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Abstract The analysis of the classical limit of quantum mechanics usually focuses on the
state of the system. The general idea is to explain the disappearance of the interference
terms of quantum states appealing to the decoherence process induced by the environment.
However, in these approaches it is not explained how the structure of quantum properties
becomes classical. In this paper, we consider the classical limit from a different perspective.
We consider the set of properties of a quantum system and we study the quantum-to-
classical transition of its logical structure. The aim is to open the door to a new study
based on dynamical logics, that is, logics that change over time. In particular, we appeal to
the notion of hybrid logics to describe semiclassical systems. Moreover, we consider sys-
tems with many characteristic decoherence times, whose sublattices of properties become
distributive at different times.

Keywords Classical limit · Decoherence · Non-unitary evolution · Quantum logic

1 Introduction

The problem of explaining how the laws of classical mechanics arise from the laws of quan-
tum mechanics is known as the classical limit problem [1]. Usually, the description of the
classical limit of a quantum system focuses on the state of the system. The idea is to explain
the disappearance of the interference terms of quantum states appealing to the decoherence
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process induced by the environment [2]. Generally, the mathematical description of this pro-
cess is based on the Schrödinger picture, in which states evolve over time, while observables
and physical properties are taken to be constants. As a result, the structure of quantum prop-
erties remains the same for all times: the quantum logic associated with the system does not
change [3]. Therefore, in these approaches it is not explained how the structure of quantum
properties becomes classical.

The properties of a classical system are represented by subsets of the phase space. The
set of all properties has a Boolean structure, i.e. it is an orthocomplemented and distribu-
tive lattice. This structure is usually called classical logic. Instead, in quantum mechanics
the properties are represented by closed vector subspaces or by their corresponding orthog-
onal projectors [4]. The set of all quantum properties is also an orthocomplemented lattice,
but a non-distributive one. This structure is called quantum logic [5]. In this paper, we will
argue that the description of the classical limit in terms of the Schrödinger picture is inade-
quate, because it cannot explain the quantum-to-classical transition of the logical structure
of physical properties. If a quantum system undergoes a physical process such that its behav-
ior becomes classic, then its logical structure of properties should undergo a transition from
quantum logic to classical logic, i.e. its lattice structure should become distributive.

In order to give an adequate description of the logical structure transition, we propose to
study the classical limit in terms of the Heisenberg picture, in which observables and phys-
ical properties evolve over time. This perspective allows to consider the time evolution of
the whole lattice of properties. On this basis, we can study the classical limit from a logi-
cal point of view, by describing the manner in which the structure of properties becomes a
Boolean lattice. The aim is to open the door to the study of dynamical logics, i.e., logics that
change over time. In particular, we appeal to the notion of hybrid logics to describe semi-
classical systems. Moreover, we consider systems with many characteristic decoherence
times, whose sublattices of properties become distributive at different times.

The paper is organized in the following way. In Section 2, we introduce the logic struc-
ture of classical and quantum systems, and we discuss the principal difference between
them: the distributive property. In addition, we describe how can be characterized the clas-
sical limit from a logical point of view. In Section 3, we present different approaches to
decoherence and we explain how it is usually related with the classical limit process. More-
over, we argue that the description of the classical limit in terms of the Schrödinger picture
is inadequate, because it cannot explain the quantum-to-classical transition of the logical
structure of physical properties. In order to achieve a time evolution of the logical structure,
we propose to use the Heisenberg picture. In Section 4, we describe the general aspects of
the logical perspective of the classical limit process. We apply this approach to describe the
quantum-to-classical transition in three different cases: (i) systems with one characteristic
time; (ii) transitions from quantum systems to semiclassical systems, in which the quan-
tum logic evolves to a hybrid semiclassical logic; and (iii) systems with many characteristic
times, whose sublattices become distributive at different times. Finally, in the last section,
we present some conclusions and future perspectives.

2 Logical Structure of Quantum Mechanics

When we talk about the logical structure of classical mechanics or quantum mechanics, we
do not refer to the logic which is used to formulate the theory (both of them are formulated
in classical logic), but to the logical structure of the propositions about a classical system or
a quantum system.
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The propositions about a classical system are determined by classical mechanics and the
propositions about a quantum system are determined by quantum mechanics. The way in
which classical and quantum mechanics define the set of propositions of a system is by
means of the set of properties of the system. Each property p of a system S is associated
with the following proposition about the system: the system S has the property p.

