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Abstract Let q be an even prime power and ω be a primitive element of Fq2 . By
analyzing the structure of cyclotomic cosets, we determine a sufficient condition for
ωq−1-constacyclic codes over Fq2 to be Hermitian dual-containing codes. By the CSS con-
struction, two classes of new optimal AQECCs are obtained according to the Singleton
bound for AQECCs.

Keywords Constacyclic codes · AQECCs · Singleton bound

1 Introduction

Since the pioneering work of Shor [1] and Steane [2] in 1995–1996, the research on quantum
error-correcting codes (QECCs) has experienced tremendous growth. Many good QECCs
have been constructed by using classical error-correcting codes, such as Bose-Chaudhuri-
Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, algebraic geometric codes and so
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on. Calderbank et al. [3] studied quantum error correction via codes over GF(4). Grassl et
al. [4] studied optimal maximal distance separable (MDS) quantum codes. Chen et al. [5]
constructed good quantum codes from concatenated algebraic-geometric codes. Later, a lot
of work has been done for the construction of QECCs (see Refs. [6–10]).

In Ref. [12], Steane initially pointed out that QECCs should take into account the asym-
metry which the mechanisms for the occurrence of bit-flip and phase-flip errors are quite
different. This class of quantum error-correcting codes is called asymmetric quantum error-
correcting codes (AQECCs). Since then, many researchers have focused on constructing
AQECCs. In asymmetric quantum channels, the probabilities of occurrence of qudit-flip
errors and phase-shift errors are unequal. Currently, we use the parameters [[n, k, dz/dx]]q
to denote an AQECC, where dz is the minimum distance correcting to phase-shift errors
and dx is the minimum distance correcting to qudit-flip errors. Wang et al. [13] studied
the characterization and constructions of asymmetric quantum codes. Guardia [14, 15] uti-
lized classical BCH codes to construct new families of asymmetric quantum codes. Later,
much good work on AQECCs over finite fields has been done in Refs. [16, 17]. Chen et
al. [19] constructed new asymmetric quantum codes from negacyclic codes which achieve
the Singleton bound for AQECCs. Wang et al. [18] constructed six families of new opti-
mal AQECCs from dual-containing constacyclic codes over finite fields by using the CSS
construction.

Recently, one found that there exist optimal symmetric and asymmetric quantum codes

of length n = q2+1
5 , where q is some prime power. In Ref. [21], for any odd prime power q

with the form 10m + 3 or 10m + 7, Kai et al. obtained two classes of quantum MDS codes

with parameters
[[

q2+1
5 ,

q2+1
5 − 2d + 2, d

]]
, where 2 ≤ d ≤ q+3

2 is even. In Ref. [22],

Zhang and Ge enlarged the minimum distance d to 6m + 2 and 6m + 4, respectively. For
any even prime power q ≡ 2(mod 10) or q ≡ 8(mod 10), Li et al. [23] constructed some

new quantum MDS codes of length n = q2+1
5 by using pseudo-cyclic codes. In a recent

paper [20], Xu et al. obtained two new classes of optimal asymmetric quantum codes from

constacyclic codes. One of them has length n = q2+1
5 and dz > q + 1, where q is an odd

prime power with the form 10t +3 or 10t +7 (t ≥ 0 is integer). Inspired by the above work,

we consider the case that n = q2+1
5 , where q is some even prime power. We construct two

classes of new optimal AQECCs by employing constacyclic codes. Speaking specifically,
for any even prime power q = 2e with e being odd, we construct two classes of asymmetric
quantum codes with parameters as follows:

(i)
[[

q2+1
5 ,

q2+1
5 − 2(s + t + 2), (2s + 3)/(2t + 3)

]]
q2
, where e ≡ 1(mod 4) and 0 ≤

t ≤ s ≤ 3q−16
10 .

(ii)
[[

q2+1
5 ,

q2+1
5 − 2(s + t + 2), (2s + 3)/(2t + 3)

]]
q2
, where e ≡ 3(mod 4) and 0 ≤

t ≤ s ≤ 3q−14
10 .

