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Abstract EPR steering is a kind of quantum correlation that is intermediate between entan-
glement and Bell nonlocality. In this paper, by recalling the definitions of unsteerability and
steerability, some properties of them are given, e.g, it is proved that a local quantum channel
transforms every unsteerable state into an unsteerable state. Second, a way of quantifying
quantum steering, which we called the generalized steering robustness (GSR), is introduced
and some interesting properties are established, including: (1) GSR of a state vanishes if
and only if the state is unsteerable; (2) a local quantum channel does not increase GSR of
any state; (3) GSR is invariant under each local unitary operation; (4) as a function on the
state space, GSR is convex and lower-semi continuous. Lastly, by using the majorization
between the reduced states of two pure states, GSR of the two pure states are compared, and
it is proved that every maximally entangled state has the maximal GSR.

Keywords Quantum steering · Unsteerability · Steerability · Generalized steering
robustness

1 Introduction

The nonlocality of entangled states, a key feature of quantum mechanics, was first pointed
out in 1935 by Einstein, Podolsky, and Rosen (EPR) [1]. The EPR paper provoked an inter-
esting response from Schrödinger [2], who introduced the term steering for Alice’s ability to
affect Bob’s state through her choice of measurement basis. That is, by measuring her sub-
system, Alice can remotely change the state of Bob’s subsystem in such a way that would
be impossible if their systems were only classically correlated.
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EPR steering was recently given an operational interpretation [3]: Alice wants to con-
vince Bob, who does not trust her, that they share an entangled state. Bob, in order to be
convinced, asks Alice to remotely prepare a collection of states of his subsystem. Alice per-
forms her measurements (which are unknown to Bob) and communicates the results to him.
By looking at the conditional states prepared by Alice, Bob is able to certify if they must
have come from measurements on an entangled state. Thus, it follows that steerability is
stronger than nonseparability and weaker than Bell nonlocality.

Since then, although our understanding of EPR steering has advanced greatly recently,
two fundamental questions remains open: Given that a quantum state, (i) how to judge
it steerable or not? (ii) how to quantify it? There exist many works which demonstrate
steering through the violation of various kinds of steering inequalities [4–14]. Apart from
the fundamental interest in steering, there is also an applied motivation for studying and
implementing [15, 16]. Skrzypczyk et al. introduced an operationally motivated method by
semidefinite programming to quantify EPR steering of arbitrary finite-dimensional bipartite
quantum states [17, 18].

Usually, robustness describes the endurance of some property of an object with respect
to disturbance. There exist some works on robustness of quantum features [13, 19–23],
where Piani and Watrous introduced steering robustness of a state and applied it to prove
that every steerable state is useful in subchannel discrimination with one-way LOCC mea-
surements[13], Vidal and Tarrach discussed robustness of entanglement by investigating the
effect of mixing certain entangled state with any separable state and investigated the mini-
mal amount of entanglement-free mixing needed to wipe out all entanglement[19], Steiner
introduced the generalized robustness of entanglement by mixing a state with any state (not
necessarily separable)[20], Meng introduced and discussed in [21, 22] the robustness and
generalized robustness of contextuality and Guo possed the robustness of quantum corre-
lation[23]. Based on these ideas, our aim is to introduce generalized steering robustness,
which can quantify steerability of a quantum state and describe steering endurance against
disturbance.

The reminder parts of this paper are organized as follows. In Section 2, we recall the
definitions of unsteerability and steerability and discuss some related properties. In Sec-
tion 3, we introduce the generalized steering robustness (GSR) of a state and discuss its
properties. In Section 4, by using the majorization between the reduced states of two pure
states, we compare GSR of the two states. The last section is devoted to a summary and the
conclusions of this paper.

2 Unsteerable and Steerable Quantum States

Consider a bipartite system HAB = HA ⊗ HB , denote by DAB and PAB the sets of all
quantum states and pure states on HAB , respectively. Alice and Bob share a quantum state
ρ. On her subsystem, Alice makes mA positive operator-valued measurements (POVMs):
Mx = {Ma|x}oA

a=1(x = 1, 2, . . . , mA). Put

MA = {M1, M2, . . . , MmA
} ≡ {Ma|x}a,x,

called a measurement assemblage of Alice, in which x denotes the measurement choice of
Alice and a is the corresponding output. When Alice chooses a measurement x, i.e. Mx ,
from her measurement assemblage MA and get output a, the possible states of Bob are as
follows:

ρa|x := trA((Ma|x ⊗ IB)ρ). (1)
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We call the collection {ρa|x}a,x of un-normalized density operators ρa|x a state assemblage
of Bob induced by a state ρ and a measurement assemblage MA.

Definition 2.1 [3] Let ρ ∈ DAB . A state ρ of AB is said to be unsteerable by Alice, if for
every measurement assemblage MA of A, there exists a probability distribution {π(λ)}λ∈�

and a family of quantum states {σ(λ)}λ∈� in DB such that

ρa|x =
∑

λ∈�

π(λ)pA(a|x, λ)σ (λ), ∀x, a, (2)

where pA(a|x, λ) ≥ 0 for all a, x and all λ ∈ �, satisfying
∑oA

a=1 pA(a|x, λ) = 1 for
all x, λ. In this case, we call the system of (2) a local hidden state (LHS) model of ρ with
respect to MA, or an LHS model of the state assemblage {ρa|x}a,x .