There is an isomorphism between the set of propositions and the set of properties. Each
logical operation between propositions corresponds to an algebraic operation between the
corresponding properties. Due to this isomorphism, it is customary to use the term “logical
structure” to refer to both structures: propositions structure and properties structure.

The sets of properties of classical and quantum systems have an orthocomplemented
lattice structure. This implies that there is an order relation ≤ such that for all pair of prop-
erties exists the infimum ∧ and the supremum ∨, and all property p has a complement p⊥
with adequate properties. All orthocomplemented lattices satisfy certain relations, called
distributive inequalities [6]:

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c).

When the equalities hold, the lattice is distributive. An orthocomplemented and distributive
lattice is called a Boolean lattice. The distributive property is an essential feature which
differentiates classical and quantum lattices of properties.

In classical mechanics a physical system is represented by a phase space and the proper-
ties of the system are represented by the subsets of its phase space. The partial order relation
is given by the inclusion ⊆ of sets. The infimum and the supremum are the intersection ∩
and the union ∪ of sets, respectively; and the complement of a property p is the complement
of sets pc. The set of classical properties is not only an orthocomplemented lattice, but also
a distributive one, i.e., classical properties satisfy the distributive equalities. Therefore, the
logical structure of a classical system is Boolean.

The quantum case is very different. In quantum mechanics a physical system is rep-
resented by a Hilbert space and each physical observable is represented by a self-adjoint
operator on the Hilbert space [4, 7]. The spectral theorem states that any self-adjoint opera-
tor Â can be represented by its projective measure MA [8–10]. A projective measure assigns
an orthogonal projection operator to each Borel set of the real line: given the interval I (a, b),
MA(I) is an orthogonal projection operator. This mathematical fact was interpreted by
Birkhoff and von Neumann as follows [5]: the projector MA(I) represents the property of
having the value of the observable represented by Â inside the interval I . Hence, according
these authors, the properties of a quantum system are represented by orthogonal projectors,
or by its corresponding closed vector subspaces; and the logical structure of quantum sys-
tems is the algebraic structure of closed vector subspaces. This structure is called quantum
logic.

Birkhoff and von Neumann developed the main features of quantum logic and they
showed its differences with the classical lattice of properties [5]. Then, later developments
on the logical structure of quantum mechanics were made by several authors (Varadara-
jan [11], Stubbe and Van Steirteghem [12]; see also Holik et al. [13–15] for more recent
developments and for the relationship between the quantum-logical approach and quantum
probability theory).

Choosing vector subspaces for representing properties instead of subsets introduces cru-
cial differences in the definition of the algebraic operations of the lattice. As in the classical
case, the set of quantum properties has a partial order relation given by the inclusion of sub-
spaces and the infimum is given by the intersection of subspaces. However, the supremum
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and the complement of properties are different from classical ones. The supremum is given
by the sum of subspaces and the complement of a property is its orthogonal subspace [3].
The resulting lattice of quantum properties is orthocomplemented, but it is not distributive
[6]. Therefore, quantum logic is not Boolean. This implies a very deep structural difference
between classical and quantum theories.

The distributive inequalities are the principal difference between classical and quantum
logic. In the classic lattice, all properties satisfy the distributive equalities, but in the quan-
tum lattice, only distributive inequalities hold in general. However, for some subsets of
quantum properties the equalities hold. When a subset of properties satisfies the distributive
equalities, they are called compatible properties. It can be proved that a sufficient and nec-
essary condition for a set of properties to be compatible is that the projectors associated with
the properties commute. Moreover, it can be shown that properties associated with different
observables are compatible if the observables commute. If, on the contrary, two observables
do not commute, some of the properties associated with them are not compatible. Therefore,
by extension, commuting observables are called compatible observables.

The differences between classical and quantum logic are of fundamental importance for
the classical limit problem. If a quantum system undergoes a physical process such that its
behavior becomes classic, then its logical structure of properties should undergo a transition
from quantum logic to classical logic, i.e. its lattice structure should become distributive.

However, the description of the classical limit of a quantum system usually focuses on the
state of the system. The mathematical description of this process is based on the Schrödinger
picture, in which states evolve over time, while observables and physical properties are taken
to be constants. As a result, the logical structure remains the same for all time. Therefore,
in these approaches it is not possible to describe how the structure of quantum properties
becomes classical.

