
Int J Theor Phys (2018) 57:1848–1863
https://doi.org/10.1007/s10773-018-3710-x

A Novel Quantum Image Steganography Scheme Based
on LSB

Ri-Gui Zhou1 · Jia Luo1 · XingAo Liu1 ·
Changming Zhu1 · Lai Wei1 · Xiafen Zhang1

Received: 20 October 2017 / Accepted: 24 February 2018 / Published online: 9 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Based on the NEQR representation of quantum images and least significant bit
(LSB) scheme, a novel quantum image steganography scheme is proposed. The sizes of
the cover image and the original information image are assumed to be 4n × 4n and n × n,
respectively. Firstly, the bit-plane scrambling method is used to scramble the original infor-
mation image. Then the scrambled information image is expanded to the same size of the
cover image by using the key only known to the operator. The expanded image is scram-
bled to be a meaningless image with the Arnold scrambling. The embedding procedure and
extracting procedure are carried out by K1 and K2 which are under control of the operator.
For validation of the presented scheme, the peak-signal-to-noise ratio (PSNR), the capacity,
the security of the images and the circuit complexity are analyzed.

Keywords Quantum steganography · Least significant bit (LSB) · Bit-plane scrambling ·
Arnold scrambling

1 Introduction

With the rapid development of quantum computation and quantum information, the research
of quantum image processing is springing up. It can be divided into two directions: represen-
tations of quantum images and quantum image processing algorithms. The first direction,
representations of quantum images, is the foundation of the quantum image processing.
The task in this direction is the construction of a pattern to store the images on quantum
computers. In recent years, lots of quantum image representations were studied, i.e., Qubit
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Lattice [1], Real Ket [2], Entangled Image [3], a flexible representation for quantum
images (FRQI) [4], multi-channel representation of quantum image (MCRQI) [5], a nor-
mal arbitrary quantum superposition state (NAQSS) [6], and a novel enhanced quantum
representation (NEQR) [7]. Of these quantum representation models, two of them are most
commonly used: one is FRQI using an angle to encode color, and the other is NEQR using
a qubit sequence to store the color value of every pixel.

Many algorithms have been proposed in the second direction as well, such as Geometric
transformation [8, 9], Image scaling [10, 28], Color transformation [7], Image scrambling
[11, 12], Feature extraction [13], Quantum image encryption [14–18], Quantum image
information hiding [19–27], and so on.

The quantum image information hiding includes quantum watermarking and quantum
steganography of which have many similarities. For example, the goal of both methods is to
hide the information into the carrier. Moreover, they both include embedding and extracting
procedures.

Due to quantum information hiding is important for hiding information into other images
and protecting the image copyright. The quantum image information hiding has a wide
range of uses. In recent years, researchers had been committed to study in it. In 2012 A.M.
Iliyasu, et al. proposed a quantum image watermarking algorithm based on restricted geo-
metric transformations [19]. Later on, in 2013, watermark image was embedded into the
Fourier coefficients of the quantum carrier image in the protocol proposed by W. W. Zhang
et al., in which the carrier images would not be visually affected by the watermark images
[20]. Then X.H. Song et al. proposed a dynamic watermarking scheme for quantum images
based on Hadamard transform [21]. Recently, a blind LSB steganography in the form of
quantum circuits had been proposed by N. Jiang et al. [22]. In 2016, S. Heidari, et al. pro-
posed a novel LSB based quantum watermarking protocol [23]. Before this, S. Miyake
proposed a quantum watermarking scheme using simple and small-scale quantum circuits
[24]. The proposed scheme took a gray scale image as the watermark image by extending a
n × n sized image with eight bits of gray scale to a 2n × 2n sized image with two bits of
gray scale. In 2017, B. Abd-El-Atty et al. proposed the New Quantum Image Steganogra-
phy Scheme with Hadamard Transformation [26], in which the quantum text message was
hided into the carrier image.

In order to enhance the security of the information image, a novel quantum steganogra-
phy scheme based on LSB is proposed in this paper. The outline of this paper is structured as
follows. Section 2 introduces the preliminary knowledge of quantum image model NEQR,
LSB scheme, Bit-plane scrambling and Arnold scrambling methods. The proposed scheme
is explained in Section 3 in detail. Section 4 presents the simulation and analysis of the
scheme. Finally, a brief conclusion is drawn in Section 5.