A state ρ of AB is said to be steerable by Alice if it is not unsteerable. Explicitly, ρ is
steerable by Alice means that Alice has a measurement assemblage MA such that the state
assemblage {ρa|x}a,x has no an LHS model (2).

Unsteerability (steerability) is from [3], the definition given above is more mathematical.
Here is a physical explanation. According to [3], quantum steerability means the possi-
bility of remotely generating ensembles that could not be produced by an LHS model.
When a state ρ is unsteerable by Alice, for every chosen measurement assemblage MA,
an LHS model (2) exists, which can refer to the situation where a source sends a classi-
cal message λ to Alice with a probability π(λ), and a corresponding quantum state σ(λ)

to Bob. When Alice decides to apply a POVM Mx = {Ma|x}oA

a=1, the variable λ instructs
Alice’s measurement device to output the result a with probability pA(a|x, λ). Bob does
not have access to the classical variable λ, the final assemblage he observed is composed
by the elements π(λ), pA(a|x, λ) and σ(λ) according to (2). Moreover, (2) implies that∑

λ∈� π(λ)σ (λ) = ρB.

Next let us introduce unsteerability and steerability of a state by Alice with a given
measurement assemblage MA.

Definition 2.2 Let ρ ∈ DAB and let

MA = {{Ma|x}oA

a=1 : x = 1, 2, . . . , mA}
be a measurement assemblage of A. If there exists a probability distribution {π(λ)}λ∈�

and a family of quantum states {σ(λ)}λ∈� in DB such that (2) holds, then ρ is said to be
unsteerable by Alice withMA. Otherwise, we say that ρ is steerable by Alice withMA.

By definition, a state ρ is unsteerable by Alice if and only if for every MA, it is unsteer-
able by Alice with MA; ρ is steerable by Alice if and only if there exists an MA such that
ρ is steerable by Alice with MA.

In what follows, we denote by USA and QSA the sets of all states of HAB that are
unsteerable and steerable by Alice, respectively. If we use USA(MA) (resp. SA(MA)) to
denote the set of all states which are unsteerable (resp. steerable) by Alice with MA, then
we have

USA =
⋂

MA

USA(MA),QSA =
⋃

MA

SA(MA), (3)

where the intersection and the union were taken over all measurement assemblages MA of
Alice. These expressions can help us to prove that the set USA is a convex compact subset
of DAB and so QSA is an open subset of DAB , see [30] for the proofs.

Example 2.1 Every separable state is unsteerable by Alice.
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Indeed, when ρ is separable, we write ρ = ∑d
k=1 πkρ

A
k ⊗ρB

k and get that for any MA,
it holds that

trA[(Ma|x ⊗ IB)ρ] =
d∑

k=1

πkpA(a|x, k)ρB
k ,

where pA(a|x, k) = tr(Ma|xρA
k ). Thus, ρ is unsteerable by Alice with any MA. Thus, ρ is

unsteerable by Alice.

Example 2.2 [30] Let |ψ〉 = 1√
n

∑n
i=1 |εi〉|εi〉 be a maximally entangled state induced by

a real orthonormal basis {|εi〉}ni=1 for Cn. Then ρ = |ψ〉〈ψ | is steerable by Alice.

Proof Notice that

trA
(
(|x∗〉〈x∗| ⊗ IB)ρ

) = 1

n
|x〉〈x|, ∀|x〉 ∈ C

n, (4)

where |x∗〉 denotes the conjugation of |x〉. Choose an orthonormal basis e = {|ei〉}ni=1 for
HA = C

n and an n × n unitary matrix U = [uij ] such that
∑

i sgn|uij | ≥ 2 for each j , that
is, each row of U has at least two nonzero entries. Then f = Ue = {∑n

i=1 uij |ei〉}nj=1 is an
orthonormal basis for Cn with

(R|ei〉) ∩ (R|fj 〉) = {0}, ∀i, j. (5)

Define

P = {|e∗
i 〉〈e∗

i | : i = 1, 2, . . . , n}, Q = {|f ∗
i 〉〈f ∗

i | : i = 1, 2, . . . , n},
then MA := {P,Q} is a measurement assemblage of Alice.

Suppose that ρ = |ψ〉〈ψ | is unsteerable by Alice. Then for MA, there exists a prob-
ability distribution {π(λ)}λ∈� and a family of quantum states {σ(λ)}λ∈� in DB such
that

trA((|e∗
i 〉〈e∗

i | ⊗ IB)ρAB) =
∑

λ∈�

π(λ)pA(i|P, λ)σ (λ), ∀i,

trA((|f ∗
i 〉〈f ∗

i | ⊗ IB)ρAB) =
∑

λ∈�

π(λ)pA(i|Q, λ)σ(λ), ∀i,

where pA(i|x, λ) ≥ 0 for all i = 1, 2, . . . , n, x = P, Q and all λ ∈ �, satisfying∑n
i=1 pA(i|x, λ) = 1 for all x = P,Q, λ ∈ �. By using (4), we get that

∑

λ∈�

π(λ)pA(i|P, λ)σ (λ) = 1

n
|ei〉〈ei |(i = 1, 2, . . . , n),

∑

λ∈�

π(λ)pA(i|Q, λ)σ(λ) = 1

n
|fi〉〈fi |(i = 1, 2, . . . , n).

