
Int J Theor Phys (2017) 56:3514–3524

Superposition of Photon Subtraction and Photon
Addition Excited Squeezed Thermal State
and its Wigner Function

Dao-Ming Lu1

Received: 14 June 2017 / Accepted: 16 August 2017 / Published online: 31 August 2017
© Springer Science+Business Media, LLC 2017

Abstract We introduce the superposition of photon subtraction and photon addition excited
squeezed thermal state (SPSAST) that is generated by operation of superposition of photon
subtraction and photon addition on squeezed thermal state. By the technique of integration
within an ordered product of operators, we derive its normalization constant and the ana-
lytical expression of its Wigner function. The influences of the squeezing parameter and
superposition coefficient of operators on its non-classical properties are discussed. Numeri-
cal results show that its non-classical properties are firstly strengthened with the increasing
of the squeezing parameter in the beginning. However, when the squeezing parameter is
larger than a certain value, its non-classical properties are weakened as the squeezing param-
eter continues to grow. The influence of the superposition coefficient of operators on its
non-classical properties is complex. On the other hand, its non-classical properties are
weakened with the increasing of the average photon number in the thermal state.

Keywords Quantum optics · Superposition of photon subtraction and photon addition ·
Thermal state · Wigner function

1 Introduction

The preparation and construction of non-classical states, and the study of their quantum
properties, have been a perennial topic in quantum optics and quantum information sci-
ence. There are many methods of quantum state construction. Using state superposition
principle of quantum mechanics and operators acting on the light field state are two main
kinds of methods to construct a new quantum state. So far, some proposals have been put
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forward to construct a new quantum state by using state superposition principle of quantum
mechanics [1–4]. For example, Janszky et al examined the problem of quantum-mechanical
interference of multiple Schroödinger-cat states consisting of coherent states on the same
circle [1], Schleich et al constructed the quantum-mechanical superposition of two coherent
states of identical mean photon number, and so on [3, 4]. In 1991, Agarwal et al firstly intro-
duced excited coherent state which is constructed by photon addition operator a+ acting
on coherent state [5]. Photon subtraction and addition represented by bosonic annihilation
operator a and creation operator a+ are proved to be employed to transform a field state to
a desired one. In recent years, a lot of proposals have been put forward to generate highly
non-classical quantum states by operator acting on light field state [6–14]. For example, Xu
et al investigated the non-classical properties of arbitrary number photon annihilation-then-
creation operation and creation-then-annihilation operation to the thermal state [6]. Zhou
et al constructed the photon-subtracted two mode squeezed thermal state [7]. In Ref. [8], a
class of the generalized photon-added coherent states was proposed, and its quantum statis-
tical properties were studied. In the aspect of experiment, the Zavatta’s group prepared the
single photon-added coherent state by using parametric down-conversion [15]. Currently,
photon-added squeezed thermal states and photon-subtraction squeezed thermal states have
been studied [16, 17]. However, the construction of superposition of photon subtraction and
photon addition excited squeezed thermal state and the investigation of its quantum proper-
ties have not been reported. In the present paper, we shall introduce SPSAST, and calculate
its Wigner function. Furthermore, we will discuss the influences of the squeezing parameter
and superposition coefficient of operators on its non-classical properties.

The rest of the paper is structured as follows. In Section 2, we derive the normal order
of the density operator of squeezed thermal state. In Section 3, we introduce SPSAST. In
Section 4, we calculate its Wigner function with different squeezing parameter and super-
position coefficient. In Section 5, the negative volume of Wigner function is studied. The
main results are summarized in Section 6.

2 The Normal Order of the Density Operator of Squeezed Thermal State

The density operator of thermal state with frequency ω in a thermal equilibrium state
corresponding to absolute temperature T is

ρt = (1 − e−β)e−βa+a, (1)

where β = �ω
kBT

, kB being Boltzmann’s constant. Its average photon number is

n̄ = (eβ − 1)−1. (2)

The Weyl-ordering form of ρt can be written as [18]

ρt = 2

2n̄ + 1
:
: exp

[ −2

2n̄ + 1
a+a

] :
: . (3)

where the symbol
:
:

:
: denotes Weyl-ordering.
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On the other hand, the single mode squeezing operator and its transformation can be
written as

S(λ) = exp

[
1

2
λ(a+2 − a2)

]
,

S(λ)aS−1(λ) = a cosh λ + a+ sinh λ,

S(λ)a+S−1(λ) = a+ cosh λ + a sinh λ. (4)

where λ being squeezing parameter. For the sake of simplicity, we set that λ is real. Using
the operator’s Weyl-ordering invariance under similarity transformation O,

O
:
: (...)