In order to give an adequate description of the logical structure transition, we propose
to study the classical limit in terms of the Heisenberg picture, in which observables and
physical properties evolve over time. This perspective allows to consider the time evolution
of the whole lattice of properties. On this basis, we can study the classical limit from a
logical point of view by describing the manner in which the structure of properties becomes
a Boolean lattice.

It is important to remark that, according to Schrödinger equation, a closed system always
evolves unitarily. Even in the Heisenberg picture, if two observables are incompatible at
one time, they will remain incompatible at any time. Therefore, for describing the quantum-
to-classical transition of the logical structure, it is necessary to consider non-unitary time
evolutions.

In Section 4, we will consider transitions between logics induced by non-unitary time
evolutions. Although transitions of these structures were studied before [16], they have not
been related with the decoherence process and the classical limit. We think this perspective
leads to a better understanding of the classical limit process and it is also useful to deal with
hybrid systems.

3 Quantum Decoherence and Observables

One important feature of the quantum formalism is the superposition principle, which
implies the existence of quantum interference phenomena. Any attempt to describe the
quantum-to-classical transition should include a mechanism responsible for the suppression
of interference.
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The usual approach to this problem is based on the evolution of quantum states. The
general idea is to show that the interference terms of quantum states disappear when the
interaction with the environment is taken into account. This process, known as quantum
decoherence, was introduced by H. Dieter Zeh [17, 18] in the early 1970s, and then it was
developed by the group led by Wojciech Zurek [19–21]. As decoherence is based on the
interaction between the system, considered as an open system, and the environment, it is
usually called Environment Induced Decoherence (EID).

In this approach, we consider a closed system U and we divide it into two subsystems:
the system of interest S and its environment E. If the state of the system U is represented by
the density operator ρ̂U (t), the state of the subsystem S is represented by the reduced density
operator ρ̂S(t) = T rE(ρ̂U (t)) and the state of the environment E is represented by the
reduced density operator ρ̂E(t) = T rS(ρ̂U (t)). According to the Schrödinger picture, the
closed quantum system U evolves unitarily if no measurements are performed. However, the
subsystem S may undergo a non-unitary evolution. This allows that under certain conditions
the state ρ̂S(t) becomes diagonal after a decoherence time tD . Some authors interpret this
process as the essence of the classical limit.

However, it should be emphasized that, in EID approach, quantum decoherence is
described from the point of view of the Schrödinger picture. In this representation, the com-
mutator between two observables does not change during the decoherence process. The fact
that the commutator between two observables vanishes indicates that those observables are
compatible. If, on the contrary, the commutator is not zero, the observables are incompat-
ible and the corresponding properties cannot be included in the same Boolean sublattice.
In Schrödinger representation, if two observables are incompatible at the beginning of the
process of decoherence, they will remain incompatible during the entire process. Therefore,
this approach cannot explain how the structure of quantum properties becomes classical.
For this reason, we consider that it is not completely adequate for describing the classical
limit process of a physical system.

Alternative approaches to EID have been proposed in order to deal with quantum deco-
herence in closed systems [22–27]. One of them is the self-induced decoherence approach
(SID), developed from the physical and philosophical point of view in several papers [28–
35]. In this approach, decoherence is described from the viewpoint of observables. Instead
of using Schrödinger picture, SID uses Heisenberg picture, in which observables evolve over
time. According to SID, a closed quantum system with continuous spectrum may undergo
a decoherence process due to destructive interference. The central point of this proposal
consists in a shift of the perspective: instead of splitting the closed system into an open sys-
tem and an environment, the division is traced between relevant and irrelevant observables.
Then, the idea is to analyze the time evolution of the mean values of the relevant observ-
ables. The vanishing of the interference terms is interpreted as the result of a decoherence
process.

It is important to remark that, according to Schrödinger equation, a closed system always
evolves unitarily. Therefore, even in the Heisenberg picture, if two observables Ô1 and Ô2
do not commute at the beginning of the process, they will not commute at any time. This can

be expressed in terms of a new observable [36], given by Ĉ = i
[
Ô1, Ô2

]
. We can interpret

this observable as measuring the degree of compatibility between Ô1 and Ô2: if Ĉ = 0, the
observables are compatible; if Ĉ 
= 0, they are not.

