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Abstract Regarding the Veneziano ghost of QCD and its generalized form, we consider
a Friedmann-Robertson-Walker (FRW) universe filled by a pressureless matter and a dark
energy component interacting with each other through a mutual sign-changeable interaction
of positive coupling constant. Our study shows that, at the late time, for the deceleration
parameter we have q → −1, while the equation of state parameter of the interacting ghost
dark energy (GDE) does not cross the phantom line, namely ωD ≥ −1. We also extend our
study to the generalized ghost dark energy (GGDE) model and show that, at late time, the
equation of state parameter of the interacting GGDE also respects the phantom line in both
flat and non-flat universes. Moreover, we find out that, unlike the non-flat universe, we have
q → −1 at late time for flat FRW universe. In order to make the behavior of the underlying
models more clear, the deceleration parameter q as well as the equation of state parameter
wD for flat and closed universes have been plotted against the redshift parameter, z. All of
the studied cases admit a transition in the expansion history of universe from a deceleration
phase to an accelerated one around z ≈ 0.6.
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1 Introduction

The cause of the accelerated expansion of universe, predicted by the observations of type
Ia supernova [1–4], is the backbone of a big challenge in the modern physics. This phase
of the universe expansion has been confirmed by observing the anisotropies of Cosmic
Microwave Background (CMB) [5, 6]. The CMB observation can be considered as a signal
to the universe flatness and claims that the energy density of the cosmic fluid is very close to
the critical density [7]. Large-Scale Structure (LSS) [8–11], Baryon Acoustic Oscillations
(BAO) in the Sloan Sky Digital Survey (SSDS) luminous galaxy sample [12, 13], and Plank
data [14] are other observations supporting an accelerated universe.

Since the cosmic fluid, supporting the current accelerating universe, does not interact
with light, it is called “dark energy”(DE), an oddity with negative pressure and negative
equation of state parameter (EoS) ω< − 1/3. In general relativity (GR), there is a very sim-
ple model for describing the above mentioned picture called cosmological constant model.
According to this model, there is an isotropic and homogeneous fluid with constant posi-
tive energy density and constant negative pressure with EoS parameter ω� = −1. Although
the cosmological constant model of DE helps us in providing a well initial picture for the
current accelerating phase, it suffers from some problems such as the fine-tuning and the
coincidence problems [15].

In order to find a more realistic model of DE, various fluids with time varying EoS
parameter have been introduced which are supported and constrained by the observational
data [16–19]. Quintessence [20, 21], phantom (ghost) field [22–24], K-essence [25–27],
Chaplygin gas [28, 29], holographic dark energy which originates from quantum gravity
[30–37] and agegraphic DE [38–50] are some examples of DE models with time varying
EoS parameter. On the other hand, in another approach, some physicists try to solve the DE
problem by modifying the field equations of GR in such a way that the phase of acceleration
is reproduced without including any new kind of energy [51–54]. Indeed, in the modified
gravity approach, one may consider a new degree(s) of freedom leading to many unknown
features and thus one should investigate their nature and new consequences in the universe
meaning that this approach adds more complexity to the system. Therefore, it is impressive
and economic if we can explain DE without entering the new degrees of freedom.

GDE is a model for DE wherein we do not need to introduce new degrees of freedom
or modify gravity. This model is based on the Veneziano ghost field used in order to solve
the so-called U(1) problem in QCD theory [55–59]. Although there is not any observable
consequence from the ghost field in a Minkowskian spacetime, it produces a small vacuum
energy density proportional to ρD ∼ �3

QCDH ∼ (3 × 10−3eV )4, which solves the fine-

tuning problem [60], in curved spacetime. Here, �QCD ∼ 100MeV and H ∼ 10−33eV

are QCD mass scale and Hubble parameter, respectively [60]. Different features of GDE
have been studied in ample details [61–70]. It has been found that the contribution of the
Veneziano QCD ghost field to the vacuum energy is not exactly of order of H and there is
also a second order term proportional to H 2 which contributes to the vacuum energy density
[71]. Adding the H 2 correction term to the GDE model, one may study the GGDE model
in which the energy density is taken as ρD = αH + βH 2 [72–74].

