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Abstract Using dressed state method, we cleverly solve the dynamics of atom-field inter-
action in the process of two-photon absorption and emission between atomic levels. Here
we suppose that the atom is initially in the ground state and the optical field is initially
in Fock state, coherent state or thermal state, respectively. The properties of the atom,
including the population in excited state and ground state, the atom inversion, and the
properties for optical field, including the photon number distribution, the mean photon
number, the second-order correlation function and the Wigner function, are discussed in
detail. We derive their analytical expressions and then make numerical analysis for them.
In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscil-
lation, revival and collapse, are also exhibit in our considered model. Besides, some novel
nonclassical states are generated.

Keywords Two-photon absorption and emission · Jaynes-Cummings model · Dressed
state method · Atomic inversion · Wigner function

1 Introduction

Involving the atom-field interaction, one of the simplest and important problems, the cou-
pling of a two-level atom with a single mode of the electromagnetic field, has aroused
widespread interests of researchers for many years [1–9]. Because the two atomic levels
are resonant or nearly resonant with the driving field (all other levels are highly detuned),

Project supported by the National Natural Science Foundation of China (No. 11665013).

� Xue-xiang Xu
xuxuexiang2005@163.com

1 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China

2 College of Physics Communication Electronics, Jiangxi Normal University, Nanchang 330022,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-018-3741-3&domain=pdf
mailto:xuxuexiang2005@163.com


2168 Int J Theor Phys (2018) 57:2167–2191

we can adopt a two-level atom description for the atom to deal with these problems [10–
12]. Under certain realistic approximations, some problem can be reduced to a solvable
form. Furthermore, some essential features will be extracted in the atom-field interaction.
Representative solvable example is the Jaynes-Cummings model whose effective Hamilto-
nian is described by �η

(
aσ+ + a†σ−

)
, where a(a†) is the annihilation (creation) operator

for the optical field, σ+ (σ−) is the raising (lowering) operator of the atom, and η is the
coupling strengthen parameter [13, 14]. Some interesting phenomena for the atom, such
as quantum rabi oscillation and revival and collapse [15, 16], will exhibit after the atom-
field interaction of the Jaynes-Cummings model. Moreover, some novel quantum states for
optical fields will be prepared, which will satisfy the need of quantum state engineering
and quantum technology [17]. Besides, there are many possible extensions of the original
Jaynes-Cummings model involving various types of alternative interactions. For instance,
some models, such as two-photon transitions, multimode and multilevel models, Raman
coupled models, two-channel models etc. are involving among them [18–20].

In this paper, we consider a model of two-photon absorption and emission between two
atomic levels, whose Hamiltonian is described effectively by �η

(
a2σ+ + a†2σ−

)
[1, 4].

In this process, the atoms in the excited state |e〉 make a transition to the lower level |g〉
by emitting two photons of frequency ν via a virtual level, where the phenomena hap-
pen at exact resonance (ωeg = 2ν) and a single-mode two-photon laser can be generated.
Fortunately, this is also an exact solvable model. Following the routines used in the Jaynes-
Cummings model, we make a detailed investigation for our considered model. Our model
will exhibit some similar results obtained from Jaynes-Cummings model, with proper para-
meter adjustment. One can resort to many different but equivalent methods to solve for the
evolution of the atom-field system. These methods are often based on the solutions of the
probability amplitudes, the Heisenberg operators, and the unitary time-evolution operator
[21]. If the evolution of the system is unitary, the unitary time-evolution operator method is
perhaps the simplest one among these methods. Furthermore, the eigenstates for our consid-
ered Hamiltonian are easy to find, which can help us to obtain the unitary evolution results.
These eigenstates are called the “dressed” states [22]. Therefore, the method we used here
is called the dressed-state method. This is appropriate to our present system.

The paper is organized as follows. In Section 2, the considered theoretical model and
the dressed-state method to solve this model are introduced. In Section 3, we make a brief
review of the related properties for the atom and the field. In Sections 4, 5 and 6, we study
the dynamical behavior for the atom and the field under the three cases of initial conditions,
i.e., assuming that the atom is initially in the ground state and the field is initially in the Fock
state, the coherent state, and the thermal state, respectively. For every properties, we give
their explicit expressions and make numerical simulations. Conclusions are summarized in
the last section.

2 Theoretical Model and Dressed State Method

The effective Hamiltonian representing two-photon absorption and emission between two-
level atom can be given by

Heff = �η
(
a2σ+ + a†2σ−

)
, (1)
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where we think it as a resonant two-photon extension of the Jaynes-Cummings model in
view of their similarity. In terms of the field number states, the interaction term in Heff

causes only transitions of the types

|e, n〉 ↔ |g, n + 2〉 . (2)

The production states |e, n〉, |g, n + 2〉 (n ≥ 0) are sometimes referred as the “bare” states,
who are product states of the unperturbed atom and field. For a fixed n, the dynamics is
completely confined to the two-dimensional Hilbert space H(n) (n ≥ 0, also n + 2 ≥ 2) of
product states, i.e. |e, n〉, |g, n + 2〉. Obviously, |e, n〉 and |g, n + 2〉 are orthogonal. Using
this basis in the 2 × 2 subspace, we obtain the matrix representation of Heff ,

Heff =
(

0 �η
√

(n + 2) (n + 1)
�η

√
(n + 2) (n + 1) 0

)
. (3)

This matrix is “self-contained” since the dynamics connects only those states for which the
photon number changes by ±2. For the cases |g, 0〉 or |g, 1〉, we find that Heff |g, 0〉 = 0
and Heff |g, 1〉 = 0, which are the special point in our considered model.