This paper is organized as follows. In Section 2, some basic background and results about
constacyclic codes are reviewed. In Section 3, we briefly review some basic definitions of
AQECCs. In Section 4, we give a sufficient condition for constacyclic codes which con-
tain their Hermitian dual codes first, and then give our construction of AQECCs. Section 5
concludes the paper.
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2 Preliminaries

Let Fq2 be a finite field with q2 elements, where q is a power of a prime p. For any element
x ∈ Fq2 , we denote the conjugate xq of x by x. Given two vectors x = (x0, x1, . . . , xn−1)

and y = (y0, y1, . . . , yn−1) ∈ F
n
q2
, their Hermitian inner product is defined as

〈x, y〉 = x0y0 + x1y1 + · · · + xn−1yn−1 ∈ Fq2 .

The vectors x and y are called orthogonal with respect to the Hermitian inner product if
〈x, y〉 = 0. A q2-ary linear code C of length n is a nonempty subspace of the vector space
F

n
q2
. For a q2-ary linear code C, the Hermitian dual code of C is defined as

C⊥h =
{
x ∈ F

n
q2

| 〈x, y〉 = 0 f or all y ∈ C
}

.

A q2-ary linear code C of length n is called Hermitian self-orthogonal if C ⊆ C⊥h , and it is
called Hermitian self-dual if C = C⊥h . For a nonzero element η of Fq2 , if C is closed under
the η-constacyclic shift, i.e., if (x0, x1, . . . , xn−1) ∈ C implies (ηxn−1, x0, . . . , xn−2) ∈ C,
then C is said to be an η-constacyclic code. Customarily, a codeword c = (c0, c1, . . . , cn−1)

in C is identified with its polynomial representation c(x) = c0 + c1x +· · ·+ cn−1x
n−1. It is

well known that an η-constacyclic code C ∈ F
n
q2

is an ideal of the quotient ring Fq2 [x]/〈xn−
η〉 and C can be generated by a monic divisor g(x) of xn −η. The polynomial g(x) is called
the generator polynomial of C and the dimension of C is n − k, where k = deg(g(x)).

In the following, let ω be a primitive element of the finite field Fq2 and η = ωq−1. In this
case, the order r of η in F∗

q2
is equal to q +1. Note that ηη̄ = 1 in Fq2 . Hence, the Hermitian

dual code of a q2-ary η-constacyclic code of length n is still η-constacyclic by Lemma 2.1
in Refs. [11]. Assume that gcd(q, n) = 1. Let δ be a primitive rn-th root of unity in some
extension field of Fq2 such that δn = η. Let ξ = δr , then ξ is a primitive n-th root of unity.
Hence,

xn − η =
n−1∏
j=0

(x − δξj ) =
n−1∏
j=0

(x − δ1+jr ).

Let � = {1 + jr| 0 ≤ j ≤ n − 1}. For each i ∈ �, let Ci be the q2-cyclotomic coset
modulo rn containing i. Then, ei(x) = ∏

l∈Ci
(x − δl) is a monic irreducible divisor of

xn − η over Fq2 . Each Ci corresponds to an irreducible divisor of xn − η over Fq2 . Let C
be an η-constacyclic code of length n over Fq2 with generator polynomial g(x). Then the
set Z = {i ∈ �| g(δi) = 0} is called the defining set of C. Obviously, the defining set of
C must be a union of some q2-cyclotomic cosets modulo rn. It is clear to see that C⊥h has
defining set Z⊥h = {z ∈ �| − qz mod rn /∈ Z}. Besides, the defining set of C is a union
of some q2-cyclotomic cosets modulo rn and dim(C) = n − |Z|. The following lemma in
Ref. [21] gives a necessary and sufficient condition of C⊥h ⊆ C.

Lemma 2.1 Let C be an η-constacyclic code of length n over Fq2 with defining set Z ⊆
�. Then C contains its Hermitian dual code if and only if Z ∩ Z−q = ∅, where Z−q =
{−qz mod rn| z ∈ Z}.

