one, as it
actually happens. That comes from the fact that, for either progressive or regressive matter-
excitations preserving the isometries of the Euclidean plane, the corresponding geometrical
fundamental objects experience an algebraically exceptional relaxation, as it can be noticed
below, for the case of progressive propagation, namely

RAB ≡ 0 , RA3 = 0 = RA4 , R33 = R44 = −
[

d2f

du2
+

(
df

du

)2
]

= −R34 , R ≡ 0 .
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Thus, one ends up with the case for pure radiation, in terms of the dual null-tetrads
ω3 = du, ω4 = dv, where the whole Einstein tensor goes down to just one component and
the same is true for the energy–momentum tensor, i.e.

G
âb̂

= −2

[
d2f

du2
+

(
df

du

)2
]

δ3
â
δ3
b̂

, T
âb̂

= 2

κ0

(
dψ

du

)2

δ3
â
δ3
b̂

,

and therefore, the G = κ0T equations do only come to the essential one.
In addition, it can be proven that the second Bianchi identity and its contractions as well

as the four-divergence of the energy–momentum tensor vanish (identically), so that they do
not involve any other fundamental equation. Thence, unlike the usual situation in General
Relativity, this sort of planar symmetric configurations with pure radiation seems to allow
the observer to prepare the excitation field in a certain progressive distribution or, more
fundamental, in a certain quantum state.

4.1 The Exact Solution for a Nambu–Goldstone Field of Constant Intensity

Once we deal with a pure-radiation distribution of Umov vector components


α = c w[φ] δα
3 ⇒ 
3 = c

κ0

(
dψ

du

)2

, (20)

where c = 1 in natural units, the elementary power transported along the normal to the
elementary surface

d�α = 1

2
εαβγ d�β ∧ d�γ ,

will be given by the expression

dP = 
α d�α = c

κ0

(
dψ

du

)2

�1 ∧ �2 = c

κ0
F 2(u)

(
dψ

du

)2

d2x ,

so that the corresponding radiation intensity, measured in W/m2, is going to read


0 = dP
d2x

= 1

κ0
F 2(u)

(
dψ

du

)2

.

Based on the finite energy criterion, it is normal to ask for a radiation field of constant
intensity, i.e. (

dψ

du

)2

= κ0
0

F 2(u)
, (21)

which turns the essential Eq. (19) into the seemingly very simple form

F
d2F

du2
= −κ0 
0 .

In reality, things are a lot more complicated since, with respect to the null-coordinate u, the
F , ψ solutions get (highly) transcendent. One can notice this from the first-integral of the
above equation, namely

(
dF

du

)2

= C − 2κ0
0 log

(
F

F0

)
, with C ∈ R. (22)
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Besides the details regarding the reality constraint, one is getting in trouble with the solu-
tion to the differential equation coming from the above relation for it cannot be performed
by quadratures. Fortunately, expressing dψ/du with respect to dψ/dF , it yields

dψ = ±√
κ0
0

[
C − 2κ0
0 log

∣∣∣∣ F

F0

∣∣∣∣
]−1/2

dF

F
,

which leads to the workable relation between the two functions,

ψ = ∓1√
κ0
0

[
C − 2κ0
0 log

∣∣∣∣ F

F0

∣∣∣∣
]1/2

⇔ ψ(u) = sgn√
κ0
0

(
dF

du

)
.

Thus, it is possible to express the solutions with respect to ψ itself as

F(ψ) = exp

[
−1

2
ψ2

]
,

where, with no loss of generality, the constants F0 and C have been set to 1 and 0,
respectively. Also, from the initial Eq. (21), i.e.

dψ

du
= (sgn) (κ0
0)

1/2 F−1 ,

it yields the important row of relations

dψ

du
= ±√

κ0
0 exp

[
1

2
ψ2

]
,

du

dψ
= sgn√

κ0
0
exp

[
−1

2
ψ2

]
,

u(ψ) = sgn√
κ0
0

∫
exp

[
−1

2
ψ2

]
dψ . (23)

The last relation gives the concrete expression of the null-coordinate u with respect to the
(classical) rescaled field ψ , i.e.

u = ±
√

π/2√
κ0
0

Erf

(
ψ√
2

)
, (24)

where we have used the definition of the error function [13]
∫ ψ

0
exp

[
−1

2
σ 2

]
dσ =

√
π

2
Erf

(
ψ√
2

)
, with ψ ∈ R .