For a given n, the energy eigenvalues of H
(n)
eff are as follows

E
(n)
+ = η�

√
(n + 1) (n + 2), E

(n)
− = −η�

√
(n + 1) (n + 2). (4)

The eigenstates
∣
∣∣ψ(n)

+
〉
(
∣
∣∣ψ(n)

−
〉
) associated with the energy eigenvalues E

(n)
+ (E(n)

− ) ,

satisfying the following eigen equation

Heff

∣∣
∣ψ(n)

+
〉
= E

(n)
+

∣∣
∣ψ(n)

+
〉
, Heff

∣∣
∣ψ(n)

−
〉
= E

(n)
−

∣∣
∣ψ(n)

−
〉
, (5)

are given by in the dressed state basis
∣∣
∣ψ(n)

+
〉

= 1√
2

|e, n〉 + 1√
2

|g, n + 2〉 ,

∣∣
∣ψ(n)

−
〉

= 1√
2

|e, n〉 − 1√
2

|g, n + 2〉 , (6)

which can be recast back into the more familiar “bare” state basis

|e, n〉 = 1√
2

∣
∣∣ψ(n)

+
〉
+ 1√

2

∣
∣∣ψ(n)

−
〉
,

|g, n + 2〉 = 1√
2

∣
∣∣ψ(n)

+
〉
− 1√

2

∣
∣∣ψ(n)

−
〉
. (7)

The variation of the dressed energies as a function of η is represented in Fig. 1. The
dressed energies (E(n)

+ and E
(n)
− ) are the linear functions of the interaction parameter η

with the respective slope ±�
√

(n + 1) (n + 2) for different n. For no interaction η = 0, the
energy E

(n)
+ = E

(n)
− = 0.

Using the dressed-state method, the exact solution to the atom-field interaction problem
can be obtained cleverly. This process has the following steps: (1) Expanding the initial
density operator into the bare-state form and then changing it into the dressed-state form; (2)
Operating the unitary operator (related to the effective Hamiltonian) on the initial density
operator and obtaining the evoluted density operator in the dressed-state form; (3) Recasting
the evoluted density operator back into the bare-state form and obtaining the total atom-field
density operator at arbitrary time.
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Fig. 1 (Color online) Dressed state energies as a function of the atom-field interaction parameter η. E
(n)
+

and E
(n)
− are represented as black lines and red lines with different n = 1, 2, 3, 4

3 Properties for the Atom and the Optical Field

The total atom-field density operator ρAF (t) at arbitrary time can be obtained after making
the unitary operator exp

(− i
�
Heff t

)
on the initial density operator ρAF (0), that is

ρAF (t) = exp

(
− i

�
Heff t

)
ρAF (0) exp

(
i

�
Heff t

)
. (8)

Hence, all the physically relevant quantities to the quantized field and the atom can be
obtained from the density operator ρAF (t). In other words, this total density operator will
give us a complete description of our considered dynamical behavior.

3.1 For Atom

The reduced density operator of the atom is found by tracing over the field state

ρA (t) = TrF ρAF (t) . (9)

From (9), we can obtain the expressions

Pe (t) = 〈e| ρA (t) |e〉 , Pg = 〈g| ρA (t) |g〉 , (10)

which represent the probabilities (or populations) that, at time t , the atom is in levels |e〉 and
|g〉, respectively. Another important quantity is the atomic inversion, related to Pe (t) and
Pg (t) by the expression

W (t) = Pe (t) − Pg (t) , (11)

where it is satisfied the condition Pe (t) + Pg (t) = 1.

3.2 For Field

Tracing over the atomic states, we obtain the reduced density operator of the field

ρF (t) = TrAρAF (t) . (12)

In order to exhibit the characteristic of the evoluted optical fields, we discuss their proper-
ties, including the photon number distribution, the mean photon number, the second-order
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correlation function and theWigner function in this paper. Next wemake a brief introduction
for these properties.

3.2.1 Photon Number Distribution

The probability pnp (t), that there are np photons in the optical field at time t , is given as

Pnp (t) = 〈
np

∣
∣ ρF (t)

∣
∣np

〉
, (13)

i.e. photon number distribution, which must satisfy
∑∞

np=0 pnp (t) = 1.

3.2.2 Mean Photon Number and Second-Order Correlation Function

The mean photon number and second-order correlation function of the optical field are
given by

〈n〉 =
〈
a†a

〉
(14)

and

g(2) =
〈
a†2a2

〉

〈
a†a

〉2 , (15)

respectively [23]. The effect is antibunching when g(2) < 1 (strictly nonclassical), and
bunching (superbunching) if 1 � g(2) (0) � 2 (g(2) (0) > 2). Obviously, g(2) = 1 (Pois-
sonian statistics) for a coherent state |α〉; g(2) = 2 for a thermal state; and g(2) = 0 when
n = 0, 1 and g(2) = 1 − 1/n when n ≥ 2 for Fock state |n〉.