Similar to cyclic codes, there exists the following BCH bound for η-constacyclic codes
in Refs. [24] and [25].
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Theorem 2.2 (The BCH bound for constacyclic codes) Assume that gcd(q, n) = 1. Let C
be an η-constacyclic code of length n over Fq2 , and let its generator polynomial g(x) have

the elements {δ1+jr | 0 ≤ j ≤ d − 2} as the roots, where δ is a primitive rn-th root of unity.
Then the minimum distance of C is at least d.

Next we recall several lemmas which are important for constructing asymmetric quan-
tum codes in Refs. [24] and [26].

Lemma 2.3 Let Ci be q2-ary η-constacyclic codes of length n with defining set Ti for
i = 1, 2, then C1 ⊆ C2 if and only if T2 ⊆ T1.

Lemma 2.4 (Singleton bound) If an [n, k, d] linear code over Fq exists, then k ≤ n−d+1.
If the equality k = n − d + 1 holds, then the code is an MDS code.

3 Asymmetric Quantum Error-Correcting Codes

In this section, we first give some basic definitions and results of AQECCs and then give
the well-known CSS construction and Singleton bound for AQECCs. More details about
AQECCs theory, please refer to Refs. [13–20] therein.

Suppose that p is the characteristic of the finite field Fq . LetH be the Hilbert spaceH =
C

qn = C
q ⊗· · ·⊗C

q , whereCq denotes a q-dimensional complex vector space representing
the states of a quantum mechanical system. Let |x〉 be the vectors of an orthonormal basis
of Cq , where the labels x are elements of Fq . Let a, b be two elements of Fq . The unitary
operators X(a) and Z(b) onCq are defined as X(a)|x〉 = |x+a〉 and Z(b)|x〉 = ωtr(bx)|x〉,
respectively, where tr is the trace map from Fq to the prime field Fp and ω = exp(2πi/p)

is a primitive p-th root of unity. Let a = (a1, a2, · · · , an) ∈ F
n
q and b = (b1, b2, · · · , bn) ∈

F
n
q . Denote X(a) = X(a1)⊗X(a2)⊗· · ·⊗X(an) and Z(b) = Z(b1)⊗Z(b2)⊗· · ·⊗Z(bn)

by tensor products of n error operators. The set εn = {X(a)Z(b)| a, b ∈ F
n
q} is an error basis

on C
q and the set Gn = {ωcX(a)Z(b)| a, b ∈ F

n
q, c ∈ Fp} is the error group associated

with εn.
For a quantum error α = ωcX(a)Z(b) ∈ Gn, the quantum weight wQ(α), the X-weight

wX(α) and the Z-weight wZ(α) of α are defined as:

wQ(α) = 
{i : 1 ≤ i ≤ n, (ai, bi) �= (0, 0)},
wX(α) = 
{i : 1 ≤ i ≤ n, ai �= 0},
wZ(α) = 
{i : 1 ≤ i ≤ n, bi �= 0}.

A q-ary asymmetric quantum code C, denoted by [[n, k, dz/dx]]q , is a qk-dimensional sub-
space of the Hilbert space H and can control all qubit-flip errors up to �(dx − 1)/2� and all
phase-flip errors up to �(dz − 1)/2�. The code C also detects dx − 1 qubit-flip errors as well
as detects dz − 1 phase-shift errors. Then we give the well-known CSS construction and
Singleton bound for AQECCs.

Theorem 3.1 [16] If C1 = [n, k1, d1]q2 and C2 = [n, k2, d2]q2 are classical codes and

satisfy C⊥h

1 ⊂ C2, then there is a � = [[n, k1 + k2 − n, dz/dx]]q2 AQECC, where
dz = max

{
wt

(
C2\C⊥h

1

)
, wt

(
C1\C⊥h

2

)}
, dx = min

{
wt

(
C2\C⊥h

1

)
, wt

(
C1\C⊥h

2

)}
.
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Theorem 3.2 (Singleton bound for AQECCs) [19] If asymmetric quantum code C with
parameters [[n, k1 + k2 − n, dz/dx]] exists, then C satisfies the asymmetric quantum
Singleton bound

k ≤ n − dz − dx + 2.

