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Abstract In the paper, the idea of describing not-yet-verified properties of quantum objects
with logical many-valuedness is scrutinized. As it is argued, to promote such an idea, the
following two foundational problems of many-valued quantum logic must be decided: the
problem of choosing a proper system of many-valued logic and the problem of the emer-
gence of bivalence from logical many-valuedness. Difficulties accompanying solutions of
these problems are discussed.
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1 Introducing Logical Many-Valuedness in Quantum Mechanics

The argument claiming that quantum theory could not be comprehended on the grounds of
classical two-valued logic is rather straightforward and goes like this.

Let us consider a typical quantum interference experiment where a quantum particle
being released from a source is absorbed by a screen after passing through a two-slit barrier.1

Suppose that immediately behind that barrier are placed two which-way detectors able to
verify (e.g., by way of clicking) the particle’s passage through a corresponding slit. Let X1
denote the proposition of the click of the detector placed behind slit 1 such that X1 is true
(denoted by “1”) if the detector clicks and X1 is false (denoted by “0”) if the detector does
not. Let X2 in an analogous manner denote the proposition of the signal from the detector
placed behind slit 2.

1In the present paper, rather than being strictly restricted to spatially arranged slits, quantum interference is
considered generally for any set of perfectly distinguishable alternatives.
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Assume that the propositions X1 and X2 are in possession of not-yet-verified truth values
– i.e., ones existing before the detectors can click – that are merely revealed by the act of
verification of the particle’s passage.

Within the given assumption, let us accept that such values of the propositions X1 and
X2 are either 1 or 0. Accordingly, exclusive disjunction on these values of X1 and X2 can
be decided by

X12 ≡ X1 ∨ X2 ≡
(

2∨
i=1

Xi

)
∧ ¬

(
2∧

i=1

Xi

)
. (1)

Suppose that the not-yet-verified truth value of the compound proposition X12 is true.
Provided that P is the probability function mapping propositions Y,Z, . . . to the unit inter-
val [0, 1] such that P[Y ] = 1 if Y is true, P[Y ] = 0 if Y is false, and P[Y ∨ Z] =
P [Y ] + P [Z] − P [Y ∧ Z], the probability of finding the particle at a certain region R

on the screen would be then given by the sum of the patterns P[R|Xi] emerging in setups
with a one-slit barrier, namely, P[R|X1 ∨ X2] = 1

2 (P[R|X1] + P[R|X2]) (on condition
that P[X1] = P[X2]). It would mean that in the said case, quantum interference would be
nonexistent even with none of the detectors present at the slits.

So, by contrast, let us suppose that the not-yet-verified truth value of X12 is false. But
then – in contradiction to the quantum collapse postulate – one would find that it is not true
that exactly one detector will signal if the particle’s passage through the two-slit barrier is
observed.

Thus, for the assumption of the not-yet-verified truth values of the propositions Xi to be
consistent with the occurrence of quantum interference and quantum collapse, these truth-
values must be neither 1 nor 0. Such could be only if prior to their verification Xi does not
obey the principle “a proposition is either true or false”, i.e., the principle of bivalence.2

From the violation of this principle, one can infer that results of future non-certain events
can be described using many-valued logics. For example, consider a 3-valued logic {0, 1

2 , 1}
which includes only one additional truth value 1

2 besides the classical ones 0 and 1.3 If
not-yet-verified truth values of the propositions Xi are both 1

2 , where the truth value 1
2 is

interpreted as “possible” and the valuations ¬ 1
2 = 1

2 , 1
2 ∨ 1

2 = 1
2 , 1

2 ∧ 1
2 = 1

2 hold, then the
truth value of the compound proposition X12 can be ascertained as ( 1

2 ∨ 1
2 )∧¬( 1

2 ∧ 1
2 ) = 1

2 ,
i.e., also “possible”. In this case, before the verification one can only assert that the both
statements – the particle passes through exactly one slit and the particle passes through
more than one slit – are possible.

Attractive as it might seem, the idea of describing not-yet-verified properties of quantum
objects with many-valued logics is burdened with two foundational problems.

