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Abstract We present a scheme for bidirectional controlled quantum teleportation (BCQT)
via a five-qutrit entangled state as the quantum channel. In this scheme, two distant par-
ties, Alice and Bob, are not only senders but also receivers, and Alice wants to teleport
an unknown single-qutrit state to Bob, at the same time, Bob wishes to teleport another
arbitrary single-qutrit state, respectively. It is shown that, only if the two senders and the
controller collaborate with each other, the BCQT can be completed successfully.

Keywords Bidirectional controlled quantum teleportation · Five-qutrit entangled state ·
Generalized Bell state measurement

1 Introduction

Quantum entanglement plays a central role for some applications in quantum informa-
tion science [1]. Also high-dimensional entanglement is very important physical resource
in quantum information processing. With the realization of preparing a high-dimensional
quantum state [2], during the last few years, the high-dimensional aspects of various top-
ics in a quantum information system have been proposed, such as superdense coding [3],
quantum key distribution [4], and quantum teleportation [5–16], and so on. Compared
with qubits, high-dimensional quantum systems are better suited for certain purposes. For
instance, Braß and Macchiavello [17] showed that, in the presence of noise, qudit schemes
for quantum cryptography are more secure than protocols using qubit states. Klimov et al.
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[18] pointed out that the quantum computation with qutrits instead of a qubit is the expo-
nential increase of the available Hilbert space with the same amount of physical resources.
Therefore, extending the local implementation of the nonlocal quantum operation to a
high-dimensional system is important.

As is known to all, quantum teleportation, proposed by Bennett et al [19] is one of
the most important aspects of quantum information science. Since then, teleportation has
always interested a lot of researchers in both theoretical and experimental respects [20–38].
Recently, Zha et al. [39] presented the original bidirectional controlled quantum teleporta-
tion (BCQT) scheme. In their scheme, two users can simultaneously exchange their single
qubit states. Since then, several different works for BCQT have been proposed by using dif-
ferent kinds of entangled states as the quantum channel [40–48]. However, one can notice
easily that all of above schemes for BCQT [39–48] have dealt with problem by using a qubit
system. We find that so far no scheme has been reported for BCQT with high-dimensional
systems. In this paper, we propose a new scheme for BCQT with three-dimensional system.
In this scheme, two distant parties, Alice and Bob, are not only senders but also receivers,
and Alice wants to transmit an unknown state of single qutrit to Bob, and at the same time
Bob wishes to transmit another unknown state of single qutrit to Alice. It is shown that, only
if the two users and the controller collaborate with each other, the BCQT can be completed
successfully.

2 Generalized Bell Basis and Five-qutrit Entangled Quantum Channel

Let us first review the generalized Bell basis (GBB). The GBB of the Hilbert space of two
particles with three dimensions is [10]

|�nm〉 = �je
2πijn|j〉 ⊗ |j + m mod 3〉/√3, (1)

where n, m, j = 0, 1, 2. More explicitly

|�00〉 = 1√
3
(|00〉 + |11〉 + |22〉),

|�10〉 = 1√
3
(|00〉 + e2πi/3|11〉 + e4πi/3|22〉),

|�20〉 = 1√
3
(|00〉 + e4πi/3|11〉 + e2πi/3|22〉),

|�01〉 = 1√
3
(|01〉 + |12〉 + |20〉),

|�11〉 = 1√
3
(|01〉 + e2πi/3|12〉 + e4πi/3|20〉),

|�21〉 = 1√
3
(|01〉 + e4πi/3|12〉 + e2πi/3|20〉),

|�02〉 = 1√
3
(|02〉 + |10〉 + |21〉),

|�12〉 = 1√
3
(|02〉 + e2πi/3|10〉 + e4πi/3|21〉),

|�22〉 = 1√
3
(|02〉 + e4πi/3|10〉 + e2πi/3|21〉). (2)