Thus, there is no need to carry the signs any longer because the function in (24) is bijective
on R, admitting the very useful inverse

ψ(u) = √
2 Fre

[√
κ0
0√
π/2

u

]
, (25)

where “Fre” is a short notation for the Inverse Error Function, Fre = Erf−1.
The second relation in (23), together with the metric function F(ψ), give the

ψ−representation of the metric, i.e.

ds2 = e−ψ2

[
δAB dxAdxB − 2

e
1
2ψ2

√
κ0
o

dψdv

]
,
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while the first relation (in (23)) leads to the concrete expressions of the non-vanishing
curvature and energy–momentum tensor components

RA3B3 = RA4B4 = −RA3B4 = 1

2
(κ0
0) eψ2

δAB ,

T44 = T33 = −T34 = 
0 eψ2
.

4.2 The Progressive Plane Wave Solution

We have finally arrived at the case we had in mind when we had commenced the paper:
what the planar symmetric spacetime would look like if it was generated and geometro-
dynamically sustained by a somewhat realistic wave, of Nambu–Goldstone bosons, of
amplitude φ0 and pulsation ω, sent vertically straight-away.

Since, roughly speaking, any physically acceptable function of variable χ = ct − z, i.e.
χ = √

2u, can be represented by the Fourier transformation

�(χ) =
∫
R+

[
C+(k) cos(kχ) + C−(k) sin(kχ)

]
dk ,

we consider, for simplicity — as in the studies of alternative currents — just the sine-
harmonic channel of pulsation ω = ck, so that the simplest wave-form reads

φ(χ) = φ0 sin(kχ) ,

where, in international units, k is in (m)−1 and the amplitude φ0 is measured in [J/m]1/2.
In realistic situations, talking about macroscopic waves of particles, the “single” amplitude
φ0 will not be measured directly, for experimentally (coming from quantum physics) it is
not an observable, unlike the energy, the momentum or even the averaged Umov–Poynting
intensity. Therefore, some care is needed when one matches φ2

0 to the actual intensity
3[φ],
in order to get the measurable value 
3(0) of the power transported through the unit area
of the {z = 0}−plane, at the initial moment t = 0. Concretely, with the expression of the
energy density

w = 1

2

[
(φ,4 )2 + (φ,3 )2

]
= (kφ0)

2 cos2(kχ) ,

the locally measured intensity (not the integrated one) reads


3 = cw = c (kφ0)
2 cos2(kχ) ,

from where it yields the exact relation we were talking about, i.e.

φ0 = 1

ω

√
c 
3(0) . (26)

As it can be checked, all these relations are consistent with respect to the System of Interna-
tional Units. It is now that we may measurably couple the gravity, by the Einstein’s constant
κ0 = (8πGN)/c4, in m/J , into the concrete form of the Essential Equation

d2F

dχ2
+ κ0

2
(kφ0)

2 cos2(kχ)F = 0 .

Using (26), it does simply become the particular Mathieu Equation [14]

d2F

dχ2
+ κ0
3(0)

2c
cos2

(ω

c
χ

)
F = 0 , (27)
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wherein, contrary to the naive expectation of a k2 = ω2/c2 dependence of the Mathieu’s
coefficient, one does only have the spectral flat coefficient

K2 = κ0
3(0)

2c
= 4πGN

c5

3(0) , (28)

measured in (m)−2. As it is known from the physics of gravitational collapse, the quantity
PN = 2c5/GN has the concrete dimension of power and does actually represent (classi-
cally) the maximum gravitationally fully radiated power in a perfect collapse. Moreover,
since at the Planck level one can define the corresponding power as the energy radiated by
a Planck-mass particle once it vanishes in just a Planck-time duration, it yields the relation

P∗ = MP c2

�P /c
= M2

P c4

�
= c5

GN

.

Thus, albeit the factor of “2” which is related to the Schwarzschild term 2GNMP /c2 in the
metric, in order to get a Planck-sized Black-Hole, the tremendous PN ∼ 1052(W) value has
a surprisingly strong quantum support.