Thus, for each λ ∈ � and i = 1, 2, . . . , n, there exist ai,λ, bi,λ ∈ [0, 1] such that

π(λ)pA(i|P, λ)σ (λ) = 1

n
ai,λ|ei〉〈ei |,

π(λ)pA(i|Q, λ)σ(λ) = 1

n
bi,λ|fi〉〈fi |.

Because that
∑n

i=1 pA(i|P, λ) = 1 for each λ ∈ �, we conclude that for each λ ∈ �, there
exists an iλ such that pA(iλ|P, λ) �= 0 and so

π(λ)σ (λ) = aiλ,λ

npA(iλ|P, λ)
|eiλ〉〈eiλ |.
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This shows that

{π(λ)σ (λ) : λ ∈ �} ⊂
n⋃

i=1

(R|ei〉〈ei |) := SP .

Similarly,

{π(λ)σ (λ) : λ ∈ �} ⊂
n⋃

i=1

(R|fi〉〈fi |) := SQ.

Thus, {π(λ)σ (λ) : λ ∈ �} ⊂ SP

⋂
SQ. From (5), we see that SP

⋂
SQ = {0}. Thus,

π(λ)σ (λ) = 0 for all λ ∈ �. This contradicts that fact that
∑

λ∈�

π(λ)σ (λ) = ρB.

The following theorem gives a characterization of unsteerable states.

Theorem 2.1 Let ρ ∈ DAB . Then ρ is unsteerable by Alice if and only if for every mea-
surement assemblageMA = {{Ma|x}oA

a=1 : x = 1, 2, . . . , mA} of Alice, there exists a family
{σ ′(λ)}λ∈� of positive operators onHB such that

ρa|x =
∑

λ∈�

pA(a|x, λ)σ ′(λ), ∀x, a, (6)

where pA(a|x, λ) ≥ 0 for all x, a and all λ, satisfying
∑oA

a=1 pA(a|x, λ) = 1 for all x and
all λ.

Proof The necessity is proved by taking σ ′(λ) = π(λ)σ (λ). To prove the sufficiency, we
assume that for every MA, a family {σ ′(λ)}λ∈� satisfying (6) does exist. Then we have

∑

λ∈�

tr(σ ′(λ)) = tr

(
∑

a

ρa|x

)
= tr(ρ) = 1.

Put π(λ) = tr(σ ′(λ)) and define σ(λ) = 1
π(λ)

σ ′(λ) if π(λ) �= 0; σ(λ) = ρB (the reduced
state of ρ on B) if π(λ) = 0. Then {σ(λ)}λ∈� ⊂ DB and

∑
λ∈� π(λ) = 1, (6) becomes (2).

This shows that ρ is unsteerable by Alice.

Corollary 2.1 Let ρ ∈ USA and T ≥ 0 such that ρ′ := (IA ⊗ T )ρ(IA ⊗ T †) �= 0. Then
ρT := 1

tr(ρ′) ρ
′ ∈ USA.

Proof Since ρ ∈ USA, it follows from Theorem 2.1 that for every MA, there exists a
family {σ ′(λ)}λ∈� of positive operators on HB such that (6) holds. Hence, for each x and
each a, we have

trA[(Ma|x ⊗ IB)ρT ] = 1

tr(ρ′)
T trA[(Ma|x ⊗ IB)ρ]T † =

∑

λ∈�

pA(a|x, λ)σ (λ),

where σ(λ) = 1
tr(ρ′) T σ ′(λ)T † are positive operators on HB . Consequently, Theorem 2.1

yields that ρT ∈ USA.
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At the end of this section, we discuss the influence of a local quantum channel on unsteer-
ability of a state. To do this, we let 	 be a quantum channel of a quantum system described
by a Hilbert space H. It was proved by Choi in [24] that 	 has the form of

	(X) =
m∑

i=1

EiXE
†
i , ∀X ∈ B(H),

where E1, E2, . . . , Em (called Kraus operators of 	) are some bounded linear operators on
H satisfying

∑m
i=1 E

†
i Ei = I . Define the dual channel 	† of 	 as

	†(X) =
∑

i

E
†
i XEi, ∀X ∈ B(H).

Then 	†(I ) = I and

tr(X†	(Y)) = tr((	†(X))†Y ), ∀X, Y ∈ B(H).

Theorem 2.2 Let ρ ∈ USA and 	 = 	A ⊗ 	B be a local quantum channel. Then 	(ρ) is
unsteerable by Alice.

