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Abstract We present a new method of more speedily calculating a multiplication by using
the generalized Bernstein-Vazirani algorithm and many parallel quantum systems. Given
the set of real values {a1, a2, a3, . . . , aN } and a function g : R → {0, 1}, we shall deter-
mine the following values {g(a1), g(a2), g(a3), . . . , g(aN)} simultaneously. The speed of
determining the values is shown to outperform the classical case by a factor of N . Next, we
consider it as a number in binary representation; M1 = (g(a1), g(a2), g(a3), . . . , g(aN)).
By using M parallel quantum systems, we have M numbers in binary representation, simul-
taneously. The speed of obtaining the M numbers is shown to outperform the classical case
by a factor of M . Finally, we calculate the product; M1 × M2 × · · · × MM. The speed of
obtaining the product is shown to outperform the classical case by a factor of N × M .
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1 Introduction

As for applications of the quantum theory, implementation of a quantum algorithm to solve
Deutsch’s problem [1–3] on a nuclear magnetic resonance quantum computer is reported
firstly [4]. An implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum com-
puter is also reported [5]. There are several attempts to use single-photon two-qubit states for
quantum computing. Oliveira et al. implements Deutsch’s algorithm with polarization and
transverse spatial modes of the electromagnetic field as qubits [6]. Single-photon Bell states
are prepared and measured [7]. Also the decoherence-free implementation of Deutsch’s algo-
rithm is reported by using such a single-photon and by using two logical qubits [8]. More
recently, a one-way based experimental implementation of Deutsch’s algorithm is reported [9].

In 1993, the Bernstein-Vazirani algorithm was reported [10, 11]. It can be considered as
an extended Deutsch-Jozsa algorithm. In 1994, Simon’s algorithm was reported [12]. Imple-
mentation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without
entanglement on an ensemble quantum computer is reported [13]. Fiber-optics implemen-
tation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits
is discussed [14]. Quantum learning robust against noise is studied [15]. A quantum algo-
rithm for approximating the influences of Boolean functions and its applications are recently
reported [16]. Quantum computation with coherent spin states and the close Hadamard
problem are also discussed [17]. Transport implementation of the Bernstein-Vazirani algo-
rithm with ion qubits is more recently reported [18]. Quantum Gauss-Jordan elimination
and simulation of accounting principles on quantum computers are discussed [19]. We men-
tion that the dynamical analysis of Grover’s search algorithm in arbitrarily high-dimensional
search spaces is studied [20]. A method of computing many functions simultaneously by
using many parallel quantum systems is reported [21].

On the other hand, the earliest quantum algorithm, the Deutsch-Jozsa algorithm, is rep-
resentative to show that quantum computation is faster than the classical counterpart with
a magnitude that grows exponentially with the number of qubits. In 2015, it was discussed
that the Deutsch-Jozsa algorithm can be used for quantum key distribution [22]. In 2017, it
was discussed that secure quantum key distribution based on Deutsch’s algorithm using an
entangled state [23]. Subsequently, a highly speedy secure quantum cryptography based on
the Deutsch-Jozsa algorithm is proposed [24].

In this work we present a new method of more speedily calculating a multiplica-
tion by using the generalized Bernstein-Vazirani algorithm and many parallel quantum
systems. Given the set of real values {a1, a2, a3, . . . , aN } and a function g : R →
{0, 1}, we shall determine the following values {g(a1), g(a2), g(a3), . . . , g(aN)} simulta-
neously. The speed of determining the values is shown to outperform the classical case
by a factor of N . Next, we consider it as a number in binary representation; M1 =
(g(a1), g(a2), g(a3), . . . , g(aN)). By using M parallel quantum systems, we have M num-
bers in binary representation, simultaneously. The speed of obtaining the M numbers is
shown to outperform the classical case by a factor of M . Finally, we calculate the product;
M1 × M2 × · · · × MM. The speed of obtaining the product is shown to outperform the
classical case by a factor of N × M .