In terms of the dimensionless variable α = ωχ/c and parameters

q = πc2

ω2


3(0)

P∗
≡ πc

P∗
φ2
0 , a = 2q , (29)

the Eq. (27) turns into the canonical form of the Mathieu equation [13]

d2F

dα2
+ 2q [1 + cos(2α)]F = 0 , (30)

whose solutions,

F = {MathieuC [a, q, α] , MathieuS [a, q, α]} ,

are of the form F(α) ∼ eiγ αu(α), where u(α) is a periodic function, while the the Mathieu
Characteristic Exponent (MCE), γ , may be real or imaginary, depending on the values of the
model parameters [15]. In particular, looking for the solution as the complex Fourier series

F(α) =
∞∑

n=−∞
Fn ei(n+γ )α ,

we get the following recurrent equation for the Fourier amplitudes,

Fn + ζn

[
Fn+2 + Fn−2

] = 0 ,

where
ζn = q

2q − (γ + n)2
.

For n = 1, we impose the vanishing of the determinant associated to the homogeneous
system for the unknowns {F1, F0 , F−1}, i.e.∣∣∣∣∣∣

1 0 ζ1
0 1 0

ζ−1 0 1

∣∣∣∣∣∣ = 0

which leads to the following relation between the parameter q and the MCE γ ,

q2 =
[
2q − (γ − 1)2

] [
2q − (γ + 1)2

]
.

Denoting γ 2 = σ , we get a second degree equation, with the solutions

σ = 2q + 1 ± √
q(q + 8) .
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One may notice that, regarding the lower branch, for

2q + 1 <
√

q(q + 8) i.e. (q − 1)

(
q − 1

3

)
< 0 ,

the MCE, γ , gets purely imaginary, pointing out the first range of exponentially growing
instabilities

1

3
< q < 1 . (31)

On the other hand, the upper branch, i.e.

γ 2 = 2q + 1 + √
q(q + 8) ,

is characterizing the stable periodic solutions, since q is always positive.

5 Conclusions

The present paper deals with the Einstein–Nambu–Goldstone (ENG) system of equations in
the SO(3, 1)-invariant formulation. Besides explicit calculations on the geometro-dynamics
of the system, some connections between geometry and physics are also pointed out. The
main attention has been given to the progressive essential equation coming from the ENG
system written in terms of null-coordinates and some of its exact solutions were derived.

It has turned out that, if the effective intensity 
0, measured in W/m2 into the actually
generated (curved) spacetime, is constant – for the Nambu–Goldstone radiation speeding
upwards – then the required dimensionless field distribution, with respect to the null-
coordinates “u”, should be (25), i.e. the effective Nambu–Goldstone field, measured in
(J/m)1/2, is

φ(z, t) = 2√
κ0

Fre

[√
κ0
0

π
(ct − z)

]
,

leading, as an exact solution, to the metric function

F(z, t) = exp

⎧⎨
⎩−

[
Fre

(√
κ0
0

π
(ct − z)

)]2
⎫⎬
⎭

and obviously to the respective spacetime metric written in terms of the usual Minkowski
coordinates

ds2 = exp

{
−2 Fre2

[√
κ0
0

π
(ct − z)

]}
δAB dxAdxB + (dz)2 − c2(dt)2 .

Last but not least, the progressive plane wave solution has been expressed in terms of the
Mathieu’s functions of parameters (29). As stated in the general theory, for q � 1, the char-
acteristic values an, coming from the resonance condition an ≈ n2, yield periodic solutions
and separate the regions of stability. In the case under consideration, one has the relation
q = a/2 and the stable regions, in the stability chart, situated between the characteristic
curves an(q), become more and more narrow as q, i.e. 
3(0), is increasing. In the first band
of instability, (31), the imaginary part of the MCE comes into play, leading to the exponen-
tially growing behaviour of the oscillatory metric function F , solution to (27). Finally, in the
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first stability region, 0 < q < 1/3, at q = 1/8, which points out the gravitational resonant
pulsation

ωG = 2

c

√
2πGN
3(0)

c
= 2.5 × 10−10

√

3(0) (years)−1 ,

there is a strongly amplified mode of the scale function F .
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