Proof Since ρ ∈ USA, we see by definition that there exists a probability distribution
{π(λ)}λ∈� and a family of quantum states {σ(λ)}λ∈� in DB such that for any POVM Mx =
{Ma|x}oA

a=1 of HA, (2) holds, where pA(a|x, λ) ≥ 0 for all a, x and all λ ∈ �, satisfying∑oA

a=1 pA(a|x, λ) = 1(λ ∈ �). For any POVM Mx = {Ma|x}oA

a=1 on HA, we see that

Mx′ := {	†
A(Ma|x)}oA

a=1 = {Ma|x′)}oA

a=1 is a POVM of HA and so (2) yields that

trA[(Ma|x ⊗ IB)	(ρ)] = 	B

(
trA[	†

A(Ma|x) ⊗ IB)ρ]
)

=
∑

λ∈�

π(λ)pA(a|x′, λ)	B(σ(λ)).

This shows that 	(ρ) is unsteerable by Alice.

3 Generalized Steering Robustness

In order to quantify the steerability of quantum states, the steering robustness of states was
introduced by Piani and Watrous [13], the definition is as follows.

RA→B
steer (ρ) = sup

MA

R(A), (7)

where the supremum was taken over all measurement assemblages MA = {Ma|x} on A, A
is the assemblage induced by a state ρ and MA, and R(A) is the steering robustness of A,
defined essentially by

R(A) = min
{
t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ USA(MA)

}
, (8)

where

τρ,σ (t) = 1

1 + t
ρ + t

1 + t
σ, t ∈ [0, +∞). (9)

In this section, we introduce the generalized steering robustness in a way similar to the
generalized robustness of entanglement [20] and the generalized robustness of contextuality
[22], and explore the related properties.
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For all ρ, σ ∈ DAB , we define

�ρ,σ = {t ∈ [0, +∞) : τρ,σ (t) ∈ USA}.
It was proved [19, Theorem 1] that any state ρ ∈ DAB can be expressed as

ρ = (1 + t0)ρ
+ − t0ρ

−,

where ρ+ is a separable state, ρ− = 1
dAB

IAB and t0 is a non-negative finite real number.
Thus, τρ,ρ−(t0) = ρ+, which is unsteerable by Alice. Hence, t0 ∈ �ρ,ρ− . Generally, �ρ,σ

may be empty. When �ρ,σ �= ∅, it must be closed since USA is closed and has a lower
bound 0. So, it has a minimal element. This leads to the following definition.

Definition 3.1 For every ρ, σ ∈ DAB , when �ρ,σ �= ∅, define RA
s (ρ‖σ) = min �ρ,σ ;

when �ρ,σ = ∅, define RA
s (ρ‖σ) = +∞. We call

RA
s (ρ) := inf{RA

s (ρ‖σ) : σ ∈ DAB} (10)

the generalized steering robustness (GSR) of ρ.
By definition, we see that if ρ = (1 + t)ρ1 − tσ for a nonnegative real number t , an

unsteerable state ρ1 by Alice, and a state σ , then RA
s (ρ) ≤ RA

s (ρ||σ) ≤ t. Moreover, if
there are nonnegative real numbers a, b, an unsteerable state ρ1 by Alice and a state σ such
that ρ = bρ1 − aσ , we have 1 = b − a and so RA

s (ρ) ≤ RA
s (ρ||σ) ≤ a.

Since RA
s (ρ) ≤ Rs

(
ρ‖ρ−) ≤ t0 < ∞, we see that 0 ≤ RA

s (ρ) < +∞ for every state
ρ ∈ DAB . Also, we have

RA
s (ρ) = inf{RA

s (ρ‖σ) : σ ∈ DAB with �ρ,σ �= ∅} (11)

for all state ρ. Thus, for each state ρ, there is a sequence {σn} ⊂ DAB with �ρ,σn �= ∅ for
all n such that

tn := RA
s (ρ‖σn) → t := RA

s (ρ)

as n → +∞. Since DAB is a compact set, {σn} has a convergent subsequence {σnk
}, let

σ = limk→+∞ σnk
. Thus, as k → +∞,

τρ,σnk
(tnk

) = 1

1 + tnk

ρ + tnk

1 + tnk

σnk
→ 1

1 + t
ρ + t

1 + t
σ = τρ,σ (t).

Since USA is convex and closed ([29], [30]), we conclude that τρ,σ (t) ∈ USA. This shows
that RA

s (ρ‖σ) ≤ t = RA
s (ρ) ≤ RA

s (ρ‖σ). Hence, t = RA
s (ρ) = RA

s (ρ‖σ). Consequently,
for any state ρ, it holds that

RA
s (ρ) = min{RA

s (ρ‖σ) : σ ∈ DAB with �ρ,σ �= ∅} (12)

= min{RA
s (ρ‖σ) : σ ∈ DAB}. (13)

From this formula, one can check that

RA
s (ρ) = min{t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ USA} (14)

for every state ρ. Combining (7), (8) with (14), we obtain that for every state ρ,

RA
s (ρ) = min{t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ USA}

≥ min
⋂

MA

{t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ USA(MA)}

= sup
MA

min
{
t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ USA(MA)

}

= RA→B
steer (ρ).
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This gives a relationship between the possed steering robustness RA
s (ρ) and the previous

one RA→B
steer (ρ).