As a concrete example, in a Mach-Zender interferometer, if Ô1 is the observable that
measures which is the path taken by the photon and Ô2 is the observable associated with the
visibility of interference, then Ĉ can be conceived as the tool to measure how compatible
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those observables are. In the lab, there are different observables associated with the degree
of classicality; for example, the contrast of the interference fringes in the double slit experi-
ment. When the experiment is performed and decoherence occurs, it is reasonable to expect
that at the beginning Ĉ 
= 0, but then, after the decoherence time, the observable evolves
to Ĉ = 0. And it is also expected that, in that limit, the interference fringes will vanish.
Moreover, in an experiment with slow and controlled decoherence, it could be possible to
measure the evolution of the observable Ĉ.

According to quantum mechanics, a closed system evolves following the Schrödinger
equation. Since the evolution is unitary, it is impossible to obtain the following process:

Ĉ(t = 0) 
= 0 −→ Ĉ(t) = 0.

However, it has been proved that applying SID approach to systems with continuous energy
spectrum, and choosing suitable relevant observables, a similar transition can be obtained,
but in terms of the mean value [36]:

〈
Ĉ(t = 0)

〉

= 0 −→ lim

t→∞
〈
Ĉ(t)

〉
= 0.

Given the incompatible observables Ô1, with core O1(ω, ω̃), and Ô2, with core
O2(ω, ω̃), both with continuous spectrum, we can compute the commutator Ĉ as follows:

Ĉ(t) = i

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
O1(ω, ω̃)O2(ω̃, ω′) − O2(ω, ω̃)O1(ω̃, ω′)

)

×ei(ω−ω′)t Êω,ω′ dω̃ dω dω′,

where
{
Êω,ω′

}
is the energy basis of the space of operators. If O1(ω, ω̃) and O2(ω, ω̃) are

regular functions, then, appealing to the Riemann-Lebesgue theorem, it is possible to prove
the following transition [37]:

〈
Ĉ(t = 0)

〉

= 0 −→ lim

t→∞
〈
Ĉ(t)

〉
= 0.

This implies that the mean value of the observable Ĉ, which measures the incompatibility
between two observables, goes to zero. Therefore, since SID approach describes decoher-
ence from the point of view of the observables, it may be a useful tool for studying the
quantum-to-classical transition of observables.

EID and SID approaches are not the only ways to account for non-unitary evolutions in
quantum mechanics. Another strategy to transform the unitary evolution of a closed sys-
tem into a non-unitary evolution has been proposed in the cosmological context. Kiefer and
Polarski [27] adopted the Heisenberg picture for the study of the decoherence process of
the universe. In this way, the observable associated with the commutator of two observ-
ables becomes a function of time. This approach allows to study the time evolution of the
commutator of two observables in the cosmological context.

The general idea of Kiefer and Polarski is to consider a time-dependent Hamiltonian.
According to the inflation model, there was an accelerated phase of the early universe called
inflation; the whole structure of the universe can be traced back to the primordial fluc-
tuations in the inflaton field [38–40]. Because of the expansion of the universe, inflaton
fluctuations must be described by a time-dependent Hamiltonian:

Ĥ (η) = 1

2

∫
dk3

{
k

[
â(k)â†(k) + â†(−k)â(−k)

]
+ i

a′

a

[
â†(k)â†(k) + â(−k)â(−k)

]}
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where η is the conformal time, â(k), â†(k) are the annihilation operator and the cre-
ator operator respectively, and a is the scale factor of the universe. These three elements
are time dependent; hence the Hamiltonian Ĥ (η) is not constant in time. Kiefer and
Polarski [27] studied the time evolution of the commutator between the general coordi-
nate ŷ(η) and its conjugate momentum p̂(η). They obtained that the following process is
possible:

[
ŷ(0), p̂(0)

] 
= 0 −→ lim
η→∞

[
ŷ(η), p̂(η)

] = 0. (1)

In other words, the commutator between the position and momentum operator vanishes
for times longer than the decoherence time. This fact has an important consequence for
the logical structure of the model. The initial algebra, generated by ŷ(0) and p̂(0), is non-
commutative. Therefore, it has associated a non-distributive propositional lattice, revealing
the essential features of what Birkhoff and von Neumann called a quantum logic. On the
other hand, the final algebra at η −→ ∞, generated by ŷ(η) and p̂(η), is a commutative
one. Therefore, it has associated a distributive lattice of propositions, revealing its classical
nature. This physical process provides an interesting example of the quantum-to-classical
transition of logical structures.