2 Background

2.1 Novel Enhanced Quantum Representation for Quantum Images

A Novel Enhanced Quantum Representation of digital images (NEQR) was proposed in
2013 [7]. The expression form of a quantum image described by the NEQR model is:

|I 〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

|CYX〉|Y 〉|X〉 = 1

2n

22n−1∑

YX=0

q−1⊗
i=0

Ci
YX ⊗ |YX〉 (1)
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Fig. 1 A 2 × 2 NEQR image representation

where |YX〉 stands for position information and |Ci
YX〉 is the color information.

|YX〉 = |Y 〉|X〉 = |y0y1...yn−1〉|x0x1...xn−1〉, yi , xi ∈ {0, 1} , i = 0, 1, ..., n − 1

|CYX〉 =
∣∣∣C0

YXC1
YX...C

q−1
YX

〉
, Ci

YX ∈ {0, 1} , i = 0, 1, ..., q − 1 (2)

Thus, there are q + 2n qubits to represent a quantum image of size 2n × 2n with the gray
range of 2q . Figure 1 shows an example of an image of 2× 2 and the corresponding NEQR
representation is on the right of the image.

2.2 The Least Significant Bit (LSB)

The least significant bit is one of the pixel bits shown in Fig. 2. If the control bit is “1”, we
only need to change the least significant bit from “1” to “0”, i.e., color value 227 is changed
into 226. Simply, the change of pixel value is only one gray level, so the visual effect is not
affected basically.

2.3 Bit-Plane Scrambling

The pixel values in the image are represented by its corresponding binary values. And then,
every single bit of all the pixels will constitute a binary image, it is called bit-plane. For
example, if the gray range is between 0 and 28, the image will be separated into 8 bit-planes.
Figure 3 shows the result of bit-planes of Lena image of size 28 × 28.

From above, it can be known that different bit-planes carry different visual information.
If these bit-planes are measured, the information will become disordered. By scrambling
the bit-plane, the image will be scrambled.

Fig. 2 An example of LSB
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Fig. 3 Bit-planes of Lena

2.4 Arnold Scrambling

Arnold scrambling is used to change the pixel horizontal and vertical coordinates to disrupt
the original image information. The Arnold scrambling for a digital image can be illustrated
specifically as following.

Supposing that there is an original image with size of 2n × 2n, the pixel coordinates of
the original image and the scrambled image are (X, Y ) and (XA, YA), respectively. Two-
dimensional Arnold scrambling process is expressed by (3) and its inverse operation is
shown in (4).

[
XA

YA

]
=

[
1 1
1 2

] [
X

Y

]
mod 2n

XA = (X + Y ) mod 2n , YA = (X + 2Y ) mod 2n (3)

The inverse operation is:

[
X

Y

]
=

[
1 1
1 2

]−1 [
XA

YA

]
mod 2n =

[
2 −1

−1 1

] [
XA

YA

]
mod 2n

X = (2XA − YA) mod 2n , Y = (YA − XA) mod 2n (4)

According to literature [11], the circuits of Arnold scrambling and inverse-scrambling
are shown in Figs. 4 and 5.
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Fig. 4 The quantum circuit of Arnold image scrambling: a |xA〉 circuit b |yA〉 circuit

3 The Proposed Quantum Image Steganography Scheme

The proposed quantum image steganography scheme hides a gray scale image (secret infor-
mation image) into the other gray scale image (cover image), and the size of two images
is n × n and 4n × 4n, respectively. The embedding and extracting procedures are shown
in Fig. 6, where Fig. 6a is embedding procedure and Fig. 6b is extracting procedure. The
specific scheme is described as follows.

3.1 Preparation Procedure

In this section the original information image |I 〉 should be scrambled by the bit-plane
scrambling. Figure 7 shows an example of the circuit that is used for processing an image
with gray scale of 28. Firstly, there are four SWAP gates and four CNOT gates utilized in
this circuit. The lowest bit |C7〉 swaps with the highest bit |C0〉, the bit |C6〉 swaps with the
bit |C1〉, the bit |C5〉 swaps with the bit |C2〉 and the bit |C4〉 swaps with the bit |C3〉. Then,
four low bits will be the control bits and apply the results to four high bits. Therefore, the
scrambled information image |I1〉 is prepared.