The first is the problem of choosing a proper system of many-valued logic. It concerns
with the following question: Because there are infinitely many systems of many-valued
logic, which of them should be chosen for the quantum mechanical description? How can a
specific system be decided on to avoid a charge of arbitrariness?

2Obviously, it is possible to avoid this conclusion merely by accepting nonlocal realism (i.e., an interpretation
of quantum theory in terms of ‘hidden variables’ such as Bohmian mechanics [1–3]). But in doing so one
would confront with additional deficiencies that plague the ‘hidden variables’ approach (the analysis of those
deficiencies can be found, e.g., in [4, 5])
3That might be such three-valued logical systems as the Kleene (strong) logic K3 or the 3-valued Łukasiewicz
system [6, 7].
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Notwithstanding the significance of the first problem, the next one seems even more
serious: When the act of the verification is finished in the macrophysical domain (and so
the path the particle has taken is known with certainty), the propositions Xi conform to
the principle of bivalence. So, unless one can demonstrate that a many-valued logic has a
proper application to the objects of everyday macrophysical experience (and for this reason
our logic needs revising), the following question must be answered: How do not-yet-verified
multivalent truth values become classical bivalent truth values?

The discussion of these foundational problems of many-valued quantum logic is offered
in the present paper.

2 Preliminaries

We will start by briefly introducing a few necessary preliminaries.
Let us consider a complete lattice L = (L,�, �) containing any partially ordered set

L where each two-element subset {y, z} ⊆ L has a join (i.e., a least upper bound) and a
meet (i.e., a greatest lower bound) defined by y � z ≡ l.u.b.(y, z) and y � z ≡ g.l.b.(y, z),
correspondingly. In addition to the binary operations � and �, let the lattice L contain a
unary operation ∼ defined in a manner that L is closed under this operation and ∼ is an
involution, explicitly, ∼y ∈ L if y ∈ L and ∼(∼y) = y. Let

§VN(
) = [[
]]v , (2)

where the symbol 
 can be replaced by any proposition associated with a property of a
physical system, refer to a valuation, i.e., a mapping from a set of propositions being as
stated denoted by S = {
} to a set VN = {v} where v are truth-values ranging from 0 to 1
and N is the cardinality of the set {v}:

§VN : S → VN . (3)

At the same time, let us assume a homomorphism f : L → S such that there is a truth-
function v that maps each lattice element denoted by the symbol ∗ to the truth value of the
corresponding proposition, namely,

v(∗) = [[
]]v , (4)

basing on the following principles:

v(y) = 0 if y = 0L , (5)

v(y) = 1 if y = 1L , (6)

where 0L and 1L are the least and the greatest elements of the lattice, correspondingly. These
principles imply that the least and the greatest lattice elements are identified with always
false and always true propositions.

Let the following valuation apply for the negation of a proposition Y :

v(∼y) = [[¬Y ]]v . (7)

On the other hand, the valuation [[¬Y ]]v can be decided through the truth degree function
F¬ of negation, that is,

[[¬Y ]]v = F¬([[Y ]]v) . (8)

As stated by [6], the most basic example for F¬ is 1−[[Y ]]v (called Łukasiewicz negation).
To meet this version of negation, let us assume

v(∼y) = 1 − v(y) . (9)
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Also, let the following valuational axioms apply for the binary operations on lattice
elements y and z related to simultaneously verifiable propositions Y and Z:

v(y � z) = [[Y ∨Z]]v , (10)

v(y � z) = [[Y ∧Z]]v . (11)
From another side, the truth values of disjunction and conjunction on the values of the

propositions Y and Z can be decided by

[[Y ∨Z]]v = F∨([[Y ]]v, [[Z]]v) , (12)

[[Y ∧Z]]v = F∧([[Y ]]v, [[Z]]v) , (13)
where F∨ and F∧ are the truth degree functions of the corresponding logical connectives.4

As it has been already noted in the Section 1, were the simultaneously verifiable
propositions Xi to possess not-yet-verified truth-values consistent with the occurrence of
quantum interference and quantum collapse, they would have to meet the requirement
{v(xi)} = {0, 1}, where xi are the lattice elements attributed to the propositions Xi such that
v(xi) = [[Xi]]v . But together with that, after the verification, the truth-values of Xi would
have to conform to bivalence, i.e., {v(xi)} = {0, 1}.

