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Abstract Recently, La Guardia constructed some new quantum codes from cyclic codes
(La Guardia, Int. J. Theor. Phys., 2017). Inspired by this work, we consider quantum codes
construction from negacyclic codes, not equivalent to cyclic codes, with only one cyclo-
tomic coset containing at least two odd consecutive integers of even length. Some new
quantum codes are obtained by this class of negacyclic codes.
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1 Introduction

Cyclic codes form an important class of linear codes due to their good algebraic structures
in coding theory and decoding theory. Recently, there are some papers on quantum codes
construction from cyclic codes [1, 6–9]. Negacyclic codes are generalizations of cyclic
codes, and also have good algebraic structures. If the length of negacyclic codes is odd, then
negacyclic codes are cyclic codes actually [2]. Based on the good structural properties of
negacyclic codes, there have been some papers on quantum codes construction from nega-
cyclic codes [4, 5, 10, 11]. In [4], the authors Kai et al. constructed some new quantumMDS
codes from negacyclic codes. Lately, the authors constructed some new classes of nonbinary
quantum codes from negacyclic codes in [5]. Chen et al. studied the optimal asymmetric
quantum codes construction and nonbinary quantum convolutional codes construction from
negacyclic codes in [10] and [11], respectively. These results show that quantum codes can
be constructed by nagacyclic codes effectively.
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Let q be a power of some prime number. A q-ary quantum code C of length n is a
K-dimension subspace of the qn-dimension Hilbert space (Cq)⊗n. If K = qk , then the
quantum codeC is denoted by [[n, k, d]]q , where d is the minimum distance. For a quantum
code [[n, k, d]]q , there is a Singleton bound for parameters n, k and d satisfying k + 2d ≤
n+2. If the equality holds, then the quantum codeC is called a maximum distance separable
(MDS) code.

In this short correspondence, we present a quantum codes construction from negacyclic
codes with only one cyclotomic coset of even code length. Some new quantum codes, in
sense of the Singleton bound, are obtained by this class of negacyclic codes.

2 Quantum Codes from Negacyclic Codes

Let Fq be a finite field with q elements, where q is a power of an odd prime number. The
parameters of a linear code over Fq is denoted by [n, k, d]q , where n is the code length, k is
the dimension and d is the minimum Hamming distance. A linear code C is called a nega-
cyclic code if for any codeword (c0, c1, . . . , cn−1) ∈ C, the vector (−cn−1, c0, . . . , cn−2) is
also a codeword of C. A negacyclic code C is an ideal of the quotient ring Fq [x]/(xn + 1).
Therefore C can be generated by a monic divisor of xn + 1. This polynomial is called the
generator polynomial of C.

Let gcd(n, q) = 1 and β be a primitive 2nth root of unity. Then the roots of xn + 1 are
β1+2i , where i = 0, 1, . . . , n − 1. Let O2n be the set of odd integers from 1 to 2n, and
Cx be the q-cyclotomic coset modulo 2n containing x. Let m∗ be the size of this coset.
Then Cx = {x, xq, . . . , xqm∗−1} and g(x) = ∏

j∈Cx
(x − βj ) is an irreducible polynomial

over Fq . If g(x) is the generator polynomial of the negacyclic code C, then C is called a
maximum negacyclic code, i.e. C is with only one q-cyclotomic coset. The q-cyclotomic
coset Cx is called the defining set of C, which implies that the dimension of C is n − m∗.

Lemma 1 [5, BCH bound] Let C be a negacyclic code of length n over Fq and g(x) be its
generator polynomial. If g(x) has roots {β1+2i |0 ≤ i ≤ r}, then the minimum Hamming
distance of C is at least r + 2.

For any negacyclic code C of length n, the Euclidean dual code C⊥ of C is also a nega-
cyclic code of length n. Further,C⊥ ⊆ C if and only if g(x) divides h(x), which implies that
Cx ∩ C−x = ∅, where h(x) is the generator polynomial of C⊥ and C−x is the q-cyclotomic
coset containing −x modulo 2n.