Moreover, from the definitions of the robustness of quantum correlation (RoQC)[23],
the robustness of entanglement (RoE) [19], the generalized robustness of entanglement
(GRoE)[20], one can check that

RoQC: Rc(ρ) = min{t ∈ [0, +∞) : ∃σ ∈ CCAB s.t. τρ,σ (t) ∈ CCAB}, where CCAB is
the set of all classically correlated states of AB [23, 25–27];

RoE: Re(ρ) = min{t ∈ [0, +∞) : ∃σ ∈ SepAB s.t. τρ,σ (t) ∈ SepAB}, where SepAB is
the set of all separable states of AB [19];

GRoE: Rge(ρ) = min{t ∈ [0, +∞) : ∃σ ∈ DAB s.t. τρ,σ (t) ∈ SepAB} [20].

Combining these formulas with (14), we obtain the following relations:

Rc(ρ) ≥ Re(ρ) ≥ Rge(ρ) ≥ RA
s (ρ) ≥ RA→B

steer (ρ), ∀ρ ∈ DAB. (15)

Some more properties of GSR are given by the following Theorems 3.1–3.3.

Theorem 3.1 The generalized steering robustness functionRs has the following properties.

(1) RA
s (ρ) = 0 if and only if ρ ∈ USA.

(2) For each state ρ and a local quantum channel 	 = 	A ⊗ 	B , it holds that
RA

s (	(ρ)) ≤ RA
s (ρ).

(3) Rs is invariant under each local unitary operator U = UA ⊗ UB : RA
s (ρ) =

RA
s (UρU†).

(4) RA
s (ρ) is convex for ρ, that is, RA

s (ρ) ≤ ∑m
k=1 pkRA

s (ρk) provided that ρ =∑m
k=1 pkρk, pk ≥ 0,

∑m
k=1 pk = 1 and ρk ∈ DAB(k = 1, 2, . . . , m).

(5) Rs : DAB → R is lower-semi continuous, i.e. when ρn ∈ DAB(n = 1, 2, . . .) with
lim

n→∞ρn = ρ, it holds that

RA
s (ρ) = RA

s ( lim
n→∞ρn) ≤ lim

n→∞
RA

s (ρn).

Proof (1) Suppose that RA
s (ρ) = 0, then (13) implies that there exists a state σ such that

RA
s (ρ‖σ) = 0. We have ρ = τρ,σ (0) ∈ USA. Conversely, if ρ ∈ USA, then for any

state σ , we have τρ,σ (0) = ρ ∈ USA, so RA
s (ρ) = 0.

(2) By (13), there exists a state σ such that RA
s (ρ) = RA

s (ρ‖σ), and

τρ,σ (RA
s (ρ)) = 1

1 + RA
s (ρ)

ρ + RA
s (ρ)

1 + RA
s (ρ)

σ ∈ USA.

By Theorem 2.2, we know that

1

1 + RA
s (ρ)

	(ρ) + RA
s (ρ)

1 + RA
s (ρ)

	(σ) = 	
(
τρ,σ (RA

s (ρ))
)

∈ USA.

This shows that
RA

s (	(ρ)) ≤ RA
s (ρ||	(σ)) ≤ RA

s (ρ).

(3) By using (2) for 	(X) = (UA⊗UB)X(UA⊗UB)†, we see that RA
s (UρU†) ≤ RA

s (ρ)

for all ρ ∈ DAB and all unitary operators UA and UB on HA and HB , respectively. By
using (2) for 	(X) = (UA ⊗ UB)†X(UA ⊗ UB) and the state UρU†, we obtain that

RA
s (ρ) = RA

s (U†UρU†U) ≤ RA
s (UρU†).

Thus, RA
s (ρ) = RA

s (UρU†).
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(4) By (13), for any k, there exists a state σk such that τρk,σk
(RA

s (ρk)) ∈ USA and

ρk = (1 + RA
s (ρk))τρk,σk

(RA
s (ρk)) − RA

s (ρk)σk.

So

ρ =
∑

k

pkρk = ξ1 − ξ2,

where

ξ1 =
∑

k

pk(1 + RA
s (ρk))τρk,σk

(RA
s (ρk)), ξ2 =

∑

k

pkRA
s (ρk)σk.

When ξ2 = 0, we have
∑m

k=1 pkRA
s (ρk) = tr(ξ2) = 0, and so

ρ =
m∑

k=1

pkτρk,σk
(RA

s (ρk)) ∈ USA

since USA is convex ([29, 30]). Hence, conclusion (1) yields that RA
s (ρ) = 0 ≤∑m

k=1 pkRA
s (ρk).

When ξ2 �= 0, we have ξ2
tr(ξ2)

∈ DAB and ξ1 �= 0. Thus,

ξ1

tr(ξ1)
=

m∑

k=1

pk(1 + RA
s (ρk))

tr(ξ1)
τρk,σk

(RA
s (ρk)) ∈ USA

by the convexity of USA. Since ρ = ξ1 − ξ2, we get tr(ξ1) = tr(ξ2) + 1 and
consequently,

ρ = (1 + tr(ξ2))
ξ1

tr(ξ1)
− tr(ξ2)

ξ2

tr(ξ2)
.