Finally, it is important to mention another approach to decoherence based in non-
Hermitian Hamiltonians. In standard quantum mechanics, the Hamiltonian is a self-adjoint
operator and its eigenvalues are real numbers. However, there are another formalisms of
quantum mechanics which admit non-Hermitian operators [41, 42]. One example is the
Time Asymmetric Quantum Mechanics, formulated in terms of the rigged Hilbert space,
and developed for describing the radioactive decay of unstable atoms [43]. Other example is
the decoherence formulation based on non-unitary evolutions, in which the interaction with
the environment is characterized by an effective non-Hermitian Hamiltonian [44]. These
generalizations allow non-unitary evolutions for closed systems. The main idea of these
approaches was applied to the study of time evolution of quantum logics by Fortin, Holik
and Vanni in [45].

4 The Classical Limit from the Logical Point of View

All descriptions of the classical limit of a quantum system should explain the quantum-
to-classical transition of its logical structure. If a quantum system undergoes a physical
process such that its behavior becomes classical, then its logical structure of properties
should undergo a transition from quantum logic to classical logic; i.e., its lattice structure
should become distributive. Therefore, if we want to describe adequately this process, we
should have at hand a time ordered family of logics, starting with a quantum one, and ending
up with a classical one.

In order to be able to describe the logical classical limit, let us consider a quantum system
that evolves in a non-unitary way and a set of relevant observables represented by self-

adjoint operators, O =
{
Ô1, Ô2, ..., Ôn

}
. We denote V(0) to the algebra generated by the

set O at time t = 0. We also assume that some observables of O are initially incompatible:

for some i and j ,
[
Ôi(0), Ôj (0)

]

= 0.

In what follows, we are going to describe the quantum-to-classical transition in three
different cases: systems with one characteristic time; semiclassical systems, and systems
with many characteristic times.
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4.1 Systems with one Characteristic Time

For quantum systems with only one characteristic time, the logical classical limit is reached
in only one step. In this case, the quantum-to-classical transition is given by the following
process: [

Ôi(0), Ôj (0)
]


= 0 −→
[
Ôi(tD), Ôj (tD)

]
= 0, ∀i, j. (2)

Equation (2) suggests an interesting connection between this approach and deformation
quantization theory. Indeed, the logical classical limit proposed by this paper can be under-
stood as a deformation of a non-commutative algebra and a limit � −→ 0. Thus, (2) can be
rewritten in the form[

Ôi(0), Ôj (0)
]


= 0 −→
[
Ôi(tD), Ôj (tD)

]
= ı�

{
Oi(tD),Oj (tD)

} + o(�2), ∀i, j. (3)

We will leave the study of the relation between (2) and (3) for future works.
After time tD , the evolving operators generate a family of algebras V(t). If the classical

limit is reached successfully, the final algebra V(tD) will be a Boolean algebra, because
the final set of generating operators will commute. This means that initially incompatible
observables become compatible after the decoherence time.

The algebras V(t) have associated orthomodular lattices LV(t). The logical classical limit
is expressed by the fact that, while LV(0) is a non-distributive lattice, LV(tD) is a Boolean
one. In this way, we obtain an adequate description of the logical evolution of a quantum
system.

4.2 Semiclassical Systems

For a quantum system to become completely classical, it is necessary the commutation of all
observables of the system. Notwithstanding, if this condition is strictly applied to all cases of
classical limit, it leaves no room for the description of systems which have in some aspects
a classical behavior, but in others a quantum behavior. Important examples, especially for
technology, are the transistors or squids [46], which have classical and quantum properties
simultaneously. Let us suppose that we go to an electronics store to buy a transistor. The
salesman will first find its location in the shelves, then he will take it in order to put it
in a bag and finally he will give it to us. From this point of view, the transistor behaves
classically: it is an object that can be located in space, and it can be manipulated by classical
means. However, when connected to a circuit, well-known quantum effects take place on
it; for example, the tunnel effect of the electrons inside it. This means that a transistor is
an object with some observables with classical behavior and with other observables with
quantum behavior. This kind of objects are usually known as semiclassical.