2 The Generalized Bernstein-Vazirani Algorithm

Let us suppose that we are given the following sequence of real values

a1, a2, a3, . . . , aN . (1)
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Let us now introduce the function

g : R → {0, 1}. (2)

One step is of determining the following values

g(a1), g(a2), g(a3), . . . , g(aN). (3)

Recall that in the classical case, we need N queries, that is, N separate evaluations of the
function (2). In our quantum algorithm, we shall require a single query. Suppose now that
we introduce another function

f : {0, 1}N → {0, 1} (4)

which is a function with a N -bit domain and a 1-bit range. We construct the following
function

f (x) = g(a) · x =
N∑

i=1

g(ai)xi(mod2)

= g(a1)x1 ⊕ g(a2)x2 ⊕ g(a3)x3 ⊕ · · · ⊕ g(aN)xN

xi ∈ {0, 1}, g(ai) ∈ {0, 1}, ai ∈ R (5)

where ai is a real value. Here g(a) symbolizes

g(a1)g(a2) · · · g(aN). (6)

Let us follow the quantum states through the algorithm. The input state is

|ψ0〉 = |0〉⊗N |1〉 (7)

where |0〉⊗N =
N︷ ︸︸ ︷

|0〉 ⊗ |0〉 ⊗ ... ⊗ |0〉. After the componentwise Hadamard transforms on
the state (7)

N︷ ︸︸ ︷
H |0〉 ⊗ H |0〉 ⊗ ... ⊗ H |0〉⊗H |1〉 (8)

we have

|ψ1〉 =
∑

x∈{0,1}N

|x〉√
2N

[ |0〉 − |1〉√
2

]
. (9)

Next, the function f is evaluated using

Uf : |x, y〉 → |x, y ⊕ f (x)〉 (10)

giving

|ψ2〉 = ±
∑

x

(−1)f (x)|x〉√
2N

[ |0〉 − |1〉√
2

]
. (11)

Here y ⊕ f (x) is the bitwise XOR (exclusive OR) of y and f (x). By checking the cases
x = 0 and x = 1 separately, we see that for a single qubit

H |x〉 =
∑

z

(−1)xz|z〉/√2. (12)
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Thus

H⊗N |x1, . . . , xN 〉
=

∑
z1,...,zN

(−1)x1z1+···+xNzN |z1, . . . , zN 〉√
2N

. (13)

This can be summarized more succinctly in the very useful equation

H⊗N |x〉 =
∑

z(−1)x·z|z〉√
2N

(14)

where x · z is the bitwise inner product of x and z, modulo 2. Using the (14) and (11), we
can now evaluate H⊗N |ψ2〉 = |ψ3〉

|ψ3〉 = ±
∑

z

∑

x

(−1)x·z+f (x)|z〉
2N

[ |0〉 − |1〉√
2

]
. (15)

Thus

|ψ3〉 = ±
∑

z

∑

x

(−1)x·z+g(a)·x |z〉
2N

[ |0〉 − |1〉√
2

]
. (16)

Because we have
∑

x

(−1)x = 0 (17)

we can see that
∑

x

(−1)x·z+g(a)·x = 2Nδg(a),z. (18)

Therefore, the sum is zero if z �= g(a) and is 2N if z = g(a). Thus

|ψ3〉 = ±
∑

z

∑

x

(−1)x·z+g(a)·x |z〉
2N

[ |0〉 − |1〉√
2

]

= ±
∑

z

2Nδg(a),z|z〉
2N

[ |0〉 − |1〉√
2

]

= ±|g(a)〉
[ |0〉 − |1〉√

2

]