Consequently, the question is, how to combine in one theory those two mutually
exclusive conditions on {v(xi)}?

3 Many-Valued Quantum Logic

A solution to this problem can be motivated by recalling that the total of all the individual
probabilities equals 1, so, when one of the probabilities turns into 1, all the others become
0. Let us add some details to this idea.5

Assume that there is a correspondence (homomorphism) between a lattice L = (L,�,�)

and a family L(H) containing all closed, ordered by the subset relation subspaces of a (sepa-
rable) Hilbert space H associated with a physical system under investigation. Explicitly, the
inclusion relation between the lattice elements corresponds to the subset relation between
the closed subspaces, the lattice meet � corresponds to the intersection ∩ of those subspaces
and the lattice join � is the closed span of their union ∪, the least element of the lattice is
the {0} subspace and the greatest element of the lattice is the identical subspace H.

Consider self-adjoint projection operators P̂
 on H that represent propositions 
 declar-
ing that the system possesses experimentally verifiable properties (such as a path that the
particle takes getting through the barrier). Since each projection operator P̂
 leaves invari-
ant any vector lying in its range, ran(P̂
), and annihilates any vector lying in its null space,
ker(P̂
), giving in this manner a decomposition of H into two complementary closed sub-
spaces, namely, H = ran(P̂
) ⊕ ker(P̂
), there is a one-one correspondence between the

4 In [8], the relation between the functions v(y � z) and F∨([[Y ]]v, [[Z]]v) as well as v(y � z) and
F∧([[Y ]]v, [[Z]]v) is studied to examine whether Łukasiewicz operations can also be used to model con-
junctions and disjunctions. As it is stated in the paper, Łukasiewicz disjunction and conjunction coincide
with the truth-functions of joins and meets, namely, v(y � z) = min {v(y) + v(z), 1} and v(y � z) =
max {v(y) + v(z) − 1, 0}, whenever these Łukasiewicz connectives can be defined.
5In fact, this idea – called many-valued quantum logic or fuzzy quantum logic – has already been developed
in a series of papers [9–14]; however, for the aim of this discussion, it is not necessary to follow those
papers precisely. Also, for the discussion it is immaterial to present in its entirety the generally accepted
interpretation of the elements of a quantum logic – an interested reader can be referred to any textbook on
quantum logic: see, for example, [15] or [16].
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subspaces ran(P̂
) and projection operators P̂
. Therefore, one can consider P̂
 as the
elements of L(H).

In view of the homomorphism between L = (L,�,�) and L(H), the principles of
calculus of truth values presented above are expected to survive the passage to compatible
elements of L(H). For this reason, one can put forward that

v(P̂x) = [[X]]v , (14)

where v(P̂x) is a truth-function value at projection operator P̂x which corresponds to a truth
value of proposition X.

Suppose that the state of the system is characterized by the unit vector |�〉. It is not
difficult to see that the truth-value of the proposition X will coincide with the eigenvalue of
the projection operator P̂x , namely, {v(P̂x)} = {0, 1}, if and only if the given vector |�〉 lies
in either ran(P̂x) or ker(P̂x).

However, if |�〉 is such a unit vector in H that |�〉 ∈ ran(P̂x) as well as |�〉 ∈ ker(P̂x),
one can only get {〈�|P̂x |�〉} = {x̄ ∈ R | 0 < x̄ < 1}, where x̄ is the expected value of
the observable x corresponding to the operator P̂x . Consistent with the orthodox quantum
theory, the value 〈�|P̂x |�〉 can be interpreted as the probability that the measurement of
the observable x will produce the “affirmative” answer 1 in the state of the system given by
|�〉, i.e.,

P[x = 1] ≡ 〈�|P̂x |�〉 . (15)

But, as stated by the idea being discussed here, the value 〈�|P̂x |�〉 should be also
regarded as the not-yet-verified truth value of the proposition X, namely,

v(P̂x) = 〈�|P̂x |�〉 . (16)