Based on the cosmological principle, the universe is homogeneous and isotropic in scales
larger than 100-Mpc and it can be open, flat or closed denoted by the curvature constant
k = −1, 0, 1, respectively [15]. It is useful to mention here that although some observa-
tions indicate a flat universe, the nonflat case is not completely rejected by observations [15,
75–85]. In addition, there are also several observations which indicate a mutual interaction
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between DE and dark matter (DM) [86–94]. The initial simple models of the mutual inter-
action between DE and DM are linear functions of ρD and ρm [95–104], where ρm is the
energy density of DM.

Moreover, investigations confirm that the sign of the mutual interaction between DM and
DE is changed during the history of universe [105]. In this regards, Wei [106, 107]. proposed
a sign-changeable interaction term in the form Q = q(αρ̇ + 3βHρ), where α and β are
dimensionless constant and q is the deceleration parameter. It is obvious that the sign ofQ is
changed whenever the universe expansion phase is changed from a deceleration phase (q >

0) to an acceleration one (q < 0). It is also worth mentioning that, from the dimensional
point of view, one may consider α = 0 and discard the αρ̇ term [107–109]. In fact, the
sign-changeable interaction has attracted a lot of attentions [110–119]. For example, the
Chaplygin gas model of DE with sign-changeable interaction has been investigated widely
in the literatures [110–116]. The agegraphic and new agegraphic models of DE with the
sign-changeable interaction have also been explored, respectively, in [117] and [118]. Very
recently, we have studied the holographic DE model with the sign-changeable interaction
term with various IR cutoffs [119].

In the present paper, we are interested in studying the effects of considering a mutual
sign-changeable interaction between DM and the DE candidates, including GDE and
GGDE, on the evolution history of universe. Indeed, we are going to investigate how a
sign-changeable interaction affects the description of GDE and GGDE models of DE about
the current phase of the cosmic expansion. We also investigate the evolution of the sys-
tem parameters, such as the equation of state (EoS) parameter as well as the deceleration
and dimensionless density parameters, during the cosmic evolution from the matter dom-
inated era to the current accelerating epoch. In order to present our work, we organize
the paper according to the following sections. In Section 2, we study GDE with the sign-
changeable interaction in both flat and nonflat universes. Thereinafter, we extend our study
to the sign-changeable interacting GGDE in both the flat and nonflat universes in Section 3
and investigate the cosmological implications of the model. In Section 4, we compare the
EoS parameter of the sign-changeable interaction GDE and the standard GDE model. We
summarize our results in Section 5.

2 GDE with the Sign-changeable Interaction

In this section, we study the GDE in the presence of the sign-changeable interaction term in
both flat and nonflat universe.

2.1 Flat Universe

The first Friedmann equation in a flat homogeneous and isotropic FRW universe is written
as [15]

H 2 = 8πG

3
(ρm + ρD), (1)

where ρD is the GDE density and ρm is the energy density of DM. For the GDE density we
have [60]

ρD = αH, (2)
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where α is a constant of order �3
QCD and �QCD is the QCD mass scale [60]. The fractional

energy density parameters and the energy density ratio are defined as

�m = ρm

ρcr

= 8πGρm

3H 2
, �D = ρD

ρcr

= 8πGα

3H
, (3)

and

r = ρm

ρD

= �m

�D

= 1 − �D

�D

. (4)

For an interacting universe in which there is a mutual interaction between dark sectors of
cosmos, the energy-momentum conservation law can be written as

ρ̇m + 3Hρm = Q, (5)

ρ̇D + 3H(1 + ωD)ρD = −Q. (6)

In the above equations, Q denotes the interaction term between DE and DM. Here, we
consider the interaction term as [105, 107]