:
: O

−1 = :
: O(...)O−1 :

: , (5)

which means that O can penetrate through the “fence”
:
:

:
: , then Combining (3) and (4), we

get the density operator of squeezing thermal state

ρst = S(λ)ρtS
−1(λ)

= 2

2n̄ + 1
:
: exp

{ −1

2n̄ + 1
[(a+2 + a2) sin(2λ) + 2a+a cosh(2λ)]

} :
: . (6)

According to the Weyl rule, the classical correspondence of a Weyl ordered operator can be
obtained by replacing a and a+ by α and α∗, respectively, thus the classical correspondence
of squeezing thermal state is

h(α, α∗) = 2

2n̄ + 1
exp

{ −1

2n̄ + 1
[(α∗2 + α2) sin(2λ) + 2 |α|2 cosh(2λ)]

}
. (7)

According to the definition of Weyl correspondence rule which connects a classical function
h(α, α∗) and its operator correspondence F(a, a+)

F (a, a+) = 2
∫

dαh(α, α∗)�(α, α∗), (8)

where �(α, α∗) = 1
π

: exp[−2(a+ − α∗)(a − α)] : denotes the Wigner operator, :: denotes
the normally ordering. Substituting (7) into (8), we finally obtain the normally ordering
form of ρst

ρst = 1√
A

: exp
{

−[−n̄ + (2n̄ + 1) cosh2 λ]a+a + 1
4 (2n̄ + 1)(a+2 + a2) sin(2λ)

A

}
:

= 1√
A

exp(Ca+2) exp(Ba+a) exp(Ca2). (9)

where

A = n̄2 + (2n̄ + 1) cosh2 λ

B = ln

[
1 + n̄ − (2n̄ + 1) cosh2 λ

A

]
,

C = − (2n̄ + 1) sinh(2λ)

4A
. (10)
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3 Introduction of SPSAST

SPSAST can be constructed through coherent superposition of photon subtraction and
addition ra + qa+ acting on squeezing thermal state. Its density operator is expressed as

ρ = N(ra + qa+)ρst (r
∗a+ + q∗a)

= N(ra + qa+) exp(Ca+2) exp(Ba+a) exp(Ca2)(r∗a+ + q∗a), (11)

where N being normalization constant, r and q are superposition coefficients with |r|2 +
|q|2 = 1. For the sake of simplicity, we set that r and q are real. Using the completeness

relation of coherent state
∫

d2z
π

|z〉 〈z| = 1, N can be determined by trρ = 1.

trρ = N

∫
d2z

π
〈z| ρ |z〉 = 1, (12)

where tr denotes tracing. Substituting (11) into (12), after lengthy calculations we get

N−1 = r2

[
(1 − eB)e2B

D3
+ eB

D
+ 4C2 (1 + eB)

D3

]
+ 4rqC

1

D3
+ q2 (1 − eB)

D3
,

D = [(eB − 1)2 − 4C2]1/2. (13)

In the derivation of (13), we have used the following operator formulas

eλa+aae−λa+a = e−λa,

eλa+aa+e−λa+a = eλa+,

exp(Ca+2)a exp(−Ca+2) = a − 2Ca+,

exp(Ca2)a+ exp(−Ca2) = a+ + 2Ca, (14)

the integration formula
∫

d2z

π
exp(λ |z|2 + sz + ηz∗ + f z2 + gz∗2) = 1√

λ2 − 4fg
exp

(
−λsη + s2g + η2f

λ2 − 4fg

)
,

(15)

whose convergent condition is Re(λ ± f ± g) < 0 and Re[(λ2 − 4fg)/(λ ± f ± g)] < 0,
and the formula

exp(−λa+a) |z〉 = exp

[
−|z|2

2
(1 − e−2λ)