Therefore,

RA
s (ρ) ≤ tr(ξ2) =

m∑

k=1

pkRA
s (ρk).

(5) Let {ρn} ⊂ DAB with lim
n→∞ρn = ρ, and put t = lim

n→∞
RA

s (ρn). Then {ρn}∞n=1 has a

subsequence {ρnk
}∞k=1 such that

tk := RA
s (ρnk

) → t (k → ∞).

From the definition of RA
s (ρ), we can choose σk ∈ USA such that

tk = RA
s (ρnk

) = RA
s (ρnk

‖σk)(k = 1, 2, . . .).

Since DAB is compact, {σk} has a convergent subsequence, say {σkj
}∞j=1. Put σ =

lim
j→∞σkj

. Then

1

1 + tkj

ρnkj
+ tkj

1 + tkj

σkj
→ 1

1 + t
ρ + t

1 + t
σ,
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as j → ∞. Note that

1

1 + tkj

ρnkj
+ tkj

1 + tkj

σkj
∈ USA(j = 1, 2, . . .)

we conclude that 1
1+t

ρ+ t
1+t

σ ∈ USA(Theorem 2.2). Thus, RA
s (ρ) ≤ RA

s (ρ‖σ) ≤ t .
This shows that

RA
s ( lim

n→∞ρn) ≤ lim
n→∞

RA
s (ρn).

Theorem 3.2 Let |	〉, |
〉 ∈ PAB with the same Schmidt coefficients. Then

RA
s (|
〉〈
|) = RA

s (|	〉〈	|).

Proof Denote Schmidt decompositions of |	〉 and |
〉 as follows, respectively,

|
〉 =
m∑

i=1

ai |γ A
i 〉 ⊗ |γ B

i 〉, |	〉 =
m∑

i=1

ai |f A
i 〉 ⊗ |f B

i 〉,

where ai > 0 for all i with
m∑

i=1
a2
i = 1, {γ A

i } and {f A
i } are two orthonormal sets in HA,

{γ B
i } and {f B

i } are two orthonormal sets in HB . Choose unitary operators UA on HA and
UB on HB such that UA|f A

i 〉 = |γ A
i 〉 and UB |f B

i 〉 = |γ B
i 〉 for all i. Then

|
〉〈
| = (UA ⊗ UB)|	〉〈	|(UA ⊗ UB)†.

It follows from Theorem 3.1(3) that RA
s (|
〉〈
|) = RA

s (|	〉〈	|).

Theorem 3.3 Let ρ ∈ DAB and {Mk}mk=1 be a quantum measurement on B, i.e.∑m
k=1 M

†
k Mk = IB . Denote

ρk = 1

pk(ρ)
(IA ⊗ Mk)ρ(IA ⊗ Mk)

†, (16)

where pk(ρ) = tr((IA ⊗ Mk)ρ(IA ⊗ Mk)
†) �= 0. Then

RA
s (ρ) ≥

m∑

k=1

pk(ρ)RA
s (ρk).

Proof By definition, there exists a state σ such that τρ,σ (RA
s (ρ)) ∈ USA and

ρ = (1 + RA
s (ρ))τρ,σ (RA

s (ρ)) − RA
s (ρ)σ. (17)

Put qk = pk(τρ,σ (RA
s (ρ))), and

ρ′
k = (IA ⊗ Mk)τρ,σ (RA

s (ρ))(IA ⊗ Mk)
†

qk

(qk > 0), ρ′
k = 1

dA

IA ⊗ 1

dB

IB(qk = 0),

σk = (IA ⊗ Mk)σ(IA ⊗ Mk)
†

pk(σ )
(pk(σ ) > 0), σk = 1

dA

IA ⊗ 1

dB

IB(pk(σ ) = 0).
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By (17), we have

ρk = 1

pk(ρ)

[
(1 + RA

s (ρ))(IA ⊗ Mk)τρ,σ (RA
s (ρ))(IA ⊗ Mk)

†

− RA
s (ρ)(IA ⊗ Mk)σ(IA ⊗ Mk)

†
]

= (1 + RA
s (ρ))

qk

pk(ρ)
· ρ′

k − RA
s (ρ)

pk(σ )

pk(ρ)
· σk

=
(

1 + RA
s (ρ)

pk(σ )

pk(ρ)

)
ρ′

k − RA
s (ρ)

pk(σ )

pk(ρ)
σk.

Corollary 2.1 implies that ρ′
k ∈ USA for all k. Also, σk ∈ DAB . By definition, we get

RA
s (ρk) ≤ RA

s (ρ)
pk(σ )

pk(ρ)
(k = 1, 2, . . . , m).

Furthermore,

m∑

k=1

pk(ρ)RA
s (ρk) ≤

m∑

k=1

RA
s (ρ)pk(σ ) = RA

s (ρ).