In the following, we show how to guarantee the existence of a negacyclic code whose
defining set containing only one q-cyclotomic coset with at least two consecutive odd
integers.

Theorem 1 Let q ≥ 3 be a power of some prime number and q �≡ 1 mod 4, n > m be a
positive integer such that gcd(q, 2n) = 1 and gcd( qai −1

2 , n) = 1 for each i = 1, 2, · · · , r ,
where m = ord2n(q), r ≥ 1 and 1 ≤ a1, a2, . . . , ar < m are odd positive integers. If

n | gcd(t2, . . . , tr ), where tj = [(j − (j − 1)qaj )(
q

aj −1
2 )−1 − (

qa1−1
2 )−1] for each j =

2, . . . , r (the operations are performed modulo n), then there exists an [n, n−m∗,≥ r +2]q
negacyclic code, where m∗ is the size of the q-cyclotomic coset containing r +1 consecutive
odd positive integers.
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Proof We want to investigate the following system of congruences

xqa1 ≡ (x + 2) mod 2n

(x + 2)qa2 ≡ (x + 4) mod 2n

(x + 4)qa3 ≡ (x + 6) mod 2n
...

[x + 2(r − 1)] qar ≡ (x + 2r) mod 2n,

where r ≥ 1 and 1 ≤ a1, a2, . . . , ar < m are odd positive integers. Since gcd( qai −1
2 , n) = 1

for each i = 1, 2, . . . , r , it follows that the above system is equivalent to

x ≡ (
qa1−1

2 )−1modn
x ≡ (2 − qa2)(

qa2−1
2 )−1 mod n

x ≡ (3 − 2qa3)(
qa3−1

2 )−1 mod n
...

x ≡ [r − (r − 1)qar ]( qar −1
2 )−1 mod n,

where (
qai −1

2 )−1 denotes the multiplicative inverse of qai −1
2 modulo n.

The system has a solution if only and only if

[j − (j − 1)qaj ](q
aj − 1

2
)−1 ≡ [i − (i − 1)qai ](q

ai − 1

2
)−1 mod n

for all i, j = 2, . . . , r and

(
qa1 − 1

2
)−1 ≡ [i − (i − 1)qai ](q

ai − 1

2
)−1 mod n

for all i = 2, . . . , r . This means that

n | [(j − (j − 1)qaj )(
qaj − 1

2
)−1 − (

qa1 − 1

2
)−1]

for all j = 2, . . . , r , i.e., n | gcd(t2, . . . , tr ), where tj = [(j − (j − 1)qaj )(
q

aj −1
2 )−1 −

(
qa1−1

2 )−1] for each j = 2, . . . , r .
LetC be a negacyclic code, which has the q-cyclotomic cosetCx as its defining set. Then

Cx contains the sequence x, x +2, . . . , x +2r of r +1 consecutive odd integers. Therefore,
by the BCH bound, the minimum Hamming distance d of C satisfies d ≥ r + 2. Since
| Cx |= m∗, then the dimension of C is n − m∗. Thus, we have an [n, n − m∗, d ≥ r + 2]q
negacyclic code.

The following Calderbank-Shor-Steane (CSS) construction gives a connection between
classical error-correcting codes and quantum codes.

Lemma 2 [3, Calderbank-Shor-Steane (CSS) construction] If there exists a classical linear
[n, k, d]q code C such that C⊥ ⊆ C, then there exists an [[n, 2k − n, ≥ d]]q stabilizer
quantum code that is pure to d.
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By Theorem 1, Lemmas 1 and 2, we have the following result directly.

Corollary 1 Assume all the hypotheses of Theorem 1 hold. Let C be a maximum negacyclic
code with the defining set Cx . If Cx has elements {1 + 2i|0 ≤ i ≤ r} and Cx �= C−x , then
there exists an [[n, n − 2m∗,≥ r + 2]]q quantum code.