Int J Theor Phys (2018) 57:2233–2240 2235

Through simple calculation, it can be shown that the single-body operation

U00 =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ ,

U10 =
⎛
⎝

1 0 0
0 e2πi/3 0
0 0 e4πi/3

⎞
⎠ ,

U20 =
⎛
⎝

1 0 0
0 e4πi/3 0
0 0 e2πi/3

⎞
⎠ ,

U01 =
⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ ,

U11 =
⎛
⎝

0 0 e4πi/3

1 0 0
0 e2πi/3 0

⎞
⎠ ,

U21 =
⎛
⎝

0 0 e2πi/3

1 0 0
0 e4πi/3 0

⎞
⎠ ,

U02 =
⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ ,

U12 =
⎛
⎝

0 e2πi/3 0
0 0 e4πi/3

1 0 0

⎞
⎠ ,

U22 =
⎛
⎝

0 e4πi/3 0
0 0 e2πi/3

1 0 0

⎞
⎠ (3)

will transform |�00〉 into the corresponding states in Eq. (1), respectively,

Unm|�00〉 = |�nm〉. (4)

In order to realize the BCQT with three-dimensional system, now we prepare a five-qutrit
quantum channel composed of the direct product of a three-qutrit entangled state and a
two-qutrit pair. Supposing a state preparer Victor has a two-qutrit pair and a three-qutrit
entangled state, which are given by

|r1〉12 = 1√
3
(|00〉 + |11〉 + |22〉)12, (5)

and

|r2〉345 = 1√
3
(|000〉 + |111〉 + |222〉)345, (6)
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The direct product state |R〉 can be described as
|R〉 = |r1〉12 ⊗ |r2〉345

= 1

3
(|00000〉 + |00111〉 + |00222〉 + |11000〉 + |11111〉

+|11222〉 + |22000〉 + |22111〉 + |22222〉)12345. (7)

To achieve the five-qutrit entangled quantum channel, Victor can perform three three-
dimensional C-NOT gates C25, C35 and C45 on his qutrits 2, 3, 4, 5 successively. Here
operation Cij acts on a pair of qutrits i and j in the following manner [4].

Cij |k, l〉ij = |k, k + l〉ij , (8)

and Cij denotes that i as control qutrit and j as target one. After that, the direct product state
|R〉 (see Eq. (7)) will become a five-qutrit entangled state, which is given by

|Q〉 = 1

3
(|00000〉 + |00110〉 + |00220〉 + |11001〉 + |11111〉

+|11221〉 + |22002〉 + |22112〉 + |22222〉)12345. (9)

To help users Alice, Bob and controller Charlie complete the BCQT. Victor distributes the
qutrits 1 and 3 to Alice, qutrits 2 and 4 to Bob, and qutrit 5 to Charlie, respectively. Thus,
the five-qutrit entangled channel shared by Alice, Bob and Charlie has been achieved.

3 The BCQT with Three-dimensional Systems

Supposed that Alice has an unknown single-qutrit state

|p0〉A = (α0|0〉 + α1|1〉 + α2|2〉)A, (10)

and that Bob has an unknown single-qutrit state

|q0〉B = (β0|0〉 + β1|1〉 + β2|2〉)B, (11)

where α0, α1, α2, β0, β1 and β2 are complex numbers, and

|α0|2 + |α1|2 + |α2|2 = 1,

|β0|2 + |β1|2 + |β2|2 = 1. (12)

Now Alice wants to teleport the state of the qutrit A to Bob, and at the same time, Bob wants
to teleport the state of the qutrit B to Alice. As described above in section 2, the quantum
channel shared by Alice, Bob and controller Charlie is the state |Q〉 (see Eq. (9)), and qutrits
1 and 3 belong to Alice, qutrits 2 and 4 to Bob, and qutrit 5 to Charlie. Thus the compound
state of total system may be expressed as

|P 〉 = |p0〉A ⊗ |q0〉B ⊗ |Q〉. (13)

In order to complete the BCQT, Alice and Bob should employ their own measurement.
Alice has to perform generalized Bell state measurement (GBSM) on her qutrit pair (A, 1)
by using the GBB |�nm〉 (see Eq. (11)). At the same time, Bob should make GBSM on
his qutrits B and 2. After those measurements, Alice (Bob) should inform Bob (Alice) and
Charlie of the measurement result by classical channel. If Charlie like to help Alice and
Bob with the BCQT, he can perform a single-qutrit measurement on his qutrit 5 under the
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projective measurement basis (PMB) {|�k〉}(k = 0, 1, 2), which is given by

|�0〉 = H(3)|0〉 = 1√
3
(|0〉 + |1〉 + |2〉),

|�1〉 = H(3)|1〉 = 1√
3
(|0〉 + e2πi/3|1〉 + e4πi/3|2〉),

|�2〉 = H(3)|2〉 = 1√
3
(|0〉 + e4πi/3|1〉 + e2πi/3|2〉), (14)

where H(3) is the Hadamard operator in three dimensional Hilbert space. After that, Charlie
should inform Alice and Bob of his outcome of measurement. Then, Alice and Bob can
make the suitable unitary operations on the qutrits at hand, the BCQT can be successfully
completed.