3.2.3 Wigner Function

In order to obtain a phase space distribution for a quantum particle, Wigner proposed firstly
a function (i.e. Wigner function) in 1932, which is resembling as closely as possible the
probability distribution of classical statistical physics [24]. The Wigner function of the
optical field ρF at the point in phase space is

WF (ξ) = 2

π

〈
: exp

(
−2

(
a† − ξ∗) (a − ξ)

)
:
〉
, (16)

whose complex-number coordinate is ξ = (x + iy) /
√
2. The integral of the Wigner func-

tion over phase space is equal to 1. Moreover, the Wigner function can take negative
values in regions of the phase space, which is a signature of non-classical behavior for the
corresponding state.

It is well known that the density operator for any quantum state can be expressed the
form in Fock state, i.e. ρF = ∑

n,m pnm |n〉 〈m| with pnm = 〈n| ρF |m〉. Hence, in order to
calculate the Wigner function for any quantum state, we firstly derive the Wigner function
for the operator |n〉 〈m|, whose general expression can be written as

WF|n〉〈m| (ξ) = 2

π
〈m| : exp

(
−2

(
a† − ξ∗) (a − ξ)

)
: |n〉 (17)

The detailed derivation process is in the Appendix.
In fact, the situation is considerably simpler if initially the atom is in the excited state |e〉.

However, in the next three sections of this paper, we assume that the atom is initially in the
ground state |g〉. Moreover, we assume that the initial optical field is in the photon number
state, the coherent state, and the thermal state, respectively.
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4 Dynamics Evolution for Initial Case I: |ψ (0)〉 = |g, n〉
Assuming the atom initially in the ground state |g〉 and the field initially in a Fock state |n〉,
i.e.

|ψ (0)〉 = |g, n〉 , (18)

then the state vector for times t > 0 is just given by

|ψ (t)〉 = exp

(
− i

�
Heff t

)
|g, n〉 . (19)

For the cases with the initial state |ψ (0)〉 = |g, 0〉 or |ψ (0)〉 = |g, 1〉, we have
Heff |g, 0〉 = 0, Heff |g, 1〉 = 0, (20)

i.e. the eigenvalue in these cases is zero, and then

|ψ (t)〉|g,0〉 = exp

(
− i

�
Heff t

)
|g, 0〉 = |g, 0〉 ,

|ψ (t)〉|g,1〉 = exp

(
− i

�
Heff t

)
|g, 1〉 = |g, 1〉 , (21)

leading to

ρAF (t) |n=0 = ρAF (0) |n=0 = |g, 0〉 〈g, 0| ,
ρAF (t) |n=1 = ρAF (0) |n=1 = |g, 1〉 〈g, 1| . (22)

For cases n ≥ 2, noticing (4), (5) and (6), we have

|ψ (t)〉 = e−i
√

n(n−1)ηt

√
2

∣
∣∣ψ(n−2)

+
〉
− ei

√
n(n−1)ηt

√
2

∣
∣∣ψ(n−2)

−
〉
. (23)

After recasting back into the more familiar “bare” state basis by simplify substituting∣
∣∣ψ(n−2)

±
〉
from (6), we have

|ψ (t)〉 = −i sin(
√

n (n − 1)ηt) |e, n − 2〉 + cos(
√

n (n − 1)ηt) |g, n〉 , (24)

whose conjugate state is

〈ψ (t)| = i 〈e, n − 2| sin(√n (n − 1)ηt) + 〈g, n| cos(√n (n − 1)ηt). (25)

Thus the total density operator ρAF (t) |n≥2 = |ψ (t)〉 〈ψ (t)| can be further expressed as

ρAF (t) |n≥2 = sin2(
√

n (n−1)ηt) |e, n−2〉 〈e, n−2|+cos2(
√

n (n−1)ηt) |g, n〉 〈g, n|
+i

sin(2
√

n (n−1)ηt)

2
|g, n〉 〈e, n−2|−i

sin(2
√

n (n−1)ηt)

2
|e, n−2〉 〈g, n| . (26)

4.1 Properties of Atom for Initial Case I

The reduced density operator of the atom is found

ρA (t) |n≥2 = sin2(
√

n (n − 1)ηt) |e〉 〈e| + cos2(
√

n (n − 1)ηt) |g〉 〈g| , (27)

which leads to the populations of the excited and ground states,

Pe (t) |n≥2 = sin2(
√

n (n − 1)ηt), Pg (t) |n≥2 = cos2(
√

n (n − 1)ηt), (28)
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respectively, and satisfying Pe (t) + Pg (t) = 1. The atomic inversion is given by

W (t) |n≥2 = − cos(2
√

n (n − 1)ηt). (29)

Noticing for the cases n = 0 or n = 1, we alway have Pe (t) = 0, Pg (t) = 1, and W (t) =
−1. These are cases for the n-photon inversion. In Fig. 2, we plot the populations (Pe (t),
Pg (t)) and the atomic inversion W (t) as a function of the scaled time ηt for different initial
n. Obviously, they are all strictly periodic functions of the evolution time ηt with a quantum
Rabi frequency 2

√
n (n − 1) (different from that frequency 2

√
n in the Jaynes-Cummings

model) related to the different photon number n. The result shows that the behavior of the
atomic dynamics for a definite number photons is periodic and regular in our present model.