Accordingly, if |�〉 is any unit vector in H, then {v(P̂x)} = {x̄ ∈ R | 0 ≤ x̄ ≤ 1} which
can be interpreted as a generalization of the Boolean domain V2 = {0, 1}. In this fashion,
the value 〈�|P̂x |�〉 represents the degree to which the proposition X is true prior to the
verification (i.e., before the experiment designed to verify the affirmative answer can be
completed).6

4 Truth-Values vs. Probabilities

Let us analyze the appropriateness of the hypothesis (16).
Firstly, consider the rationale behind it. Suppose that a quantum system is prepared in

a pure normalized state |�〉 that lies in the range of the projection operator P̂x . Being in
the state |�〉 is subject to the assumption that the truth-value function v must assign the
truth value 1 to the proposition X and, in consequence, to the operator P̂x , namely, |�〉 ∈
ran(P̂x) =⇒ v(P̂x) = [[X]]v = 1, since P̂x |�〉 = 1 · |�〉. But what is more, in this case,
the affirmative answer for the measurement of the observable x will have probability 1 since
〈�|P̂x |�〉 = 1. In an analogous manner, if the system is prepared in a pure state |�〉 lying
in the null space of the projection operator P̂x , then the function v must assign the truth
value 0 to P̂x , namely, |�〉 ∈ ker(P̂x) =⇒ v(P̂x) = [[X]]v = 0, since P̂x |�〉 = 0 · |�〉.
In that case, the probability of the affirmative answer must be 0 as 〈�|P̂x |�〉 = 0. From

6At the same time, v(∼ P̂x) = 1−〈�|P̂x |�〉 represents the degree to which the not-yet-verified truth value of
the proposition X is not true (that is, the degree to which the system does not possess the mentioned property
prior to the verification)
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here on can infer that the truth-function v(P̂x) and the probability-function P[x = 1] agree
if |�〉 ∈ ran(P̂x) or |�〉 ∈ ker(P̂x).

It is tempting to conclude that the agreement

v(P̂x) = P[x = 1] (17)

holds even in the case where |�〉 /∈ ran(P̂x) and |�〉 /∈ ker(P̂x). Sadly, such a conclusion is
open to some considerable objections.

First, the equality (17) is too strong from the mathematical point of view. Namely, the
fact that two outputs of the functions v(P̂x) and P[x = 1] coincide does not mean that these
functions have the same codomain. The failure of bivalence {v(P̂x)} = {0, 1} only suggests
that the set of all permitted outputs to the truth-function v(P̂x) may contains more than two
values. That is, v(P̂x) might be infinite-valued and yet different from P[x = 1] in any state
|�〉 where |�〉 /∈ ran(P̂x) and |�〉 /∈ ker(P̂x).

Second, from the conceptual point of view, the equality (17) is strong as well given that
it is not conceptually neutral. That is, the pertinence of this equality to quantum theory
strongly depends on the interpretation of the state vector |�〉. This means that the equality
(17) can be applicable only if the vector |�〉 posits the “true states of reality”, i.e., the ontic
states of the quantum system.

E.g., in the Bayesian approach to quantum mechanics, probabilities – and thus the state
vector |�〉 – represent an agent’s degrees of belief, rather than corresponding to objective
properties of physical systems [17]. As a result, within the Bayesian approach the equality
(17) would not be right since its left-hand side would be objective while its right-hand side
would be subjective. In more detail, gathering data allows the agents to update their proba-
bility assignments (by using Bayes’ theorem); so, the probability P[x = 1] always depends
on the agents’ prior probabilities as well as on the data and therefore can be different for
agents in possession of the same data.7 On the other hand, the proposition X is the state-
ment that in the measurement of the observable x the outcome 1 occurs. Accordingly, the
truth value of the proposition X is a fact for any agent.

Finally, the equality (17) gives rise to the problem of the emergence of bivalence from
many-valued logics. Indeed, if this equality holds as a general principle and hence the logic
underpinning the reality is infinite-valued, then the question is, how does a two-valued
semantics emerge from an infinite-valued semantics during the process of verification?

To describe the emergence of the logical bivalent limit, one can use clues suggested in
the paper [22].