Now we discuss this scheme in more detail below. For example, without loss of general-
ity, we assume that the result of Alice’s GBSM is |�00〉A1, the state of qutrits B, 2, 3, 4, 5
will collapse into

|P1〉 =A1 〈�00|P 〉 = 1

3
√
3
(α0β0|00000〉 + α0β0|00110〉 + α0β0|00220〉

+α0β1|10000〉 + α0β1|10110〉 + α0β1|10220〉
+α0β2|20000〉 + α0β2|20110〉 + α0β2|20220〉
+α1β0|01001〉 + α1β0|01111〉 + α1β0|01221〉
+α1β1|11001〉 + α1β1|11111〉 + α1β1|11221〉
+α1β2|21001〉 + α1β2|21111〉 + α1β2|21221〉
+α2β0|02002〉 + α2β0|02112〉 + α2β0|02222〉
+α2β1|12002〉 + α2β1|12112〉 + α2β1|12222〉
+α2β2|22002〉 + α2β2|22112〉 + α2β2|22222〉)B2345. (15)

Meanwhile, Bob performs GBSM on his qutrits B and 4 under the GBB (1). After that, the
state (15) can be rewritten as

|P1〉 = A1〈�00|P 〉
= 1

9
√
3
(|�00〉B4|q0〉3 + |�10〉B4|q1〉3 + |�20〉B4|q2〉3

+|�01〉B4|q3〉3 + |�11〉B4|q4〉3 + |�21〉B4|q5〉3
+|�02〉B4|q6〉3 + |�12〉B4|q7〉3 + |�22〉B4|q8〉3)|s〉25, (16)

where

|s〉25 = |p0〉2|�0〉5 + |p1〉2|�1〉5 + |p2〉2|�2〉5, (17)

and

|p0〉 = α0|0〉 + α1|1〉 + α2|2〉,
|p1〉 = α0|0〉 + α1e

4πi/3|1〉 + α2e
2πi/3|2〉,

|p2〉 = α0|0〉 + α1e
2πi/3|1〉 + α2e

4πi/3|2〉, (18)
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and

|q0〉 = β0|0〉 + β1|1〉 + β2|2〉,
|q1〉 = β0|0〉 + β1e

4πi/3|1〉 + β2e
2πi/3|2〉,

|q2〉 = β0|0〉 + β1e
2πi/3|1〉 + β2e

4πi/3|2〉,
|q3〉 = β0|1〉 + β1|2〉 + β2|0〉,
|q4〉 = β0|1〉 + β1e

4πi/3|2〉 + β2e
2πi/3|0〉,

|q5〉 = β0|1〉 + β1e
2πi/3|2〉 + β2e

4πi/3|0〉,
|q6〉 = β0|2〉 + β1|0〉 + β2|1〉,
|q7〉 = β0|2〉 + β1e

4πi/3|0〉 + β2e
2πi/3|1〉,

|q8〉 = β0|2〉 + β1e
2πi/3|0〉 + β2e

4πi/3|1〉, (19)

and |�0〉, |�1〉 and |�2〉 are still in the PMB {|�k〉}(k = 0, 1, 2) (see Eq. (14)). From
Eqs. (16)–(19), if Bob’s measurement result is |�21〉B4, the state of qutrits 2, 3, 5 can be
expressed as

|w〉235 = 1

9
√
3
|q5〉3(|p0〉2|�0〉5 + |p1〉2|�1〉5 + |p2〉2|�2〉5). (20)