If C satisfies the equality k = n − dz − dx + 2, then it is called an optimal code.

4 Construction of AQECCs

Throughout this section, let q be an even prime power, ω be a primitive element of the finite
field Fq2 and η = ωq−1. We will use constacyclic codes over Fq2 to construct two classes
of new optimal asymmetric quantum codes. Firstly, we give a sufficient condition for η-
constacyclic codes over Fq2 of length nwhich contain their Hermitian dual codes. Secondly,
we construct our new optimal AQECCs.

Let q = 2e, where e > 1 is odd. Then 5 is a divisor of q2+1. Let n = q2+1
5 , then n is odd.

Now, we consider η-constacyclic codes over Fq2 of length n to construct AQECCs. First,
we give a sufficient condition for η-constacyclic codes over Fq2 of length n which contain

their Hermitian dual codes. To do this, we compute q2-cyclotomic cosets modulo (q + 1)n.

Lemma 4.1 Let q = 2e, where e > 1 is odd, n = q2+1
5 , s = (q+6)n

2 and � = {1 + (q +
1)j | 0 ≤ j ≤ n − 1}. Then, for any integer i ∈ �, then q2-cyclotomic cosets Ci modulo
(q + 1)n is given by

1) Cs = {s};
2) Cs−(q+1)j = {s − (q + 1)j, s + (q + 1)j} for 1 ≤ j ≤ n−1

2 .

Proof 1) If j = q2+5q−4
10 , then 1 + (q + 1)j = s. This implies that s must be in �. Since

s = (q+6)n
2 , we have sq2 ≡ s mod (q + 1)n. Therefore, Cs = {s}.

2) We first prove that for each i ∈ � \ {s}, the q2-cyclotomic coset Ci modulo (q + 1)n
has exactly two elements. In fact,

[s − (q +1)j ]q2 ≡ sq2− (q +1)j (q2+1)+ (q +1)j ≡ s + (q +1)j mod (q +1)n.

Similarly, we have

[s + (q + 1)j ]q2 ≡ sq2 + (q + 1)j (q2 + 1) − (q + 1)j ≡ s − (q + 1)j mod (q + 1)n.

Suppose that Ci contains only one element. Since

s − (q + 1)(n − 1)

2
≤ s − (q + 1)j ≤ s − q − 1

and

s + q + 1 ≤ s + (q + 1)j ≤ s + (q + 1)(n − 1)

2

holds, it follows that s − (q +1)j = s + (q +1)j or (q +1)n+ s − (q +1)j = s + (q +1)j .
If s − (q + 1)j = s + (q + 1)j , we have 2(q + 1)j ≡ 0 mod (q + 1)n. This implies that
2j = n. However, 2 ≤ 2j ≤ n − 1, this gives a contradiction. If (q + 1)n + s − (q + 1)j =
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s + (q + 1)j , then we have 2(q + 1)j ≡ 0 mod (q + 1)n. This implies that 2j = n.
However, 2 ≤ 2j ≤ n − 1, this also gives a contradiction. Therefore,

Cs−(q+1)j = {s − (q + 1)j, s + (q + 1)j} f or 1 ≤ j ≤ n − 1

2
.

It remains to prove that Cs−(q+1)k and Cs−(q+1)l are distinct for 1 ≤ k �= l ≤ n−1
2 . Suppose

that Cs−(q+1)k = Cs−(q+1)l for some integers k and l with 1 ≤ k �= l ≤ n−1
2 . Then we can

obtain a contradiction as follows:
Since s− (q+1)(n−1)

2 ≤ s−(q+1)k ≤ s−q−1 and s− (q+1)(n−1)
2 ≤ s−(q+1)l ≤ s−q−1,

we have
s − (q + 1)k = s − (q + 1)l or s − (q + 1)k = s + (q + 1)l.

If the former holds, then it follows that k = l, a contradiction. If the latter holds, then
k + l = mn, where m ∈ Z, this also give a contradiction. Thus, for 1 ≤ k �= l ≤ n−1

2 ,
Cs−(q+1)k and Cs−(q+1)l are distinct.