Example 1 Assume that q = 23 and n = 60. Then 2n = 120 and m = ord120(23) = 4.
In the 23-cyclotomic cosets, we can find C1 = {1, 23, 47, 49}. If C is a negacyclic code
of length 60 over F23 with the defining set C1, then it has parameters [60, 56, ≥ 3]23. So
there exists an [[60, 52, ≥ 3]]23 quantum code. This quantum code has the same minimum
distance as the known quantum code [[63, 51,≥ 3]]23 appeared in [6], but our code has the
larger code rate than that code.

Example 2 Assume that q = 27 and n = 28. Then 2n = 56 and m = ord56(27) = 2. In
the 27-cyclotomic cosets, we can find C41 = {41, 43}. If C is a negacyclic code of length
28 over F27 with the defining set C41, then it has parameters [28, 26, ≥ 3]27. So there exists
an [[28, 24,≥ 3]]27 quantum code. The quantum Singleton bound asserts that the quantum
code [[n, k, d]]q satisfies k + 2d ≤ n + 2. This quantum code has parameters satisfying it,
hence, [[28, 24, 3]]27 is a quantum MDS code.

Example 3 Assume that q = 23 and n = 24. Then 2n = 48 and m = ord48(23) = 2. In the
23-cyclotomic cosets, we can find C11 = {11, 13}. If C is a negacyclic code of length 24
over F23 with the defining set C11, then it has parameters [24, 22, ≥ 3]23. So there exists an
[[24, 20, ≥ 3]]23 quantum code. This quantum code has parameters satisfying the quantum
Singleton bound, hence, [[24, 20, 3]]23 is a quantum MDS code.

The Table 1 contains some new q-ary quantum codes, where q is an odd prime power.
The first column of the table denotes the length of negacyclic codes over Fq , Cx is the defin-
ing set of negacyclic codes, column three denotes the parameters of the negacyclic codes
over Fq , the last column denotes the new q-ary quantum codes. Note that the parameters of
all new q-ary quantum codes appeared in Table 1 satisfy n + 2 − k − 2d ≤ 4.

Table 1 New quantum codes

n Cx [n, k, d]q [[n, k, d]]q
24 C5 = {5, 7, 29, 31} [24, 20,≥ 3]11 [[24, 16,≥ 3]]11
16 C3 = {3, 5, 19, 21} [16, 12,≥ 3]23 [[16, 8,≥ 3]]23
20 C1 = {1, 7, 9, 23} [20, 16,≥ 3]23 [[20, 12,≥ 3]]23
30 C1 = {1, 23, 47, 49} [30, 26,≥ 3]23 [[30, 22,≥ 3]]23
40 C11 = {11, 13, 59, 77} [40, 36,≥ 3]23 [[40, 32,≥ 3]]23
48 C11 = {11, 13, 59, 61} [48, 44,≥ 3]23 [[48, 40,≥ 3]]23
120 C11 = {11, 13, 59, 157} [120, 116,≥ 3]23 [[120, 112,≥ 3]]23
40 C1 = {1, 3, 9, 27} [40, 36,≥ 3]27 [[40, 32,≥ 3]]27
56 C41 = {41, 43, 97, 99} [56, 52,≥ 3]27 [[56, 48,≥ 3]]27
70 C41 = {41, 43, 69, 127} [70, 66,≥ 3]27 [[70, 62,≥ 3]]27
52 C7 = {7, 9, 17, 71} [52, 48,≥ 3]31 [[52, 44,≥ 3]]31
128 C95 = {95, 97, 223, 225} [128, 124,≥ 3]63 [[128, 120,≥ 3]]63
256 C63 = {63, 65, 319, 321} [256, 252,≥ 3]127 [[256, 248,≥ 3]]127
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