Q = 3βHq(ρD + ρm), (7)

where β is the coupling constant of interaction Q, and q is the deceleration parameter
defined as

q = −1 − Ḣ

H 2
. (8)

Let us note that although some negative values are allowed for the coupling constant β, we
only focus on the β = b2 > 0 case [105, 107]. Taking the time derivative of relation (2) and
considering (1), we obtain

ρ̇D = ρD

Ḣ

H
= −4πGαρD(1 + r + ωD). (9)

Substituting (9) and (7) into (6) and bearing (4) in mind, one reaches at

ωD = − 1

2 − �D

(
1 + 2b2q

�D

)
. (10)

If we set q = 1 in (7) and (10), thenQ and ωD are reduced to relations obtained in Ref. [64].
In Fig. 1, considering the initial condition �D(z = 0) = 0.72, the evolution of ωD is plotted
against the redshift parameter z. Intersetingly, the EoS parameter of the sign-changeable
interacting GDE cannot cross the phantom divide (ωD = −1) at the late time where �D →
1. This is due to the fact that at the late time q becomes negative and hence wD = −(1 +
2b2q) ≥ −1. This is in contrast to the case of standard interacting GDE, where in the late
time the EoS parameter of interacting GDE necessary crosses the phantom line, namely,
wD = −(1+2b2) < −1 independent of the value of coupling constant b2 [64]. For example,
taking �D = 0.72 for the present time, the phantom crossing take places provided b2 > 0.1
[64]. Using (8) and (9), we find

Ḣ

H 2
= −3

2
�D(1 + r + ωD), (11)

which can be combined with (10) and (8) to reach at

q =
(
1

2
− 3�D

2(2 − �D)

) [
2 − �D

2 − �D + 3b2

]
. (12)

Considering �D(z = 0) = 0.72 for the initial condition, we have plotted q against the
redshift parameter in Fig. 2. As it is obvious, there is a transition from the deceleration phase
to the acceleration one at z ≈ 0.6.
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Fig. 1 The evolution of ωD versus redshift parameter z for the sign-changeable interacting GDE in flat
universe

Taking the derivative with regard to time from �D = (8πGρD)/3H 2 and combining the
result with (6) and (25), one can find

d�D

d ln a
= 3�D

[
1 − �D

2 − �D

(
1 + 2b2q

�D

)
− b2q

�D

]
= 3

2
�D

[
1 − �D

2 − �D

(
1 + 2b2q

�D

)]
.

(13)
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Fig. 2 The evolution of q versus redshift parameter z for the sign-changeable interacting GDE in flat
universe
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Fig. 3 The evolution of �D versus redshift parameter z for the sign-changeable interacting GDE in flat
universe when �D(z = 0) = 0.72

We have plotted the dynamics of dimensionless GDE density in Fig. 3. We observe that at
the early time �D → 0 and at the late time �D → 1, as expected. It is easy to check
that, as previous, the result of Ref. [64] are obtainable when q = 1. In summary, for the
sign-changeable interacting GDE in flat universe, at the late time where z → 0, we have
q → −1 and ωD ≥ −1.
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Fig. 4 The evolution of ωD versus redshift parameter z for GDE in a nonflat universe when �D(z = 0) =
0.72 and k = 1
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2.2 Nonflat Universe

Here we consider the sign-changeable interacting GDE in a nonflat universe. It has been
argued that the flatness is not a necessary consequence of inflation if the number of e-folding
is not very large [120]. The spatial curvature made a contribution to the energy components
of cosmos which is constrained as −0.0175 < �k < 0.0085 with 95% confidence level
by current observations [121]. The first Friedmann equation in a nonflat homogeneous and
isotropic FRW universe is

H 2 + k

a2
= 8πG

3
(ρm + ρD), (14)

where k = −1, 0, 1 is the curvature parameter corresponding to open, flat, and closed
universes, respectively. The curvature fractional density parameter is defined as �k =
k/(a2H 2), and thus the Friedmann equation can be rewritten in the following form