Note that Cs−(q+1), Cs−2(q+1), · · · , C
s− (q+1)(n−1)

2
are distinct which has two elements

and Cs has only one element, so the result gives all q2-cyclotomic cosets modulo (q + 1)n.
This completes the proof.

In order to construct AQECCs, we give a sufficient condition for η-constacyclic codes
which contain their Hermitian dual codes. We consider two cases.

Case 1: e ≡ 1(mod 4)

Theorem 4.2 Let q = 2e with e ≡ 1(mod 4). Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is an η-constacyclic code over Fq2 of length n with defining

set Z = ⋃δ
j=0 Cr−(q+1)j , where 0 ≤ δ ≤ 3q−16

10 , then C⊥h ⊆ C.

Proof First note that q ≡ 2 mod 10. By Lemma 2.1, it is sufficient to prove thatZ∩Z−q =
∅. Suppose that Z ∩ Z−q �= ∅. Then, there exist two integers k, l, where 0 ≤ k, l ≤ 3q−16

10 ,
such that r − (q + 1)k ≡ −[r − (q + 1)l]qε mod (q + 1)n for ε = 1 and ε = 3.

If ε = 1, then r − (q + 1)k ≡ −[r − (q + 1)l]q mod (q + 1)n. It is equivalent to
(q + 1)r ≡ (q + 1)(k + lq) mod (q + 1)n, which means q2 − 5q − 4 ≡ 10k + 10lq
mod 2(q2 + 1). As 0 ≤ k, l ≤ 3q−16

10 , it follows that 0 ≤ 10k, 10l ≤ 3q − 16, we can
obtain a contradiction by considering the following two cases.

(i) 0 ≤ 10k ≤ 2q − 1. Then 0 ≤ 10k + 10lq ≤ 3q2 − 14q − 1. We express 10k in the
form 10k = tq +u, where t = 0, 1 and 0 ≤ u ≤ q −1. If 0 ≤ 10k +10lq ≤ 2q2 +1,
then q2−5q−4 ≡ 10k+10lq mod 2(q2+1), where q2−5q−4 = (q−6)q+q−4
and 10k + 10lq = (10l + t)q + u. By the division algorithm, it must be q − 6 =
10l + t , then we have q = 10l + t + 6. This contradicts the form of q. If 2q2 + 2 ≤
10k + 10lq ≤ 3q2 − 14q − 1, then 0 ≤ 10k + 10lq − 2(q2 + 1) ≤ q2 − 14q − 3.
This gives that q2 − 5q − 4 = 10k + 10lq − 2(q2 + 1), which is equivalent to
(3q−6)q+q−2 = (10l+t)q+u. By the division algorithm, there is 3q = 10l+t+6.
Since l = 3q−t−6

10 >
3q−16
10 , it is impossible.

(ii) 2q ≤ 10k ≤ 3q − 16. Then 2q ≤ 10k + 10lq ≤ 3q2 − 13q − 16. We express 10k
in the form 10k = 2q + u, where 0 ≤ u ≤ q − 16. If 2q ≤ 10k + 10lq ≤ 2q2 + 1,
then q2 − 5q − 4 = 10k + 10lq = (2 + 10l)q + u. Hence we have q = 10l + 8
by the division algorithm immediately. This contradicts the form of q. If 2q2 + 2 ≤
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10k + 10lq ≤ 3q2 − 13q − 16, then 0 ≤ 10k + 10lq − 2(q2 + 1) ≤ q2 − 13q − 18.
This gives that q2 − 5q − 4 = 10k + 10lq − 2(q2 + 1), which is equivalent to
3q2 −5q −2 = (3q −6)q +q −2 = (10l +2)q +u. Then we have 3q −6 = 10l +2.
Since l = 3q−8

10 >
3q−16
10 , it is also a contradiction.