Consider a quantum system and a set O of projection operators on the Hilbert space
related to the states for the system, namely, O = {P̂qα, P̂rβ}, where α = {1, . . . , n} and β =
{1, . . . , m}, such that some projection operators of O are incompatible, that is, [P̂qα, P̂rβ ] ≡
P̂qαP̂rβ − P̂rβ P̂qα = 0. The incompatibility of the projection operators P̂qα and P̂rβ means
that if the system is prepared, say, in the state |�q〉 where all the propositions Qα comes
out bivalent, then the truth values of the propositions Rβ cannot be two-valued in |�q〉: To
be exact, |�q〉 /∈ ran(P̂rβ), so [[Rβ ]]v = 1; also, |�q〉 /∈ ker(P̂rβ), thus [[Rβ ]]v = 0.

Clearly, had the commutator [P̂qα, P̂rβ ] been equal to 0, the propositions Qα and Rβ

would have become bivalent in the prepared state |�q〉. In view of that, the logical bivalent
limit can be understood as a deformation of a non-commutative algebra and a limit � → 0.

7As stated by Bayesian approach to probability theory, probabilities are degrees of belief, not facts. Probabil-
ities cannot be derived from facts alone. Two agents who agree on the facts can legitimately assign different
prior probabilities. In this sense, probabilities are not objective, but subjective (see, e.g., [18–21]).
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Explicitly, assume that the noncommutative observables q and r have discrete spectrums
{qα} and {rβ} such that for their operators q̂ and r̂ one can write q̂ = ∑n

α qαP̂qα and
r̂ = ∑m

β rβP̂rβ . Along these lines, in the limit � → 0 the commutation relation between the
operators q̂ and r̂ can be presented in the following form

[q̂, r̂] = 0
�→0−→

n∑
α

m∑
β

qαrβ [P̂qα, P̂rβ ] = i�{q, r} + O(�2) , (18)

where {q, r} denotes the classical counterpart of the commutator [q̂, r̂].
At this point it is worth observing that in any attempt to go beyond formal considerations

and rigorously prove lim�→0[P̂qα, P̂rβ ] = 0 for any indices α and β, the mathematical
properties of the operators P̂qα and P̂rβ may play a crucial role. Thus, only particular choices
of the projection operators P̂qα and P̂rβ might be suitable for rigorous arguments concerning
the emergence of the logical bivalent limit.

Then again, one can imagine that a bivalent semantic only nearly emerges at the end
of the measurement process when the size of the combined system, which includes the
quantum interference experiment, the detectors, and the entire macroscopic environment,
becomes infinitely large. In this way, the logical bivalent limit could be an idealization
reserved for the limit where the size of the system is infinite, which can be symbolically
denoted by “the limit N → ∞”.

However, as it can be shown (see, for example, [23]), such a limit is just a special case of
the limit � → 0. That is, mathematically speaking, the nature of the idealization involved
in assuming that a system is infinitely large is much the same as that of assuming � → 0
in a quantum system of a finite size. Accordingly, the observation about the difficulties of
proving that the commutator [P̂qα, P̂rβ ] comes to be 0 as � approaches 0 regards the limit
N → ∞ as well.

5 Introducing Supervaluationism in Quantum Mechanics

It must be noted, however, that none of the offered above objections to the equality (17) can
be considered decisive.

Even so, a way to avoid at least some of those objections might be in the acknowledgment
that in quantum mechanics truth values of the future non-certain events simply do not exist.

Such could be if any lattice element different from the least and the greatest elements
carries no truth values, that is,

{v (∗) | ∗ = 0L and ∗ = 1L} = ∅ whereas v(0L) = 0 and v(1L) = 1 . (19)

Along the lines of this assumption, prior to the verification, an object S = {
} of a
formal language to which an element of L(H) other than the {0}-subspace and the identical
subspace H is attributed, should not be called a proposition – i.e., a primary bearer of
truth-value – but a propositional formula or a sentence or anything that carries no intrinsic
meaning of truth or falsehood.