] ∣∣e−λz
〉
. (16)

4 Wigner Function

Since Wigner first instructed Wigner function [19], Wigner function has become a very
popular tool to study the non-classical properties of quantum states. Its negativity implies
the highly non-classical properties of quantum states. For a state with density operator ρ, its
Wigner function in the coherent state representation |z〉 can be expressed as

W(α, α∗) = exp(2 |α|2)
∫

d2z

π2
〈−z| ρ |z〉 exp[−2(zα∗ − z∗α)]. (17)



3518 Int J Theor Phys (2017) 56:3514–3524

Substituting (11) into (17), after straightforward calculation, we obtain the Wigner function
of SPSAST

W(α, α∗) = N

π
exp(2 |α|2)

{
−[(r + 2qC)2 + q2e2B ] ×

[
eB + 1 + 4 |α|2 + 8(eB + 1)

×−(eB +1) |α|2+α∗2C+α2C

(eB + 1)2 − 4C2

]
+ (r+2qC)eB ×

[
4C+4α2 + 4α∗2 + 32C

× − |α|2 (eB + 1) + α∗2C + α2C

(eB + 1)2 − 4C2

]
+ q2eB [(eB + 1)2 − 4C2]

}

× 1

[(eB + 1)2 − 4C2]3/2

× exp

[
−4(eB + 1) |α|2 + 4α2C + 4α∗2C

(eB + 1)2 − 4C2

]
. (18)

Because α = (x+ip)√
2

, the Wigner function is transformed into a function of variable of

coordinate x and momentum p

W(x, p) = N

π
×

{
−[(r + 2qC)2 + q2e2B ] ×

[
eB + 1 + 2x2 + 2p2 + 8(eB + 1)

×−(eB +1)(x2+p2)/2+C(x2−p2)

(eB + 1)2 − 4C2

]
+(r+2qC)eB ×

[
4C+4x2−4p2+32C

× −(eB + 1)(x2 + p2)/2 + C(x2 − p2)

(eB + 1)2 − 4C2

]
+ q2eB [(eB + 1)2 − 4C2]

}

× 1

[(eB + 1)2 − 4C2]3/2

× exp

[(
1 + −2(eB + 1) + 4C

(eB + 1)2 − 4C2

)
x2 +

(
1 − 2(eB + 1) + 4C

(eB + 1)2 − 4C2

)
p2

]
. (19)

4.1 The Influences of the Squeezing Parameter λ on the Wigner Function

In order to discuss the influences of the squeezing parameter λ on the Wigner function,
it sets the average photon number in the thermal state n̄ equals 0.1, and the superposition
coefficient of operators r equals 0.1. We draw three-dimensional graphs of W(x, p) using
(19) for a different value of the squeezing parameter λ in Fig. 1. Comparing the graphs of
W(x, p) with different λ, we find: when λ is larger than a certain value, W(x, p) displays
negative value; then the negative region and the negative depth of W(x, p) are strengthened
with increasing of the squeezing parameter λ. For example, when λ equals 0.4, the Wigner
function does not display negative value; when λ equals 0.6, the negative depth of W(x, p)

equals −0.01904; when λ equals 0.8, the negative depth of W(x, p) equals −0.02609; but
when λ continues to grow, the negative depth of W(x, p) is weakened. For example, when λ

equals 1.0, the negative depth of W(x, p) equals −0.02245; when λ equals 1.4, the negative
depth ofW(x, p) equals−0.00904; when λ equals 1.8, the negative depth ofW(x, p) equals
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Fig. 1 The evolution of Wigner function with r = 0.1 and n̄ = 0.1. a λ = 0.4; b λ = 0.6; c λ = 0.8; d
λ = 1.0; e λ = 1.4; f λ = 1.8

−0.00247. These results show that its non-classical properties are firstly strengthened with
the increasing of the squeezing parameter, then are weakened when the squeezing parameter
is larger than a certain value.
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4.2 The Influences of the Superposition Coefficient of Operators r on the Wigner
Function