4.2 Properties of Field for Initial Case I

For cases n = 0 or n = 1, we have ρF (t) |n=0 = |0〉 〈0| and ρF (t) |n=1 = |1〉 〈1|, which is
independent of the evolution time. While for cases n ≥ 2, the density operator of the optical
field is

ρF (t) |n≥2 = sin2(
√

n (n − 1)ηt) |n − 2〉 〈n − 2| + cos2(
√

n (n − 1)ηt) |n〉 〈n| , (30)

which is an incoherent superposition state of |n − 2〉 〈n − 2| and |n〉 〈n| with certain ratio
depending on the evolution time.

4.2.1 Photon Number Distribution

The photon number distribution of the optical field evoluted from initial case I has the
following characteristics. If n = 0, then we have

P0 (t) = 1, Pnp (t) = 0(np ≥ 1). (31)

Similarly, if n = 1, then we have

P1 (t) = 1, Pnp (t) = 0(np = 0 and np ≥ 2). (32)

Obviously, if the field is initially in |0〉 or |1〉, it will remain in its original state forever.
But when n ≥ 2, we have

Pn−2 (t) = sin2(
√

n (n − 1)ηt), Pn (t) = cos2(
√

n (n − 1)ηt),

Pnp (t) = 0 (np 	= n − 2 and n). (33)

In Fig. 3, we plot Pnp versus np for different number n at different time ηt . For a given
initial Fock state |n〉 (n ≥ 2), it will evolve into two components (i.e., |n − 2〉 and |n〉) with
the certain ratios depending on the interaction.

4.2.2 Mean Photon Number and Second-Order Autocorrelation Function

For the evoluted optical field in this initial case, we have
〈
a†a

〉
|n=0 = 0,

〈
a†a

〉
|n=0 = 1,

〈
a†a

〉
|n≥2 = (n − 2) sin2(

√
n (n − 1)ηt) + n cos2(

√
n (n − 1)ηt), (34)



2174 Int J Theor Phys (2018) 57:2167–2191

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

t

P e
t

(a)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

t

P g
t

(b)

0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

t

W
t

(c)

Fig. 2 (Color online) (a) Population in the excited state Pe , (b) Population in the ground state Pg , and (c)
Atomic inversion W as a function of the time ηt , respectively, where atom is initially in the ground state
|g〉 and the field is initially in a number state |n〉, and n = 2, 3, 4 are corresponding to the black solid, red
dashed, and blue dotdashed line, respectively
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(b)
(a)

(c) t 0
t 0.25
t 3

Fig. 3 (Color online) Evolution of photon number distribution Pnp at time ηt = 0, 0.25, 3 when (a) n = 2,
(b) n = 3, (c) n = 4, respectively, where atom is initially in the ground state |g〉 and the field is initially in a
number state |n〉

and
〈
a†2a2

〉
|n=0 = 0,

〈
a†2a2

〉
|n=0 = 0,

〈
a†2a2

〉
|n≥2 = (n − 2) (n − 3) sin2(

√
n (n − 1)ηt) + n (n − 1) cos2(

√
n (n − 1)ηt).(35)

Obviously,
〈
a†a

〉
remains unchanged for n = 0, 1, but is periodic function of ηt when

n ≥ 2 (see Fig. 4a). In addition, for n = 0, 1, g(2) is still zero; but when n ≥ 2, g(2) is not
always equal to 1 − 1/n, but depends on n and ηt , as shown in Fig. 4b.

4.2.3 Wigner Function

The Wigner function of the Fock state |n〉 can be expressed as
WF (ξ) = 2

π
(−1)n Ln(4 |ξ |2) exp(−2 |ξ |2). (36)

It is a non-Gaussian function in the form because of the existence of the Lagurrel function,
except the vacuum state |0〉.

Using (17), we obtain the time evolution of the Wigner function in this case expressed as

WF (ξ, t) |n=0 = WF|0〉〈0| (ξ) , WF (ξ, t) |n=1 = WF|1〉〈1| (ξ) ,

WF (ξ, t) |n≥2 = sin2(
√

n (n − 1)ηt)WF|n−2〉〈n−2| (ξ) + cos2(
√

n (n − 1)ηt)WF|n〉〈n| (ξ) . (37)

As shown in Fig. 5, theWigner function is symmetrical in phase space and can take negative
values in some regions.
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Fig. 4 (Color online) (a) Mean photon number and (b) second-order correlation function g(2) of the optical
field as a function of the time ηt , where the field is initially in a number state |n〉, and n = 2, 3, 4 are
corresponding to the black, red, and blue line, respectively

5 Dynamics Evolution for Initial Case II: |ψ (0)〉 = |g, α〉
Assuming the atom initially in the ground state |g〉 and the field initially in a coherent state
|α〉. Since the coherent state can be expanded as |α〉 = ∑∞

n=0 Cn |n〉 with the coefficient

Cn = e−|α|2/2αn/
√

n!, then the initial state vector

|ψ (0)〉 =
∞∑

n=0

Cn |g, n〉 , (38)

will evolve into the state vector

|ψ (t)〉 =
∞∑

n=0

Cn exp

(
− i

�
Heff t

)
|g, n〉 , (39)
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Fig. 5 (Color online) Wigner functions as a function of ζ = x + iy (x, y ∈ [−3, 3]) for quantum states
ρF (t) |n=2 (row 1), ρF (t) |n=3 (row 2), and ρF (t) |n=4 (row 3) and different time scales ηt = 0 (column 1),
0.25 (column 2), and 10 (column 3), respectively

for times t > 0. Using the similar steps in above section, we have

|ψ (t)〉 = C0 |g, 0〉 + C1 |g, 1〉

+
∞∑

n=2

Cn[−i sin(
√

n (n−1)ηt) |e, n−2〉+cos(
√

n (n−1)ηt) |g, n〉], (40)

with its corresponding conjugate state

〈ψ (t)| = C∗
0 〈g, 0| + C∗

1 〈g, 1|

+
∞∑

m=2

C∗
m[i 〈e,m−2| sin(√m (m−1)ηt)+〈g, m| cos(√m(m−1)ηt)]. (41)
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Thus the total density operator ρAF (t) = |ψ (t)〉 〈ψ (t)| can be written as