Our approach of the classical limit allows us to account for these cases. In the
semiclassical situation, the strong condition (2) turns out to be:[

Ôi(0), Ôj (0)
]


= 0 −→
[
Ôi(tD), Ôj (tD)

]
= 0, ∃i, j.

In other words, there are some initially incompatible observables which become compat-
ible after decoherence time, but also there are some incompatible observables which remain
incompatible after the characteristic time. From a logical viewpoint, this implies that the
lattices of properties associated with this kind of systems are hybrid lattices.

The focus on hybrid lattices is of particular importance, because it is reasonable to sup-
pose that, if successfully developed, quantum computers will be semiclassical systems,
represented by hybrid lattices. This is manifested by the fact that some relevant quantum
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algorithms possess classical and quantum elements in the process of computation [47].
Therefore, hybrid logics might be useful not only for describing the logical structure of a
quantum computer, but also for dealing with the problems related with decoherence.

4.3 Systems with Many Characteristic Times

Up to this point we have considered quantum systems that have only one characteristic time.
In this way, we explained the transition from a quantum logic to a Boolean or an hybrid
logic. But we have not explored in detail the intermediate steps of this transition. One way
to do this is to consider systems with several characteristic times.

There are a number of examples of physical systems that reach the classical limit in sev-
eral steps. From the point of view of the state, this means that its non-diagonal components
vanish at different characteristic times [45]. A concrete example of such a system is an
harmonic oscillator embedded in a bath of oscillators [44].

From a logical point of view, the existence of several characteristic times implies that
the compatibility condition between different observables is fulfilled at different times. This
condition can be expressed as follows:

[
Ô1(0), Ô2(0)

]

= 0 −→

[
Ô1(tα), Ô2(tα)

]
= 0,

[
Ô1(0), Ô3(0)

]

= 0 −→

[
Ô1(tβ), Ô3(tβ)

]
= 0,

...[
Ôn−1(0), Ôn(0)

]

= 0 −→

[
Ôn−1(tD), Ôn(tD)

]
= 0.

This means that, among all the initially incompatible observables, some become com-
patible at time tα , others become compatible at time tβ , and so on. If the classical limit is
reached, at the end of the process all the observables will commute with each other. In terms
of the lattice structure, this many-step process implies that the different parts of the lattice
become distributive at different times.

5 Conclusions

Since the very beginnings of quantum mechanics, many attempts have been made to recover
the laws of classical physics from quantum theory, through a classical limit process. This
process must do the job of turning a quantum system, with a non-distributive logical
structure, into a classical system, with a classical logic structure.

The quantum-to-classical transition was extensively studied in the physical literature
focusing on the state of the system. However, from this perspective observables do not
evolve over time. Therefore, the change of the logical structure of the system is not
explained, it is merely understood as a jump from a quantum logic in the beginning to a
Boolean one at the end.

In this paper, we argued that the description of the classical limit in terms of the
Schrödinger picture is not adequate for explaining the quantum-to-classical transition of the
logical structure of a system. If a quantum system becomes classic, then its logical structure
of properties should undergo a transition from quantum logic to classical logic. In order to
give an adequate description of this transition, we described the classical limit in terms of
the Heisenberg picture, in which the lattice of properties evolves in time. On this basis, we
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showed that it is possible to describe how the quantum structure of properties becomes a
Boolean lattice.

Moreover, we discussed the logical structures associated with a system, not only in the
initial and final times, but also during the transition process. As an example of this non-
trivial logical structure, we presented a physical system with different characteristic times,
in which the classical limit is reached through many steps.

Finally, we applied this logical approach to describe the quantum-to-classical transi-
tion in three different cases: (i) systems with one characteristic time; (ii) systems that
change from a quantum logic to a hybrid semiclassical logic; and (iii) systems with many
characteristic times, whose sublattices become distributive at different times.

We consider that the logical perspective presented in this paper can provide a new insight
for the understanding of the classical limit process. This approach based on the logical
structure of quantum systems does not intend to be exhaustive or complete, but we expect it
to be the kick-off for the study of the dynamical aspects of the logical structures of physical
systems. In addition, such research might be useful for understanding the general quantum
information processing tasks and the new technologies associated with quantum computers,
which involve hybrid logics.
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