Then Alice (Bob) tells the measurement result to Bob (Alice) and Charlie by classical chan-
nel. If Charlie would like to help them with the BCQT, he can measure his qutrit 5 under
the basis {|�k〉}(k = 0, 1, 2) and transfer the measurement outcome to Alice and Bob by
classical channel. From Eq. (20), it is clear that, if the result of Charlie is |�0〉, or |�1〉, or
|�2〉, the qutrits 2 and 3 will collapse into the state

|η〉 = 1

9
√
3

(α0|0〉 + α1|1〉 + α2|2〉)2
⊗ (β0|1〉 + β1e

2πi/3|2〉 + β2e
4πi/3|0〉)3, (21)

or

|η′〉 = 1

9
√
3
(α0|0〉 + α1e

4πi/3|1〉 + α2e
2πi/3|2〉)2

⊗(β0|1〉 + β1e
2πi/3|2〉 + β2e

4πi/3|0〉)3, (22)

or

|η′′〉 = 1

9
√
3
(α0|0〉 + α1e

2πi/3|1〉 + α2e
4πi/3|2〉)2

⊗(β0|1〉 + β1e
2πi/3|2〉 + β2e

4πi/3|0〉)3. (23)

Then Bob and Alice can employ appropriate unitary operations (U00)2(U22)3, or
(U10)2(U22)1, or (U20)2(U22)3 on their own qutrits 2 and 3, respectively. After these oper-
ations, Alice and Bob can recover the desired states |q0〉 and |p0〉, respectively. That
is, in this situation, the BCQT has been completed successfully. The relation of GBSM
results |�00〉A1 performed by Alice, |�nm〉(n, m = 0, 1, 2) by Bob, measurement outcomes
|�k〉(k = 0, 1, 2) of Charlie and the unitary transformations UA performed by Alice and
UB by Bob are given in Table 1. If Alice’s measurement result is any one of other 8 cases
(see Eqs. (1) and (2)), Bob and Charlie can apply the same method as above, then Alice and
Bob can choose suitable unitary operations on their own qutrits respectively, after that, their
desired states can be reconstructed successfully.
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Table 1 The relation ofGBSMresults |�00〉A1 performedbyAlice, |�nm〉(n,m = 0, 1, 2) byBob,measurement
outcomes |�k〉(k = 0, 1, 2) of Charlie and the unitary transformations UA performed by Alice and UB by Bob

MA MB MC |R〉23 UA UB

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q0〉3 U00 U00

|�00〉A1 |�00〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q0〉3 U10 U00

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q0〉3 U20 U00

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q1〉3 U00 U10

|�00〉A1 |�10〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q1〉3 U10 U10

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q1〉3 U20 U10

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q2〉3 U00 U20

|�00〉A1 |�20〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q2〉3 U10 U20

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q2〉3 U20 U20

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q3〉3 U00 U02

|�00〉A1 |�01〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q3〉3 U10 U02

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q3〉3 U20 U02

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q4〉3 U00 U12

|�00〉A1 |�11〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q4〉3 U10 U12

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q4〉3 U20 U12

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q5〉3 U00 U22

|�00〉A1 |�21〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q5〉3 U10 U22

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q5〉3 U20 U22

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q6〉3 U00 U01

|�00〉A1 |�02〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q6〉3 U10 U01

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q6〉3 U20 U01

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q7〉3 U00 U11

|�00〉A1 |�12〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q7〉3 U10 U11

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q7〉3 U20 U11

|�0〉5 1
9
√
3
|p0〉2 ⊗ |q8〉3 U00 U21

|�00〉A1 |�22〉B4 |�1〉5 1
9
√
3
|p1〉2 ⊗ |q8〉3 U10 U21

|�2〉5 1
9
√
3
|p2〉2 ⊗ |q8〉3 U20 U21

4 Conclusion

In conclusion, we have presented a new scheme for bidirectional controlled teleportation
in three-dimension system. In this scheme, Alice and Bob are not only senders but also
receivers, and Alice wishes to teleport an unknown single-qutrit state to Bob, at the same
time, Bob wants to teleport an another unknown single-qutrit state at distant Alice’s site
under the control of the supervisor Charlie. In the scheme, a five-qutrit entangled state is
considered as the quantum channel. Firstly, Alice should preform a GBSM on her qutrits,
meanwhile, Bob must employ a GBSM on his qutrits. Then Charlie can make a single-qutrit
measurement on his qutrit. After that, Alice and Bob can perform the respective suitable
unitary operations on own qutrits to achieve the BCQT.
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