ρAF (t) = +C0C
∗
0 |g, 0〉 〈g, 0| + C0C

∗
1 |g, 0〉 〈g, 1| + C1C

∗
0 |g, 1〉 〈g, 0| + C1C

∗
1 |g, 1〉 〈g, 1|

+i

∞∑

m=2

C∗
mC0 sin(

√
m (m−1)ηt) |g, 0〉 〈e,m−2| +

∞∑

m=2

C∗
mC0 cos(

√
m (m−1)ηt) |g, 0〉 〈g, m|

+i

∞∑

m=2

C∗
mC1 sin(

√
m (m−1)ηt) |g, 1〉 〈e,m−2| +

∞∑

m=2

C∗
mC1 cos(

√
m (m−1)ηt) |g, 1〉 〈g, m|

−i

∞∑

n=2

CnC
∗
0 sin(

√
n (n − 1)ηt) |e, n − 2〉 〈g, 0| +

∞∑

n=2

CnC
∗
0 cos(

√
n (n − 1)ηt) |g, n〉 〈g, 0|

−i

∞∑

n=2

CnC
∗
1 sin(

√
n (n − 1)ηt) |e, n − 2〉 〈g, 1| +

∞∑

n=2

CnC
∗
1 cos(

√
n (n − 1)ηt) |g, n〉 〈g, 1|

+
∞∑

n=2

∞∑

m=2

CnC
∗
m sin

(√
n (n − 1)ηt

)
sin

(√
m (m − 1)ηt

)
|e, n − 2〉 〈e,m − 2|

−i

∞∑

n=2

∞∑

m=2

CnC
∗
m sin

(√
n (n − 1)ηt

)
cos

(√
m (m − 1)ηt

)
|e, n − 2〉 〈g, m|

+i

∞∑

n=2

∞∑

m=2

CnC
∗
m cos

(√
n (n − 1)ηt

)
sin

(√
m (m − 1)ηt

)
|g, n〉 〈e,m − 2|

+
∞∑

n=2

∞∑

m=2

CnC
∗
m cos

(√
n (n − 1)ηt

)
cos

(√
m (m − 1)ηt

)
|g, n〉 〈g, m| . (42)

5.1 Properties of Atom for Initial Case II:

The reduced density operator of the atom is

ρA (t) =
(
|C0|2 + |C1|2

)
|g〉 〈g|

+iC∗
2C0 sin(

√
2ηt) |g〉 〈e| − iC2C

∗
0 sin(

√
2ηt) |e〉 〈g|

+iC∗
3C1 sin(

√
6ηt) |g〉 〈e| − iC3C

∗
1 sin(

√
6ηt) |e〉 〈g|

+
∞∑

n=2

|Cn|2 sin2
(√

n (n − 1)ηt
)

|e〉 〈e| +
∞∑

n=2

|Cn|2 cos2
(√

n (n − 1)ηt
)

|g〉 〈g|

−i

∞∑

n=2

Cn+2C
∗
n sin

(√
(n + 1) (n + 2)ηt

)
cos

(√
n (n − 1)ηt

)
|e〉 〈g|

+i

∞∑

n=2

CnC
∗
n+2 sin

(√
(n + 1) (n + 2)ηt

)
cos

(√
n (n − 1)ηt

)
|g〉 〈e| , (43)

leading to the populations of the excite and ground state

Pe (t) =
∞∑

n=2

|Cn|2 sin2(
√

n (n − 1)ηt),

Pg (t) = |C0|2 + |C1|2 +
∞∑

n=2

|Cn|2 cos2(
√

n (n − 1)ηt). (44)
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Here, we can verify that Pe (t) + Pg (t) = 1 and obtain the atom inversion

W (t) = −
∞∑

n=2

|Cn|2 cos(2
√

n (n − 1)ηt) − |C0|2 − |C1|2 . (45)

The result is just the sum of n-photon inversion weighted with the photon number distri-

bution of the initial coherent state. For convenience, we set Cn = C∗
n =

√
n̄n

n! e−n̄ for the

coherent state |α〉 with α = |α| eiθ = √
n̄eiθ (n̄ denotes the mean photon number and let

θ = 0 here) in our following simulation.
Plots of Pe (t), Pg (t), W (t) versus the scaled time ηt are shown in Fig. 6 for an initial

coherent state with different n̄. It is astonishing that their behaviors for an initial coherent
state are quite different from that for an initial Fock state, i.e. quantum Rabi oscillations.
Furthermore, for a moderate n̄, the time evolution of the populations and the inversion shows
the well-known collapse and revival.