When it sets the average photon number in the thermal state n̄ equals 0.1, and the squeezing
parameter λ equals 1.0, the three-dimensional graphs of W(x, p) for some given super-
position coefficients r are plotted in Fig. 2. From Fig. 2 we find: the influence of the
superposition coefficient of operators r on its non-classical properties is complex. The
numerical results show that the negative region and the negative depth of W(x, p) are
sometimes strengthened and are sometimes weakened. For example, when r equals 0,
the negative depth of W(x, p) equals −0.0259; when r equals 0.2, the negative depth
of W(x, p) equals −0.01845; when r equals 0.4, the negative depth of W(x, p) equals
−0.00779; when r equals 0.6, the Wigner function does not display negative value;
when r equals 0.7, the negative depth of W(x, p) equals −0.03791; when r equals 0.8,
the negative depth of W(x, p) equals −0.64622; when r equals 0.9, the negative depth
of W(x, p) equals −0.20332; when r equals 1.0, the negative depth of W(x, p) equals
−0.0813.

Fig. 2 The evolution of Wigner function with λ = 1.0 and n̄ = 0.1. a r = 0.0; b r = 0.2; c r = 0.4; d
r = 0.6; e r = 0.7; f r = 0.8; g r = 0.9; h r = 1.0
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Fig. 2 (continued)

5 The Volume of the Negative Part of the Wigner Function

The volume of the negative part of the Wigner function is a signature of non-classical
properties of quantum state. It is defined as

V (t) = 1

2

∫
(
∣∣W(α, α∗)

∣∣ − W(α, α∗))dαdα∗

= 1

2

∫
(|W(x, p)| − W(x, p))dxdp. (20)

The larger the negative volume of Wigner function is, the stronger the quantum properties
of the state is. Firstly, we discussed the evolution of the negative volume of Wigner function
with r . Set the average photon number in the thermal state n̄ equals 0.1, the squeezing
parameter λ equals 1.0, The evolution of V (t) with r is plotted in Fig. 3. The curve in Fig. 3
shows that as r increases, the negative volume of Wigner function appears firstly to decrease
slowly, then increases. After it reaches its maximum, it decreases again.

Secondly, the influence of the squeezing parameter on the negative volume of Wigner
function is discussed. When it sets the average photon number in the thermal state n̄

equals 0.1, and the superposition coefficient of operators r equals 0.1. The evolution of
V (t) with squeezing parameter λ is plotted in Fig. 4. From Fig. 4, the negative volume
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Fig. 3 The evolution of the negative volume of Wigner function with r

of Wigner function appears firstly to increase, then decreases. When λ equals 0.85 the
peak of the curve appears. The result is consistent with the result in Fig. 1. This shows
that choosing the appropriate squeezing parameter is advantageous for non-classicality of
SPSAST.

Thirdly, we investigate the effect of the average photon number in the thermal state n̄

on the negative volume of Wigner function. When it sets the squeezing parameter λ equals
1.0 and the superposition coefficient of operators r equals 0.1, we plot the evolution curve
of V (t) with the average photon number in the thermal state n̄ in Fig. 5. It shows that the
negative volume of Wigner function decreases as n̄ increases. This is because the greater the
average number of photon is, the higher the temperature is, the stronger the non-classicality
of the thermal state is.
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Fig. 4 The evolution of the negative volume of Wigner function with λ
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Fig. 5 The evolution of the negative volume of Wigner function with n̄

6 Conclusions

In this paper, we construct SPSAST by operation of superposition of photon subtraction
and photon addition on squeezed thermal state. The normalization constant of SPSAST is
derived by the technique of integration within an ordered product of operators. Furthermore,
we derive the expression of its Wigner function. The influences of the squeezing parameter
and superposition coefficient of operators on the negative of Wigner function are analyzed.
Numerical results indicate : firstly, the negative region and the negative depth of Wigner
function of SPSAST are firstly strengthened with the increasing of the squeezing parame-
ter in the beginning, and then are weakened when the squeezing parameter is larger than a
certain value; secondly, the negative region and the negative depth of Wigner function of
SPSAST are sometimes strengthened and sometimes weakened as the superposition coeffi-
cient of operators r increases; thirdly, the negative volume of Wigner function decreases as
the average photon number in the thermal state increases.
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