3.2 Embedding Procedure

The embedding procedure consists of four steps that illustrate as follows:
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Fig. 5 The quantum circuit of inverse Arnold image scrambling: a |x〉 circuit b |y〉 circuit
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Step 1 The aim of this step expands the scrambled image to the expanded image which
has same size with the cover image. An example, as shown in Fig. 8a, both of
the key image |K〉 that only known to the operator and the gray scale image |I1〉
are size of 1 × 1, in which |K〉 is a binary image and |I1〉 will be expanded to
a 4 × 4 binary image |I ′

1〉. Figure 8b gives the concrete quantum circuit real-
ization of expanding the scrambled image to the expanded image which has
same size with the cover image, where the key image |K〉 and the gray scale
image |I1〉 both are size of 2n × 2n, respectively. If the color value |Ki〉 of key
|K〉 is equal to 1, an 8 bits string is divided into 8 single bits whose positions
are (4i, 4j + 1), (4i, 4j + 2) , (4i + 1, 4j), (4i + 1, 4j + 1), (4i + 1, 4j + 2),
(4i + 2, 4j), (4i + 2, 4j + 1) and (4i + 2, 4j + 2), respectively. The value of the
position (4i, 4j) is equal to 1 as well. If the key |Ki〉 is equal to 0, an 8 bits string
will be divided into 8 single bits by reverse permutation. Similarly, the value of the
position (4i, 4j) is equal to 0, and the rest of the expanded image is covered by the
value 1.

Step 2 The Arnold scrambling is used for scrambling the expanded image |I ′
1〉 to an

unordered image |I2〉.
Step 3 The unordered information image |I2〉, the key |K1〉 and the cover image |C〉 have

been prepared. Their NEQR representations are:

|I2〉 = 1

2n

22n−1∑

j=0

|I j

2 〉 ⊗ |YX〉, I j

2 ∈ {0, 1} (5)

|K1〉 = 1

2n

22n−1∑

j=0

|Kj

1 〉 ⊗ |YX〉,Kj

1 ∈ {0, 1} (6)

|C〉 = 1

2n

22n−1∑

YX=0

q−1⊗
i=0

Ci
YX ⊗|YX〉, |CYX〉 = |C0

YXC1
YX . . . C

q−1
YX 〉, Ci

YX ∈ {0, 1} , i = 0, 1, ..., q −1

(7)

where |YX〉 = |yn−1yn−2...y0〉|xn−1xn−2...x0〉, yi , xi ∈ {0, 1} , i = 0, 1, ..., n− 1

Each position in the unordered information image |I2〉will be compared with the position
in the cover image |C〉. Literature [25] proposed a quantum equal circuit presented in Fig. 9.
The comparator compares |YX〉 and |AB〉, where |YX〉 = |Y 〉|X〉 = |yn−1...y0〉|xn−1...x0〉
and |AB〉 = |A〉|B〉 = |an−1...a0〉|bn−1...b0〉, yi, xi, ai, bi ∈ 0, 1, i = n − 1, ..., 0. Qubit
|c〉 is output. If |c〉 = |1〉, |YX〉 = |AB〉, otherwise, |YX〉 �= |AB〉.

When the unordered information image is embedded, the steganography image and the
binary image key |K2〉 are obtained. The quantum steganography embedding circuit is
shown in Fig. 10. If the position is the same, then implement the embedding procedure as
follows:

For i = 0 to 22n − 1

If (|I i
2〉 == |0〉) then
If (|Ki

1〉 == |1〉) then |CI 0i 〉 = |C0
i 〉 ⊕ |1〉

Else if (|Ki
1〉 == |0〉) then |Ki

2〉 == |1〉
End
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Fig. 9 Quantum Equal circuit (QE)

3.3 Extracting Procedure

Considering the security of the unordered information image, the extracting procedure is
more complex than embedding procedure.