5.2 Properties of Field for Initial Case II

The reduced density operator of the field is

ρF (t) = |C0|2 |0〉 〈0| + C0C
∗
1 |0〉 〈1| + C1C

∗
0 |1〉 〈0| + |C1|2 |1〉 〈1|

+
∞∑

n=2

CnC
∗
0 cos(

√
n (n − 1)ηt) |n〉 〈0| +

∞∑

n=2

C∗
nC0 cos(

√
n (n − 1)ηt) |0〉 〈n|

+
∞∑

n=2

CnC
∗
1 cos(

√
n (n − 1)ηt) |n〉 〈1| +

∞∑

n=2

C∗
nC1 cos(

√
n (n − 1)ηt) |1〉 〈n|

+
∞∑

n=2

∞∑

m=2

CnC
∗
m sin(

√
n (n − 1)ηt) sin(

√
m(m − 1)ηt) |n − 2〉 〈m − 2|

+
∞∑

n=2

∞∑

m=2

CnC
∗
m cos(

√
n (n − 1)ηt) cos(

√
m(m − 1)ηt) |n〉 〈m| . (46)

5.2.1 Photon Number Distribution

The photon number distribution for this case can be described as follows

P0 (t) = |C0|2 + |C2|2 sin2(
√
2ηt),

P1 (t) = |C1|2 + |C3|2 sin2(
√
6ηt),

Pnp (t) = + ∣
∣Cnp

∣
∣2 cos2(

√
np

(
np − 1

)
ηt)

+ ∣∣Cnp+2
∣∣2 sin2(

√(
np + 1

) (
np + 2

)
ηt),

(np ≥ 2). (47)

In Fig. 7, we plot Pnp (t) for an initial coherent state. As n̄ increases, the distribution is
wider. Moreover, some oscillation will exhibit at certain time.
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Fig. 6 (Color online) (a) Population in the excited state Pe , (b) population in the ground state Pg , (c) Atomic
inversion W as a function of the time ηt , respectively, where atom is initially in the ground state |g〉 and the
field is initially in a coherent state |α〉 with |α| = √

n̄ (n̄ = 2, 5, 25 are corresponding to the black, red, and
blue line, respectively)
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(a) (b)

(c)

t 0
t 0.25
t 3

Fig. 7 (Color online) Behavior of photon number distribution Pnp at time ηt = 0, 0.25, 3 for an initially

coherent state |α〉 with |α| = √
n̄ when (a) n̄ = 2, (b) n̄ = 5, (c) n̄ = 10, respectively

5.2.2 Mean Photon Number and Second-Order Autocorrelation Function

From (46), we have
〈
a†a

〉

ρF (t)
= |C1|2 +

∞∑

n=2

|Cn|2 n cos2(
√

n (n − 1)ηt)

+
∞∑

n=2

|Cn|2 (n − 2) sin2(
√

n (n − 1)ηt), (48)

and

〈
a†2a2

〉

ρF (t)
=

∞∑

n=2

|Cn|2 (n − 2) (n − 3) sin2(
√

n (n − 1)ηt)

+
∞∑

n=2

|Cn|2 n (n − 1) cos2(
√

n (n − 1)ηt). (49)

In Fig. 8, we plot
〈
a†a

〉
and g(2) versus ηt for an initial coherent state with different n̄.

Obviously, the mean photon number almost do not change over time, accompanying by
slight fluctuations. The second-order correlation function is changing up and down in the
vicinity of the value 1, i.e. that of the original coherent state. Besides, if the value of n̄ is
large enough, g(2) is just equal to 1.
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Fig. 8 (Color online) (a) Mean photon number and (b) second-order correlation function g(2) of the optical
field as a function of the time ηt , where atom is initially in the ground state |g〉 and the field is initially in a
coherent state |α〉with |α| = √

n̄ (n̄ = 2, 5, 25 are corresponding to the black, red, and blue line, respectively)

5.2.3 Wigner Function

The Wigner function of the coherent state |α〉 can be expressed as

WF (ξ) = 2

π
exp(−2 |α − ξ |2), (50)

who is a Gaussian function and have no chance to take negative region in phase space. After
the interaction, the Wigner function is evolved into

WFρF (ξ, t) = |C0|2 WF|0〉〈0| (ξ) + |C1|2 WF|1〉〈1| (ξ) + 2Re
(
C0C

∗
1WF|0〉〈1| (ξ)

)

+2Re

( ∞∑

n=2

CnC
∗
0 cos(

√
n (n − 1)ηt)WF|n〉〈0| (ξ)

)

+2Re

( ∞∑

n=2

CnC
∗
1 cos(

√
n (n − 1)ηt)WF|n〉〈1| (ξ)

)
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+
∞∑

n=2

∞∑

m=2

CnC
∗
m sin(

√
n (n−1)ηt) sin(

√
m(m−1)ηt)WF|n−2〉〈m−2| (ξ)

+
∞∑

n=2

∞∑

m=2

CnC
∗
m cos(

√
n (n−1)ηt) cos(

√
m (m−1)ηt)WF|n〉〈m| (ξ) . (51)

However, the Wigner function evolved from the initial coherent state can take negative
values in some regions of the phase space, as shown in Fig. 9.

It should be noted that, since the infinite series in above expressions cannot be summed
exactly in these cases, we will cut the sum superior in a certain number in our numerical
analysis. This will lead to some deviation, but will not affect the analysis results.