�m + �D = 1 + �k, (15)

which also yields

r = �m

�D

= 1 + �k − �D

�D

, (16)

for the energy density ratio. Combining the time derivative of (14) with (15), we obtain

Ḣ

H 2
= �k − 3

2
�D(1 + r + ωD). (17)

Inserting the above relation into (6) and using (7) and (9), we reach at

ωD = − 1

2 − �D

(
1 − �k

3
+ 2qb2

�D

(1 + �k)

)
, (18)
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Fig. 5 The evolution of q versus redshift parameter z for GDE in a nonflat universe. Here we have taken
�0

D = 0.72 and k = 1
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for the EoS parameter of sign-changeable interacting GDE in a nonflat universe. Substitut-
ing (18) and (17) into (8), the deceleration parameter in a nonflat background is obtained
as

q =
[
1 + �k

2
− 3�D

2(2 − �D)

(
1 − �k

3

)](
2 − �D

2 − �D + 3b2(1 + �k)

)
. (19)

We plot the evolution of ωD and q against the redshift parameter (z) for GDE in the
closed universe in Figs. 4 and 5, respectively. Again, we see that the universe has a phase
transition from deceleration to an acceleration around z ≈ 0.6.

It is a matter of calculation to show that

d�D

d ln a
= 3�D

2

[
1 + �k

3
− �D

2 − �D

(
1 − �k

3
+ 2qb2

�D

(1 + �k)

)]
, (20)

where we used (17) and (6) to get the above equation. It is worthwhile to mention here that
the results of flat case, obtained in previous subsection, are covered by setting �k = 0. The
dynamics of GDE in terms of the redshift parameter is plotted in Fig. 6. Clearly, at the early
time it shows �D → 0 and at the late time the DE dominates. In the following we can have
q → −1 and ωD ≥ −1 at the late time where z → 0.

3 GGDE with the Sign-changeable Interaction

In the previous section, we have assumed the energy density of GDE as ρD = αH , while, in
general, the vacuum energy of the Veneziano ghost field in QCD is of the form H +O(H 2)

[71]. Motivated by the argument given in [122], one may expect that the subleading termH 2

in the GDE model might play a crucial role in the early evolution of the universe, acting as
the early DE. It was shown [72–74] that taking the second term into account can give better
agreement with observational data compared to the usual GDE. This mode is usually called
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Fig. 6 The evolution of �D versus redshift parameter z for the sign-changeable interacting GDE in nonflat
universe when �D(z = 0) = 0.72 and k = 1
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the generalized ghost dark energy (GGDE) and our main task in this section is to investigate
the properties of this model in the presence of the sign-changeable interacting term. Again,
we first consider a flat universe and then generalize our study to the nonflat case.

3.1 Flat Universe

For the energy density of GGDE we have

ρD = (αH + βH 2), (21)

where β is a constant [71, 72]. The fractional energy density parameters also take the below
forms

�m = ρm

ρcr

= 8πGρm

3H 2
, �D = ρD

ρcr

= 8πG(α + βH)

3H
. (22)

Here, ρcr = 3H 2

8πG
denotes again the critical density. Finally, use (22) and (21) to obtain

4πG

3H
(α + 2βH) = �D

2
+ 4πGβ

3
. (23)

Taking the time derivative of (21), one can find

ρ̇D = Ḣ (α + 2βH), (24)

combined with (22) to reach at

Ḣ

H 2
= −3

2
�D(1 + r + ωD), (25)

finally leading to

Ḣ = −4πGρD(1 + r + ωD), (26)

1+z
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Fig. 7 The evolution of ωD versus redshift parameter z for the sign-changeable interacting GGDE in flat
universe when �D(z = 0) = 0.72 , ζ = 0.1
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where r is the energy density ratio (4). Substituting (24) and (7) into (6) and using (23), (4)
and (26), we find out

ωD = − 1

2 − �D − ζ

(
1 + 2b2q

�D

− ζ

�D

)
. (27)

Here, ζ = 8πGβ
3 . It is obvious that, as the flat case, this equation is reduced to the result

of Ref. [73] in the q = 1 limit. The evolution of ωD has been plotted against the redshift
parameter (z) for GGDE in Fig. 7.