If ε = 3, then r − (q + 1)k ≡ −[r − (q + 1)l]q3 mod (q + 1)n. Since q4 ≡ 1
mod (q + 1)n, we have

[r − (q + 1)k]q ≡ −[r − (q + 1)l]q4 mod (q + 1)n,

which is equivalent to r − (q + 1)l ≡ −[r − (q + 1)k]q mod (q + 1)n. Since k and l is
equivalent in case (1), then we know that it is also a contradiction. Hence, we conclude that
Z ∩ Z−q = ∅. The desired result follows.

By using Theorem 4.2, we give the first construction of AQECCs in this paper.

Theorem 4.3 Let q = 2e with e ≡ 1(mod 4). Let n = q2+1
5 , then there exist asymmetric

quantum codes with parameters [[n, n− 2(s + t + 2), (2s + 3)/(2t + 3)]]q2 , where 0 ≤ t ≤
s ≤ 3q−16

10 .

Proof Suppose that C2 is a q2-ary η-constacyclic code of length n = q2+1
5 , r = q2−q

2 , where

r = s − (q+1)(n+1)
2 , with defining set Z2 = ⋃t

i=0 Cr−(q+1)i , where 0 ≤ t ≤ 3q−16
10 . Then

the dimension of C2 is n − (2t + 2). Observe that Z2 consists of 2t + 2 consecutive integers
{r − (q +1)t, · · · , r, r + (q +1), · · · , r + (q +1)(t +1)}. From Theorem 2.2, the minimum
distance of C2 is at least 2t+3. From Lemma 2.4, we can see that the minimum distance of C2
is 2t+3. Hence C2 is a q2-ary η-constacyclic code with parameters [n, n−(2t+2), 2t+3]q2 .

Now suppose that C1 is q2-ary η-constacyclic code of length n = q2+1
5 , r = q2−q

2 , where

r = s − (q+1)(n+1)
2 , with defining set Z1 = ⋃s

i=0 Cr−(q+1)i , where 0 ≤ t ≤ s ≤ 3q−16
10 .

Similar to discussion of C2, C1 has parameters [n, n − (2s + 2), 2s + 3]q2 . Then from
Lemma 2.3, Theorem 3.1 and 4.2, there exist asymmetric quantum codes with parameters
[[n, n − 2(s + t + 2), (2s + 3)/(2t + 3)]]q2 .

Remark 4.4 From Theorem 4.3, dz + dx = 2s + 2t + 6. Then from Theorem 3.2, the con-
structed asymmetric quantum codes with parameters [[n, n − 2(s + t + 2), (2s + 3)/(2t +
3)]]q2 attain asymmetric quantum Singleton bound. Hence, these asymmetric quantum
codes are optimal.

Case 2: e ≡ 3(mod 4)

In this case, we can obtain the sufficient condition for η-constacyclic codes which contain
their Hermitian dual codes as follows. The proof is similar to that in Theorem 4.2 and we
omit it here.

Theorem 4.5 Let q = 2e with e ≡ 3(mod 4). Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is an η-constacyclic code over Fq2 of length n with defining

set Z = ⋃δ
j=0 Cr−(q+1)j , where 0 ≤ δ ≤ 3q−14

10 , then C⊥h ⊆ C.

We can use Theorem 4.5 to construct the second family of AQECCs in this paper.
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Theorem 4.6 Let q = 2e with e ≡ 3(mod 4). Let n = q2+1
5 , then there exist asymmetric

quantum codes with parameters [[n, n− 2(s + t + 2), (2s + 3)/(2t + 3)]]q2 , where 0 ≤ t ≤
s ≤ 3q−14

10 .

Proof Suppose that C2 is a q2-ary η-constacyclic code of length n = q2+1
5 , r = q2−q

2 , where

r = s − (q+1)(n+1)
2 with defining set Z2 = ⋃t

i=0 Cr−(q+1)i , where 0 ≤ t ≤ 3q−14
10 . Then

the dimension of C2 is n − (2t + 2). Observe that Z2 consists of 2t + 2 consecutive integers
{r − (q +1)t, · · · , r, r + (q +1), · · · , r + (q +1)(t +1)}. From Theorem 2.2, the minimum
distance of C2 is at least 2t+3. From Lemma 2.4, we can see that the minimum distance of C2
is 2t+3. Hence C2 is a q2-ary η-constacyclic code with parameters [n, n−(2t+2), 2t+3]q2 .