The first step extracts the information from the steganography image |CI 〉 and the key
|K2〉. It is necessary to have the cover image |C〉, the steganography image |CI 〉 and
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Fig. 10 Circuit realization of quantum steganography embedding
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Fig. 11 Circuit realization of quantum steganography extracting

two keys |K1〉 and |K2〉 extracted from the unordered information image. The quantum
steganography extracting circuit is shown in Fig. 11.

If the position is the same, the corresponding color value will be compared. The
extracting procedure can be done in the following steps:

For i = 0 to 22n − 1

If |Ki
1〉 == |1〉 then

If |C0
i 〉 ⊕ |CI 0i 〉 == |1〉 then |I i

2〉 == |0〉
Else if |Ki

1〉 = = |0〉 then

If |Ki
2〉 = = |1〉 then |I i

2〉 == |0〉
End

The second step of extracting procedure is recovering the unordered information image
|I2〉 to the expanded image |I ′

1〉 by the inverse operation of the Arnold scrambling.
The third step is restoring the expanded image |I ′

1〉 to the scrambled information image
|I1〉. To judge the value of the position (i, j) in key |K〉, where i and j are less than n, if the
value equals to 1, the 8 bits string of the gray scale of the pixel (i, j) in image |I1〉 equals
to the value of these positions [(4i, 4j + 1), (4i, 4j + 2), (4i + 1, 4j), (4i + 1, 4j + 1),
(4i + 1, 4j + 2), (4i + 2, 4j), (4i + 2, 4j + 1), (4i + 2, 4j + 2)] in image |I ′

1〉; if the
value equals to 0, the 8 bits string is in the opposite order. The restoring circuit is shown in
Fig. 12.

The final step is the inverse bit-plane scrambling operation to the scrambled information
image that is importing the color value in the right side of the circuit like Fig. 7.
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Get the first pixel Get  the last pixel

Fig. 12 The restoring circuit

4 Simulation and Analysis

Since there is no enough physical quantum hardware to implement the proposed scheme, the
simulation of quantum operations is performed with MATLAB on the classical computer.
Six familiar images (“Mandrill”, “Cameraman”, “Airplane”, “Pepper”, “Rice” and “Lena”)

Fig. 13 Six information images with size 64 × 64
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(a) (b) (c)                 (d)

Fig. 14 a the cover images, b their corresponding histograms c the steganography images (which
embeds information images of Mandrill, Pepper, Cameraman, Lena, Airplane, Rice, respectively). d their
corresponding histograms
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Table 1 PSNR values in
proposed scheme Cover image Information image PSNR

Mandrill Lena 50.22

Pepper Airplane 50.23

Cameraman Pepper 50.19

Lena Rice 50.21

Airplane Cameraman 50.28

Rice Mandrill 50.23

are used. And the sizes of cover image and information image are 256 × 256 and 64 × 64,
respectively. The information images are shown in Fig. 13.

4.1 Visual Quality

There are quantities of techniques to measure the difference of pixels between the steganog-
raphy image and the cover image, where the peak-signal-to-noise ratio (PSNR) is one of the
most employed. It is defined as the mean squared error (MSE) for two m×n images P and
Q.

MSE = 1

mn

m−1∑

i=0

n−1∑

j=0

[(P (i, j) − Q(i, j))2] (8)

PSNR is defined as:

PSNR = 20 log10

(
MAXP√

MSE

)
(9)

where MAXP is the maximum pixel value of the cover image C. In our scheme, P is
associated with the steganography image and Q is associated with the cover image.

Obviously, human eyes can’t identify the difference between the cover image and the
steganography image, which is shown in Fig. 14. Compared Table 1 with Table 2, it can
be obtained that the values of PSNR of our proposed scheme are higher than literature [24]
which is also use the gray scale image as the information image.

4.2 Capacity

The steganography capacity can be stated as the ratio between the number of embedded
bits of information image and the number of pixels of cover image. The proposed scheme’s
capacity is given as follows:

C = the num. of inf ormation bits

the num. of cover image pixels
= 8 × 2n−2 × 2n−2

22n
= 1

2
(bit/pixel) (10)

In order to enhance the confidentiality, half of the pixels are not to carry information.