= ±|g(a1)g(a2) · · · g(aN)〉
[ |0〉 − |1〉√

2

]
(19)

from which

|g(a1)g(a2) · · · g(aN)〉. (20)

can be obtained. That is to say, if we measure |g(a1)g(a2) · · · g(aN)〉 then we can retrieve
the following values

g(a1), g(a2), g(a3), . . . , g(aN) (21)

using a single query. All we have to do is of performing one quantum measurement.
The speed of determining N values improves by a factor of N as compared to the clas-

sical counterpart. Notice that we recover the Bernstein-Vazirani algorithm when g : ai →
ai .
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3 Calculating a Multiplication by using the Generalized
Bernstein-Vazirani Algorithm

We present a new method of more speedy calculating a multiplication by using many paral-
lel quantum systems. By using M parallel quantum systems, we can compute M functions
g1, g2, ..., gM simultaneously.

Let us suppose that we are given the following another sequence of real values

b1, b2, b3, . . . , bN . (22)

Let us now introduce the function

g2 : R → {0, 1}. (23)

We can determine the following values by using the generalized Bernstein-Vazirani
algorithm

g2(b1), g
2(b2), g

2(b3), . . . , g
2(bN). (24)

By using M parallel quantum systems, we can retrieve the following values

g1(a1), g
1(a2), g

1(a3), . . . , g
1(aN)

g2(b1), g
2(b2), g

2(b3), . . . , g
2(bN)

· · ·
gM(c1), g

M(c2), g
M(c3), . . . , g

M(cN). (25)

In the case, we measure the following quantum state

|g1(a1)g
1(a2) · · · g1(aN)〉 ⊗

|g2(b1)g
2(b2) · · · g2(bN)〉 ⊗

· · · ⊗ |gM(c1)g
M(c2) · · · gM(cN)〉. (26)

All we have to do is of performing one quantum measurement.
We consider them as numbers in binary representation

M1 = (g1(a1), g
1(a2), g

1(a3), . . . , g
1(aN))

M2 = (g2(b1), g
2(b2), g

2(b3), . . . , g
2(bN))

· · ·
MM = (gM(c1), g

M(c2), g
M(c3), . . . , g

M(cN)). (27)

Therefore, by using M parallel quantum systems, we have M numbers in binary represen-
tation, simultaneously. The speed of obtaining the M numbers is shown to outperform the
classical case by a factor of M . Finally, we calculate the product; M1 × M2 × · · · × MM.

The speed of obtaining the product is shown to outperform the classical case by a factor of
N × M .

As an example, if N = 2 and M = 3, we may have

(g1(a1), g
1(a2)) = (0, 1) = 1 (28)

(g2(b1), g
2(b2)) = (1, 0) = 2 (29)

(g3(c1), g
3(c2)) = (1, 1) = 3 (30)
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and we have

(g1(a1), g
1(a2)) × (g2(b1), g

2(b2))

×(g3(c1), g
3(c2)) = 1 × 2 × 3 = 6. (31)

An experimental evidence is very interesting and it is a further investigation.

4 Conclusions

In conclusion, we have presented a new method of more speedily calculating a multipli-
cation by using the generalized Bernstein-Vazirani algorithm and many parallel quantum
systems. Given the set of real values {a1, a2, a3, . . . , aN } and a function g : R → {0, 1},
we shall have determined the following values {g(a1), g(a2), g(a3), . . . , g(aN)} simulta-
neously. The speed of determining the values has been shown to outperform the classical
case by a factor of N . Next, we have considered it as a number in binary representation;
M1 = (g(a1), g(a2), g(a3), . . . , g(aN)). By using M parallel quantum systems, we have
had M numbers in binary representation, simultaneously. The speed of obtaining the M

numbers has been shown to outperform the classical case by a factor of M . Finally, we have
calculated the product; M1 × M2 × · · · × MM. The speed of obtaining the product has been
shown to outperform the classical case by a factor of N × M .
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I.L., Blatt, R.: Nature (London) 421, 48 (2003)
6. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)
7. Kim, Y.-H.: Phys. Rev. A 67, 040301(R) (2003)
8. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)
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