As the flat case, the EoS of sign-changeable interaction GGDE cannot cross the phantom
division (ωD ≥ −1). Let us note that at the late time where the universe is in the acceler-
ated phase, q becomes negative and considering the fact that ζ = .1, we arrive at ωD =
−

(
1 + 2b2q

�D
− ζ

�D

)
≥ −1. Taking q = 1, we have ωD = −

(
1 + 2b2

�D
− ζ

�D

)
< −1, and

the result of Ref. [73] is restored.
Substituting (25) in (8) and using (27), one can also obtain

q = 1 − 2�D + ζ

2 − �D − ζ + 3b2
. (28)

It is easy to verify that the result of Ref. [73] is covered when b = 0. Moreover, for b = 0
and ζ = 0, we have q = 1−2�D

2−�D
= 1

2 − 3
2

�D

2−�D
[63].

The behavior of q has also been plotted in Fig. 8, addressing a transition from the deceler-
ation phase to the acceleration one at z ≈ 0.6. Finally, taking the time derivative of relation
�D = 8πGρD

3H 2 and using (6) and (25), we find

�′
D = 3�D

[
1 − �D

2 − �D − ζ

(
1 + 2b2q

�D

− ζ

�D

)
− b2q

�D

]
. (29)
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Fig. 8 The evolution of q versus redshift parameter z for the sign-changeable interacting GGDE in flat
universe when �D(z = 0) = 0.72, ζ = 0.1
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Fig. 9 The evolution of �D versus redshift parameter z for the sign-changeable interacting GGDE in flat
universe when �D(z = 0) = 0.72 , ζ = .1

It is also easy to check that the results of Refs. [63, 73] are obtainable from the above
relations.

We have plotted the dynamics of density parameter in Fig. 9, and the behavior is similar
to the previous case; at the early time �D → 0, while at the late time �D → 1.

3.2 Nonflat Universe

In order to find the EoS parameter of sign-changeable interacting GGDE in the non-flat
universe, inserting (26) into (24) and combining the result with (6) and (16), we get

ωD = − 1

2 − �D − ζ

[
2 −

(
1 + ζ

�D

) (
1 + �k

3

)
+ 2b2q

�D

(1 + �k)

]
. (30)

As one can see the EoS parameter cannot cross the phantom divide at the late time,
because at this epoch we have �D → 1 and q becomes negative, therefore ωD =
−

(
2 − (1 + ζ )(1 + �k

3 ) + 2b2q(1 + �k)
)

≥ −1 (note that we have chosen ζ = .1 and

�k = .01). If we set q = 1 we get ωD = −
(
2 − (1 + ζ )(1 + �k

3 ) + 2b2(1 + �k)
)

< −1,

which is the result of Ref. [73]. Thus in contrast to the EoS parameter of the usual interacting
GGDE which the phantom regime can be achieved, in case of sign-changeable interaction
term the EoS parameter of GGDE is always ωD ≥ −1.

Combining (30) with (17) and (8), one arrives at

q =
(
1 + �k

2
− 3�D

2(2 − �D − ζ )
(1 − �k

3
)

)[
2 − �D

2 − �D + 3b2(1 + �k)

]
, (31)
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Fig. 10 The evolution of ωD versus redshift parameter z for the sign-changeable interacting GGDE in
nonflat universe when �D(z = 0) = 0.72, ζ = 0.1 and k = 1

for the deceleration parameter. One can finally use (22), (6) and (17) in order to obtain

�′
D = 3�D

[
�k

3
+ 1 − �D

2 − �D − ζ

(
2 − (1 + ζ

�D

)(1 + �k

3
) + 2b2q

�D

(1 + �k)

)
− b2q

�D

(1 + �k)

]
.