Table 2 PSNR values in [24]
Cover image Information image PSNR

Cameraman Lena 44.17

Cameraman Mandrill 44.05

Lena Cameraman 43.88

Lena Mandrill 44.05
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4.3 Security Analysis

In our proposed scheme, we put the security in a significant status. First, the original image
is scrambled to a disordered image. And then the meaningless image consists of half of the
information pixels and half of blank pixels will be hiding in the cover image. Furthermore,
the extracting operation needs the cover image, the steganography image and two keys,
which are all indispensable. In all, the security of the proposed scheme is excellent.

4.4 Circuit Complexity

In this section, the circuit complexity of the proposed scheme is discussed. We assume that
the sizes of cover image and original information image are 2n × 2n and 2n−2 × 2n−2,
respectively. Literature [10] pointed out that circuit complexity of a n-CNOT gate (n �3) is
about 12n−9 and each swap gate can be realized by three CNOT gates.

a. The Time Complexity of Embedding Procedure

The embedding procedure is shown in Fig. 6a and the bit-plane scrambling circuit is
shown in Fig. 7 of which complexity is (4 × 3 + 4). According to [11], the complexities
of Arnold scrambling circuit |xA〉 and |yA〉 are 28n and 28n, respectively. The expanding
circuit is shown in Fig. 8b, supposing it expands 2n−2 × 2n−2 pixels, and every pixel needs
twenty-six (2n+2)-CNOT gates (In order to facilitate the calculation, all CNOT gates are
considered to have the same number of control bits). Thus, the complexity of the expanding
circuit is 22n−4×26×[12 (2n + 2) − 9]. Additionally, Fig. 9 shows the complexity of single
QE circuit is 4n + (12× 2n − 9). Therefore, the complexity of the embedding circuit is 2×
[4n + (12 × 2n − 9)]+ 2× 6. Consequently, the time complexity of the whole embedding
procedure is:

O

(
4 × 3 + 4 + 28n + 28n + 22n−4 × 26 × [12(2n + 2) − 9]
+2 × [4n + (12 × 2n − 9)] + 2 × 6

)

= O
(
16 + 56n + 22n−4 × 26(24n + 15) + 56n − 6

)

= O
(
22n−4 × (624n + 390) + 112n + 10

)
≈ O

(
624n · 22n−4

)
(11)

b. The Time Complexity of Extracting Procedure

The extracting procedure is shown in Fig. 6b. Figure 11 shows extracting circuit in which
the complexity is 3 × [4n + (12 × 2n − 9)] + 2 × (12 × 3 − 9) + 6. The complexities of
inverse Arnold scrambling |x〉, |y〉 and bit-plane scrambling are 56n, 56n and (4 × 3 + 4),
respectively. Finally, the complexity of restoring circuit is 22n−4 × 16 × [12 (2n + 2) − 9].
In summary, the time complexity of the whole extracting procedure is:

O

(
4 × 3 + 4 + 56n + 56n + 22n−4 × 16 × [12(2n + 2) − 9]
+3 × [4n + (12 × 2n − 9)] + 2 × (12 × 3 − 9) + 6

)

= O
(
16 + 112n + 22n−4 × 16(24n + 15) + 84n + 33

)

= O
(
22n−4 × (384n + 240) + 196n + 49

)

≈ O
(
384n · 22n−4

)
(12)
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According to the above analysis, the circuit complexity of embedding and extracting pro-
cedures of the proposed scheme is higher than [24]. But this paper designed the expanding
and restoring circuit realization while other researchers have not mentioned it in their gray
scale image steganography scheme.

5 Conclusion

Based on LSB scheme, a novel quantum image steganography scheme is proposed, where
the NEQR representation is utilized. Therein, the image sizes for cover and information are
4n × 4n and n × n, respectively. The information hiding part contains two procedures. The
first procedure is the preparation of scrambling the original information image. And the
other procedure is embedding work which concludes three steps: The first step is expand-
ing the scrambled information image to the same size as the cover image; the second step
is to scramble the expanded image to a meaningless image; and the third step is embedding
the unordered information image into the cover image. In the information extracting part,
two keys that are only possessed by the operator are used for extracting the unordered infor-
mation image from the steganography image and then the inverse operation of information
hiding part will be executed. The experiments show that the scheme has a good visual qual-
ity than another scheme. Furthermore, the security of the scheme is excellent according to
the analysis.
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