Only subsequent to the act of verification, i.e., when the image of 
 under the valuation
comes to be either 1 or 0, one can call the aforesaid object a proposition.8

8This is reminiscent of the logical system of intuitionistic logic that lacks a complete set of truth values
because its semantics is specified in terms of provability conditions.



Int J Theor Phys (2018) 57:2124–2132 2131

Let’s take, for example, a system whose state before the verification is given by a quan-
tum superposition of the type |�〉 = c1|�x1〉 + c2|�x2〉 such that |�x1〉 ∈ ran(P̂x1) and
|�x2〉 ∈ ran(P̂x2) where ran(P̂x1) and ran(P̂x2) are closed subspaces of H that have no ele-
ment in common except {0}, and c1, c2 are the superposition coefficients. The subspaces
ran(P̂x1) and ran(P̂x2) are identified with simultaneously testable but disjoint (i.e., mutually
exclusive) properties of the system, possession of which are declared by the propositional
formulas X1 and X2 associated with the orthogonal projection operators P̂x1 and P̂x2.

It is straightforward that the superposition c1|�x1〉 + c2|�x2〉 would correspond to the
direct sum of ran(P̂x1) and ran(P̂x2) bringing in a decomposition of H, namely,

H = ran(P̂x1) ⊕ ran(P̂x2) = {c1|�x1〉 + c2|�x2〉} . (20)

On the other hand, given that the meet of the orthogonal projections P̂xi is �2
i=1P̂xi =

P̂x1P̂x2 = P̂x2P̂x1 = 0, the direct sum (20) would correspond to the projection P̂x1 + P̂x2
and, hence, the join �2

i=1P̂xi .
In accordance with the definition (14), one gets then

v
(

ran(P̂x1) ∩ ran(P̂x2)
)

= v
(
�2

i=1P̂xi

)
= [[X1∧X2]]v , (21)

v ({c1|�x1〉 + c2|�x2〉}) = v
(
�2

i=1P̂xi

)
= [[X1∨X2]]v . (22)

Consistent with the assumption (19), {v(P̂xi)} = ∅ at the same time as v(ran(P̂x1) ∩
ran(P̂x2)) = v({0}) = 0 and v({c1|�x1〉 + c2|�x2〉}) = v(H) = 1, which would give

{[[Xi]]v} = ∅ , (23)

[[X1∧X2]]v = 0 , (24)

[[X1∨X2]]v = 1 . (25)
Accordingly, ahead of the verification, the sentence “Out of two contradictory proper-

ties, the system possesses one or the other, but not both” would be true (and thus it would
be a proposition) despite the fact that the sentence “Out of two contradictory properties,
the system possesses a particular one” would have no truth value at all (implying that
before the verification the truth degree functions of the logical connectives F¬([[Xi]]v),
F∧([[X1]]v, [[X2]]v) and F∨([[X1]]v, [[X2]]v) would not be defined on [[Xi]]v).9

Nevertheless, provided a probability assignment for the latter sentence is possible in a
way that

{[[Xi]]v} = ∅ =⇒ 0 < P[Xi] < 1 , (26)
the probability that this sentence will be proved to be true given the particular property
i ∈ {1, 2} can be estimated by P[Xi] = 〈�|P̂xi |�〉 = |ci |2 where |c1|2 + |c2|2 = 1.

As a rule, H = ({c1|�x1〉 + c2|�x2〉} and so in general {[[X1 ∨X2]]v} = ∅ along with
{[[X1 ∧X2]]v} = ∅. This implies that prior to the verification the law of alternatives, i.e.,
P[X1 ∨ X2] = P[X1] + P[X2], would not be valid on the whole.

So, essentially, the supervaluationist assumption (19) suggests that in the scope of ortho-
dox quantum mechanics and a related quantum logic, one should – to paraphrase the remark
made in the paper [25] – focus on maps from the family L(H) to the unit interval [0, 1] that
generalize the classical idea of probability, rather than that of truth.

9This inference concurs with the conclusion drawn in the paper [24] arguing that the major transformation
from classical to quantum physics lies in the shift from intrinsic to extrinsic properties. In consequence, a
compound property such as X∨Y may have a truth value, even though neither X nor Y has one.
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