6 Dynamics Evolution for Initial Case III: ρ (0) = |g〉 〈g| ⊗ ρth

Assuming the atom initially in the ground state |g〉 and the field initially in a thermal state
ρth (a mixed state), i.e.

ρ (0) = |g〉 〈g| ⊗ ρth (52)

Fig. 9 (Color online) Wigner functions as a function of ζ = x + iy (x, y ∈ [−5, 5]) for quantum states
ρF (t) |n̄=2 (row 1), ρF (t) |n̄=5 (row 2), and ρF (t) |n̄=25 (row 3) and different time scales ηt = 0.02 (column
1), 0.25 (column 2), and 10 (column 3), where atom is initially in the ground state |g〉 and the field is initially
in a coherent state |α〉 with |α| = √

n̄ (n̄ = 2, 5, 25 are corresponding to the black, red, and blue line,
respectively)
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with

ρth =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|n〉 〈n| , (53)

where n̄ is the mean photon number of the thermal state, that is

ρAF (0) =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|g, n〉 〈g, n| , (54)

then the density operator for times t > 0 is just given by

ρAF (t) =
∞∑

n=0

n̄n

(n̄ + 1)n+1
exp

(
− i

�
Heff t

)
|g, n〉 〈g, n| exp

(
i

�
Heff t

)
. (55)

Through (5) and (10), we easily obtain the total atom-field density operator

ρAF (t) = 1

n̄ + 1
|g, 0〉 〈g, 0| + n̄

(n̄ + 1)2
|g, 1〉 〈g, 1|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
sin2(

√
n (n − 1)ηt) |e, n − 2〉 〈e, n − 2|

−i

∞∑

n=2

n̄n

(n̄ + 1)n+1

sin(2
√

n (n − 1)ηt)

2
|e, n − 2〉 〈g, n|

+i

∞∑

n=2

n̄n

(n̄ + 1)n+1

sin(2
√

n (n − 1)ηt)

2
|g, n〉 〈e, n − 2|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos2(

√
n (n − 1)ηt) |g, n〉 〈g, n| . (56)

6.1 Properties of Atom for Initial Case III

The reduced density operator for atom is

ρA (t) =
(

1

n̄ + 1
+ n̄

(n̄ + 1)2

)
|g〉 〈g|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
sin2

(
η
√

n − 1
√

nt
)

|e〉 〈e|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos2

(
η
√

n − 1
√

nt
)

|g〉 〈g| , (57)

leading to

Pe (t) =
∞∑

n=2

n̄n

(n̄ + 1)n+1
sin2(

√
n (n − 1)ηt),

Pg (t) = 1

n̄ + 1
+ n̄

(n̄ + 1)2

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos2(

√
n (n − 1)ηt), (58)
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and

W (t) = −
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos(2

√
n (n − 1)ηt) − 1

n̄ + 1
− n̄

(n̄ + 1)2
. (59)

In Fig. 10, we plot Pe (t), Pg (t), W (t) versus ηt for a thermal field containing dif-
ferent n̄. In this case, we don’t find the phenomena of the quantum Rabi Oscillations
found in Case I or the collapse or revival found in case II. In addition, as n̄ increases, the
atom has a tendency of populating in the excited state and the ground state with equal
possibility.

6.2 Properties of Field for Initial Case III

The reduced density operator for the field in case III is

ρF (t) = 1

n̄ + 1
|0〉 〈0| + n̄

(n̄ + 1)2
|1〉 〈1|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
sin2(

√
n (n − 1)ηt) |n − 2〉 〈n − 2|

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos2(

√
n (n − 1)ηt) |n〉 〈n| . (60)

6.2.1 Photon Number Distribution

The photon number distribution for this case can be expressed as follows

P0 (t) = 1

n̄ + 1
+ n̄2

(n̄ + 1)3
sin2(

√
2ηt),

P1 (t) = n̄

(n̄ + 1)2
+ n̄3

(n̄ + 1)4
sin2(

√
6ηt),

Pnp (t) = + n̄np+2

(n̄ + 1)np+3
sin2(

√(
np + 1

) (
np + 2

)
ηt)

+ n̄np

(n̄ + 1)np+1
cos2(

√
np

(
np − 1

)
ηt),

(np ≥ 2). (61)

In Fig. 11, Pnp (t) for initial thermal states with different n̄ are plotted at different time
ηt . As n̄ increases, the distribution becomes wider. Moreover, the distribution will exhibit
oscillation at certain time.
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Fig. 10 (Color online) (a) Population in the excited state Pe , (b) Population in the ground state Pg and (c)
Atomic inversion W as a function of the time ηt , where atom is initially in the ground state |g〉 and the field
is initially in a thermal state ρth with the mean photon number n̄. Here n̄ = 2, 5, 25 are corresponding to the
black, red, and blue line, respectively
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(a) (b)
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Fig. 11 (Color online) Behavior of Pnp (t) at time ηt = 0, 0.25, 3 for an initial thermal state ρth with the
mean photon number n̄ when (a) n̄ = 2, (b) n̄ = 5, (c) n̄ = 10

6.2.2 Mean Photon Number and Second-Order Autocorrelation Function

From (60), we have

〈
a†a

〉

ρF (t)
= n̄

(n̄ + 1)2
+

∞∑

n=2

n̄n

(n̄ + 1)n+1
n cos2(

√
n (n − 1)ηt)