(32)
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Fig. 11 The evolution of q versus redshift parameter z for the sign-changeable interacting GGDE in nonflat
universe when �D(z = 0) = 0.72, ζ = 0.1 and k = 1



Int J Theor Phys (2017) 56:3477–3495 3489

1+Z

Ω
D

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b^2=.01

Fig. 12 The evolution of �D versus redshift parameter z for the sign-changeable interacting GGDE in
nonflat universe when �D(z = 0) = 0.72, ζ = 0.1 and k = 1

It is worth mentioning that in the limit of �k = 0, all the obtained relations in this
subsection restore their respective expressions in the previous subsections for flat universe.
The behaviors of ωD and q against the redshift parameter for GGDE in the closed universe
have also been plotted in Figs. 10 and 11. The main results of this figures are: (i) at late
time, we have ωD ≥ −1 and q < −1. (ii) there is a transition from the deceleration phase
to the accelerated one around z � 0.6. We have also plotted the evolutionary of the GGDE
density in Fig. 12.
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Fig. 13 The evolution of ωD versus redshift parameter z for GDE in a flat and nonflat universe when b2 =
.1, .04,�D(z = 0) = 0.72 and k = 1



3490 Int J Theor Phys (2017) 56:3477–3495

1+Z

ω
D

0.5 1 1.5 2 2.5
-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

sign b^2=.1
sign b^2=.04
usual b^2=.04
usual b^2=.1

1+Z

ω
D

1 2
-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

sign b^2=.1
sign b^2=.04
usual b^2=.04
usual b^2=.1

Fig. 14 The evolution of ωD versus redshift parameter z for GGDE in a flat and nonflat universe when
b2 = .1, .04,�D(z = 0) = 0.72, ζ = 0.1 and k = 1

4 Comparison of EoS Parameter of Usual Interacting GDE
and Sign-changeable Model

Finally, we compare the original interating GDEmodel with the sign-changeable interacting
GDE model. For this purpose, we plot the evolution of ωD versus redshift parameter z in
Figs. 13 and 14 for both of models GDE and GGDE in a flat and nonflat universe. The long-
dash and dash-dot lines show the evolution of ωD for the sign-changeable interacting GDE
model and the solid and dashed lines show the usual interacting GDEmodel with interaction
term Q = 3b2H(ρD + ρm). From these figures, we observe that the EoS parameter of both
GDE and GGDE with sign-changeable interaction term cannot cross the phantom divide
ωD = −1 and we always have ωD ≥ −1 at the late time. In contrast, the EoS parameter of
the usual interacting GDE and GGDE can cross the phantom line, namely ωD < −1 at the
late time.

5 Closing Remarks

The DE puzzle is undoubtedly one of the most important challenges of modern cosmology
[123, 124]. In this paper, we considered a flat FRW universe filled by a DM and GDE
interacting with each other through a sign-changeable interaction term. The generalization
to the nonflat case is also investigated, which shows that, for a closed universe, although
ωD ≥ −1 at late time, we have q < −1 for the deceleration parameter. Our studies show
that, at the late time, we have q → −1 and ωD ≥ −1 meaning that this model does not cross
the phantom line, a result which is consistent with the cosmological constant model of DE.

The values of the model parameters can be estimated by fitting the model with obser-
vational data. The observational data for coefficient β in original interaction model, Q =
3βH(ρD + ρm), implies a positive value (β > 0), hence we consider β to be positive and
can be rewritten β = b2 > 0. We found out that if we select sign-changeable interaction
model, Q = 3b2qH(ρD + ρm), because q at the late time should have a negative value,
we cannot have crossing phantom. Our studies here show that with the sign-changeable
interaction term, only if coefficient β in Q is chosen as a negative value, we can reach the
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phantom regime. All of the studied cases indicate a transition from the deceleration phase
to an accelerated one which take places around z ≈ 0.6.
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