4 Comparison of GSR of Different States

We first introduce the concept of majorization between two vectors. Let x =
(x1, x2, · · · , xd) and y = (y1, y2, · · · , yd) be two d-dimensional real vectors. We say that
x is majorizated by y, written as x ≺ y, if x1 ≥ x2 ≥ . . . ≥ xd, y1 ≥ y2 ≥ . . . ≥ yd and

k∑

j=1

xj ≤
k∑

j=1

yj (k = 1, 2, · · · , d − 1),

d∑

j=1

xj =
d∑

j=1

yj .

For every Hermitian operator X on C
d , we use λ(X) to denote the vector consisting d

eigenvalues c1, c2, . . . , cd of X in decreasing order, i.e. λ(X) = (c1, c2, . . . , cd) with c1 ≥
c2 ≥ . . . ≥ cd . Let ρ and σ be Hermitian operators. We say that ρ is majorizated by σ

written as ρ ≺ σ if λ(ρ) ≺ λ(σ). Note that the relation ≺ is not a total ordering, generally,
unless dim(H) = 2. The following example shows that the maximally mixed state 1

n
In is a

minimal element of (D(Cn), ≺).

Example 4.1 For any state ρ of Cn, we have σ := 1
n
In ≺ ρ.

Indeed, let λ(ρ) = (x1, x2, . . . , xn) with

x1 ≥ x2 ≥ · · · ≥ xm ≥ 1

n
> xm+1 ≥ · · · ≥ xn,

and let λ(σ) = (y1, y2, . . . , yn) with yk = 1
n

for all k. Then

k∑

j=1

xj ≥ k

n
=

k∑

j=1

yj (k = 1, 2, . . . , m).
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When n > k > m, we see from x1 + x2 + . . . + xn = 1 and 1
n

> xj (j = k + 1, . . . , n) that

k∑

j=1

xj = 1 −
n∑

j=k+1

xj > 1 − n − k

n
= k

n
=

k∑

j=1

yj .

Also,
∑n

j=1 xj = ∑n
j=1 yj = 1. This shows that σ ≺ ρ.

In what follows, we will discuss the GSR of states by using majorization.

Lemma 4.1 [28] Let ρ and σ be Hermitian operators on a finite dimensional Hilbert space.
Then ρ ≺ σ if and only if there exists a probability distribution {pj }mj=1 and a set {Uj }mj=1
of unitary matrices such that

ρ =
m∑

j=1

pjUjσU
†
j .

Theorem 4.1 Let |φ〉, |ψ〉 ∈ PAB , ρφ := trA (|φ〉〈φ|) ≺ ρψ := trA (|ψ〉〈ψ |). Then
RA

s (|ψ〉〈ψ |) ≤ RA
s (|φ〉〈φ|).

Proof Since ρφ ≺ ρψ, we see from Lemma 4.1 that there exists a probability distribution
{pj }mj=1 and a set {Uj }mj=1 of unitary matrices {Uj }mj=1 such that

ρφ =
m∑

j=1

pjUjρψU
†
j . (18)

First, ρφ is represented as a 2 × 2 operator matrix

ρφ =
(

ρ1 0
0 0

)

relative to the space decomposition HAB = ker(ρφ)⊥
⊕

ker(ρφ), where ρ1 is an invertible
positive operator on ker(ρφ)⊥. From (4.1), we have

ker(ρφ) ⊆ ker(UjρψU
†
j ), j = 1, 2, . . . , m

and so

UjρψU
†
j =

(
σj 0
0 0

)
,

where σj is a state on ker(ρφ)⊥ with ρ1 = ∑
j pjσj . Choose

Mj = U
†
j

⎛

⎝
√

pjσ
1
2

j ρ
− 1

2
1 0

0 1√
m

Iker(ρφ)

⎞

⎠ (j = 1, 2, . . . , m).

Then
m∑

j=1

M
†
j Mj = IB,

MjρφM
†
j = pjρψ(j = 1, 2, . . . , m).

It is clear that {Mj }mj=1 is a POVM. When quantum state |φ〉 is measured by {Mj }mj=1, the
corresponding state is

|φj 〉 = (IA ⊗ Mj)|φ〉
√

〈φ|(IA ⊗ M
†
j Mj )|φ〉

,
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satisfying

trA
(|φj 〉〈φj |

) = 1

tr
(
(IA ⊗ M

†
j Mj )|φ〉〈φ|

)
(
Mj trA (|φ〉〈φ|) M

†
j

)

= 1

tr
(
(IA ⊗ M

†
j Mj )|φ〉〈φ|

)
(
MjρφM

†
j

)

= pj

tr
(
(IA ⊗ M

†
j Mj )|φ〉〈φ|

)ρψ

= pj

tr
(
(IA ⊗ M

†
j Mj )|φ〉〈φ|

) trA (|ψ〉〈ψ |)

= trA (|ψ〉〈ψ |) .

Thus
trA

(|φj 〉〈φj |
) = trA (|ψ〉〈ψ |) ,∀j.

Therefore, |φj 〉(∀j) and |ψ〉 have the same Schmidt coefficients. It follows from Theorem
3.2 that

RA
s (|ψ〉〈ψ |) = RA

s

(|φj 〉〈φj |
)
(∀j).