+
∞∑

n=2

n̄n

(n̄ + 1)n+1 (n − 2) sin2(
√

n (n − 1)ηt), (62)

and

〈
a†2a2

〉

ρF (t)
=

∞∑

n=2

n̄n

(n̄ + 1)n+1 (n − 2) (n − 3) sin2(
√

n (n − 1)ηt)

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
n (n − 1) cos2(

√
n (n − 1)ηt). (63)

In Fig. 12, we plot
〈
a†a

〉
and g(2) versus ηt for an initial thermal state with different

n̄. Obviously, the mean photon number almost do not change over time. The second-
order correlation function is slightly bigger or equal to 2, i.e. that of the original thermal
state.
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Fig. 12 (Color online) (a) Mean photon number and (b) second-order correlation function g(2) of the optical
field as a function of the time ηt , where atom is initially in the ground state |g〉 and the field is initially in a
thermal state ρth with the mean photon number n̄. Here n̄ = 2, 5, 25 are corresponding to the black, red, and
blue line, respectively

6.2.3 Wigner Function

The Wigner function of the thermal state ρth can be expressed as

WF (ξ) = 2

π (2n̄ + 1)
exp

(

− 2 |ξ |2
2n̄ + 1

)

. (64)

It is also the Gaussian function and has no chance to take negative region in phase space.
The Wigner function of ρF (t) in case III is written as

WFρF (t) (ξ, t) = 1

n̄ + 1
WF|0〉〈0| (t) + n̄

(n̄ + 1)2
WF|1〉〈1| (ξ)

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
sin2(

√
n (n − 1)ηt)WF|n−2〉〈n−2| (ξ)

+
∞∑

n=2

n̄n

(n̄ + 1)n+1
cos2(

√
n (n − 1)ηt)WF|n〉〈n| (ξ) . (65)
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Fig. 13 (Color online) Wigner functions as a function of ζ = x + iy (x, y ∈ [−5, 5]) for quantum states
ρF (t) |n̄=2 (row 1), ρF (t) |n̄=5 (row 2), and ρF (t) |n̄=25 (row 3) and different time scales ηt = 0.02 (column
1), 0.25 (column 2), and 10 (column 3), where atom is initially in the ground state |g〉 and the field is initially
in a thermal state ρth with the mean photon number n̄. Here n̄ = 2, 5, 25 are corresponding to the black, red,
and blue line, respectively

As Fig. 13 shows, the Wigner function loses the character of Gaussian form and appears
some shock in phase space.

7 Conclusion

In summary, we study the dynamical evolution of the properties for the atoms and the fields
in the process of two-photon absorption and emission between two atomic levels. Using the
eigenstates of the effective Hamiltonian describing the process, we construct the connection
between the dressed state and the bare state. Thus we cleverly obtain the density operator
of the system at any time once the initial density operator is known. Through the paper,
we discuss three cases of initial density operator for the atom-field system, i.e. the atom is
initially in the ground state and the optical field is initially in Fock state, coherent state and
thermal state, respectively.

For every property under consideration, we give the explicit analytical expressions and
make the numerical simulation. Some interesting results are obtained. The phenomenon of
quantum Rabi oscillation and collapse and revival for the atom will appear when the proper
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initial optical field is injected. This character is similar to that in Jaynes-Cummings model.
However, one main difference is that the factor in our model is

√
n (n − 1)ηt and the factor

in Jaynes-Cummings model is
√

nηt . In addition, some new optical fields can be generated
in our considered process. For instance, after injecting Fock state |n〉 in the process, we
generate the incoherent superposition state of |n − 2〉 and |n〉, whose ratio can be adjusted
by the interaction time. So this process is also effective in the quantum state engineering.

Appendix: Wigner function for the operator |n〉 〈m|
Substituting

〈m| = 1√
m!

dm

dμm
〈0| exp (μa) |μ=0,

|n〉 = 1√
n!

dn

dνn
exp

(
νa†

)
|0〉 |ν=0, (A1)

into (17), we have

WF|n〉〈m| (ξ)= 2

π
√

m!n!
dm+n

dμmdνn
〈0| exp (μa) : exp

(
−2

(
a†−ξ∗) (a−ξ)

)
: exp

(
νa†

)
|0〉 |μ=ν=0.

(A2)

Inserting the completeness of the coherent states, i.e.
∫

d2z1
π

|z1〉 〈z1| = 1 and
∫

d2z2
π

|z2〉 〈z2| = 1, we have

WF|n〉〈m| (ξ) = 2

π
√

m!n!e
−2|ξ |2 dm+n

dμmdνn

×
∫

d2z1

π
exp

(
− |z1|2 + μz1 + 2ξz∗

1

)

×
∫

d2z2

π
exp

(
− |z2|2 + (

2ξ∗ − z∗
1

)
z2 + νz∗

2

)
|μ=ν=0. (A3)

After employing the integration, we obtain the Wigner function for the operator |n〉 〈m|,

WF|n〉〈m| (ξ) = 2 exp
(−2 |ξ |2)

π
√

m!n!
dm+n

dμmdνn
exp

(+2μξ + 2νξ∗ − μν
) |μ=ν=0. (A4)

Using this expression, the Wigner function for any quantum state can be expressed based
on its expansion in Fock state space.
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