Now suppose that C1 is q2-ary η-constacyclic code of length n = q2+1
5 , r = q2−q

2 , where

r = s − (q+1)(n+1)
2 , with defining set Z1 = ⋃s

i=0 Cr−(q+1)i , where 0 ≤ t ≤ s ≤ 3q−14
10 .

Similar to the discussion of C2, C1 has parameters [n, n − (2s + 2), 2s + 3]q2 . Then from
Lemma 2.3, Theorem 3.1 and 4.5, there exist asymmetric quantum codes with parameters
[[n, n − 2(s + t + 2), (2s + 3)/(2t + 3)]]q2 .

Remark 4.7 From Theorem 4.6, dz + dx = 2s + 2t + 6. Then from Theorem 3.2, the con-
structed asymmetric quantum codes with parameters [[n, n − 2(s + t + 2), (2s + 3)/(2t +
3)]]q2 attain asymmetric quantum Singleton bound. Hence, these asymmetric quantum
codes are optimal.

Example 4.8 Let q = 25 = 32, then n = q2+1
5 = 205, r = q2−q

2 = 496. Suppose
that the defining set of η-constacyclic code C2 is given by Z2 = C496 = {496, 529}. Then
C2 is a MDS code with parameters [205, 203, 3]1024. We also suppose the defining set of
η-constacyclic code C1 is given by Z1 = C496 = {496, 529}. Then, C1 is a MDS code
with parameters [205, 203, 3]1024. From Theorem 3.2, there exists an optimal asymmetric
quantum code with parameters [[205, 201, 3/3]]1024. By taking the different defining sets
of C1 and C2, we can get optimal asymmetric quantum codes in Table 1.

Table 1 Optimal asymmetric quantum codes

[[205, 201, 3/3]]1024 [[205, 185, 17/5]]1024 [[205, 185, 11/11]]1024
[[205, 199, 5/3]]1024 [[205, 183, 19/5]]1024 [[205, 183, 13/11]]1024
[[205, 197, 7/3]]1024 [[205, 193, 7/7]]1024 [[205, 181, 15/11]]1024
[[205, 195, 9/3]]1024 [[205, 191, 9/7]]1024 [[205, 179, 17/11]]1024
[[205, 193, 11/3]]1024 [[205, 189, 11/7]]1024 [[205, 177, 19/11]]1024
[[205, 191, 13/3]]1024 [[205, 187, 13/7]]1024 [[205, 181, 13/13]]1024
[[205, 189, 15/3]]1024 [[205, 185, 15/7]]1024 [[205, 179, 15/13]]1024
[[205, 187, 17/3]]1024 [[205, 183, 17/7]]1024 [[205, 177, 17/13]]1024
[[205, 185, 19/3]]1024 [[205, 181, 19/7]]1024 [[205, 175, 19/13]]1024
[[205, 197, 5/5]]1024 [[205, 189, 9/9]]1024 [[205, 177, 15/15]]1024
[[205, 195, 7/5]]1024 [[205, 187, 11/9]]1024 [[205, 175, 17/15]]1024
[[205, 193, 9/5]]1024 [[205, 185, 13/9]]1024 [[205, 173, 19/15]]1024
[[205, 191, 11/5]]1024 [[205, 183, 15/9]]1024 [[205, 173, 17/17]]1024
[[205, 189, 13/5]]1024 [[205, 181, 17/9]]1024 [[205, 171, 19/17]]1024
[[205, 187, 15/5]]1024 [[205, 179, 19/9]]1024 [[205, 169, 19/19]]1024
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5 Conclusion

In this paper, we have constructed two classes of AQECCs from constacyclic codes over

the finite field Fq2 of length n = q2+1
5 , where q is an odd power of an even prime. The

construction is through cyclotomic cosets and ideal theory. According to the asymmetric
quantum Singleton bound, the resulting AQECCs are optimal and different from the codes
available in the literature. It would be interesting to construct optimal AQECCs from other
types of constacyclic codes.
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