Using Theorem 3.3 again, we get that

RA
s (|ψ〉〈ψ |) =

∑

j

pjRA
s (|ψ〉〈ψ |) =

∑

j

pjRA
s (|φj 〉〈φj |) ≤ RA

s (|φ〉〈φ|).

Note that there exists the majorization relation between any two qubit states, we see from
Theorem 4.1 that for any two pure states |φ〉 and |ψ〉 for a two-qubit system, their reduced
states ρφ and ρψ are comparable with respect to the majorization and so their GSR can be
compared. However, for the mixed state case, comparison of GSR of two states is very hard.
However, the following Corollary 4.1 shows that GSR of any state ρ is always less than or
equal to GSR of any maximally mixed state.

Corollary 4.1 Let {|εi〉}ni=1 be an orthonormal basis for HA = HB = C
n, |φ〉 =

1√
n

∑n
i=1 |εi〉|εi〉 be a maximally entangled state. Then for every state ρ ∈ DAB , it holds

that

RA
s (ρ) ≤ RA

s (|φ〉〈φ|) ≤ n2

2
. (19)

Proof It is easy to check that for every pure state |ψ〉 ∈ PAB , the reduced state ρφ of ρAB

on system A is the maximally mixed state 1
n
In. From Example 4.1, we know that ρφ ≺ ρψ

and so Theorem 4.1 implies that RA
s (|ψ〉〈ψ |) ≤ RA

s (|φ〉〈φ|). Furthermore, for every mixed
state ρ ∈ DAB , it has its spectral decomposition ρ = ∑n

i=1 pi |ψi〉〈ψi |. From the convexity
of Rs (Theorem 3.1(4)), we have

RA
s (ρ) ≤

n∑

i=1

piRA
s (|ψi〉〈ψi |) ≤

n∑

i=1

piRA
s (|φ〉〈φ|) = RA

s (|φ〉〈φ|).

The last inequality is from Eq. (3.9) and [19, Appendix C]
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By using Theorem 4.1, we have the following.

Corollary 4.2 Let |φ〉, |ϕ〉 ∈ PAB , ρφ = trA (|φ〉〈φ|) , σϕ = trA (|ϕ〉〈ϕ|). If ρφ ≺ σϕ and
σϕ ≺ ρφ , thenRA

s (|ϕ〉〈ϕ|) = RA
s (|φ〉〈φ|).

Example 4.2 Consider any pure state |φx,y〉 = x|00〉 + eiθ y|11〉 of C2 ⊗ C
2 with x, y ∈

[0, 1], x2 + y2 = 1 and θ ∈ R. Then

|φx,y〉〈φx,y | = x2|0〉〈0| ⊗ |0〉〈0| + e−iθ xy|0〉〈1| ⊗ |0〉〈1|
+y2|1〉〈1| ⊗ |1〉〈1| + eiθ xy|1〉〈0| ⊗ |1〉〈0|.

We can compute that

ρxy := trA
(|φx,y〉〈φx,y |

) = x2|0〉〈0| + y2|1〉〈1| =
(

x2 0
0 y2

)
.

Thus, ρyx =
(

y2 0
0 x2

)
. It is clear that λ(ρxy) = λ(ρyx) and so ρxy ≺ ρyx while ρyx ≺

ρxy . We conclude from Theorem 4.1 that

RA
s (|φx,y〉〈φx,y |) = RA

s (|φy,x〉〈φy,x |).
Furthermore, by Corollary 4.1, we know that

RA
s (|φx,y〉〈φx,y |) ≤ RA

s (|φx0,y0〉〈φx0,y0 |), (20)

where x0 = y0 = 1√
2

, and |φx0,y0〉 = 1√
2
(|00〉 + eiθ |11〉) is a maximally entangled state.

Next, we will prove (20) by simply using Theorem 4.1. To do so, we let

f (x) = RA
s (|φx,y(x)〉〈φx,y(x)|), y(x) =

√
1 − x2(0 ≤ x ≤ 1),

then when 1√
2

≤ x1 < x2 ≤ 1, ρx1y(x1) ≺ ρy(x2)x2 and Theorem 4.1 yields that f (x1) ≥
f (x2). This shows that f (x) is decreasing on

[
1√
2
, 1

]
. Similarly, f (x) is increasing on

[
0, 1√

2

]
and so f

(
1√
2

)
= max0≤x≤1 f (x). This implies that (20) holds.

5 Conclusions

In summary, we have obtained a characterization of an unsteerable state. We have introduced
a new method, called the generalized steering robustness (GSR), to quantify the steering
power, which can describe steering endurance of a state against disturbance. Our discussion
shows that GSR has many good properties, such as (1) GSR of a state vanishes if and only
if the state is unsteerable; (2) a local quantum channel does not increase GSR of any state;
(3) GSR is invariant under each local unitary operation; (4) as a function on the state space,
GSR is convex and lower-semi continuous. Also, GSR of two pure states can be compared
by the majorization of the their reduced states. In a quantitative way, we have proved that
maximally entangled states have the maximal GSR and then are maximally steerable.
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