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Abstract We demonstrate that an entangled five-qubit cluster state can be used to realize
the deterministic bidirectional controlled quantum information transmission by performing
only Bell-state measurement and single-qubit measurements. In our protocol, Alice can tele-
port an arbitrary unknown single-qubit state to Bob and at the same time Bob can remotely
prepare an arbitrary known single-qubit state for Alice via the control of the supervisor
Charlie.

Keywords Controlled quantum information transmission · Five-qubit cluster state ·
Bell-state measurement

1 Introduction

Quantum entanglement is an important quantum resource, which can be used to imple-
ment various quantum information processing tasks [1–10], such as quantum teleportation
[11] and quantum remote state preparation [12]. As known, if a sender (Alice) wants to
transmit an arbitrary unknown quantum state to a receiver (Bob), they can use the proto-
col of the standard quantum teleportation. However, if Alice wants to prepare an arbitrary
known quantum state to Bob, they can use the protocol of the standard quantum remote state
preparation. In recent years, various theoretical quantum teleportation schemes [13–31] and
remote state preparation schemes [32–38] have been proposed. In 2013, Zha et al. [39]
proposed the original bidirectional quantum controlled teleportation protocol by using an
entangled five-qubit cluster state. In their scheme, Alice can teleport an arbitrary unknown
single-qubit state to Bob and at the same time Bob can teleport an arbitrary unknown
single-qubit state to Alice via the control of the supervisor Charlie.
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In this work, we propose a new protocol for bidirectional controlled quantum information
transmission by using an entangled five-qubit cluster state, where Alice can teleport an
arbitrary unknown single-qubit state to Bob and at the same time Bob can remotely prepare
an arbitrary known single-qubit state for Alice via the control of the supervisor Charlie.
In our protocol, only Bell-state measurement and single-qubit measurements are used. Our
results make the five-qubit cluster state multipurpose, i.e., no matter whether the transmitted
state is known or unknown, the quantum information state can be transmitted with each
other by using an entangled five-qubit cluster state under the control of the third party as a
supervisor.

2 Bidirectional Controlled Quantum Information Transmission

Our protocol can be described as follows. Assume that Alice has an arbitrary unknown
single-qubit state, which is written as

|ψ〉a = α |0〉 + β |1〉 , (1)

where α and β are complex numbers and satisfy that |α|2 + |β|2 = 1. Now Alice wants to
teleport the arbitrary unknown single-qubit state |ψ〉a of qubit a to Bob. At the same time,
Bob must remotely prepare an arbitrary known single-qubit state of qubit b for Alice. The
known single-qubit state of qubit b can be expressed as

|ψ〉b = b0 |0〉 + b1e
iφ1 |1〉 , (2)

where b0, b1, φ1 are real number, and satisfy that φ1 ∈ [0, 2π ] with |b0|2 + |b1|2 = 1.
Assume that Alice, Bob and Charlie share an entangled five-qubit cluster state, which has
the form

|C5〉12345 = 1

2
(|00000〉 + |00111〉 + |11101〉 + |11010〉)12345 , (3)

where the qubits 1 and 5 belong to Alice, the qubits 2 and 3 belong to Bob, and the qubit
4 belongs to Charlie, respectively. Therefore, the combined quantum state of the six qubits
can be expressed as

|�〉a12345 = |ψ〉a ⊗ |C5〉12345 . (4)

To achieve the purpose of bidirectional controlled quantum information transmission,
firstly, Bob introduces one auxiliary qubit 6 with an initial state |0〉6. Therefore, the system
state of the seven qubits can be expressed as

|X〉a123456 = |ψ〉a ⊗ |C5〉12345 ⊗ |0〉6 . (5)

Secondly, Bob performs a C-NOT operation on qubits 3 and 6, where qubit 3 works
as controlling qubit and auxiliary qubit 6 as target qubit. After that, the above seven-qubit
combined state will become

|�〉a123456 = |ψ〉a ⊗ 1

2
(|000000〉 + |001111〉 + |111011〉 + |110100〉)123456 . (6)

Thirdly, Alice has to carry out a Bell-state measurement on her qubit pair (a, 1), and the
Bell-state measurement bases are

∣
∣	±〉

a1 =
√
2

2
(|00〉 ± |11〉)a1 , (7)
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and
∣
∣
±〉

a1 =
√
2

2
(|01〉 ± |10〉)a1 . (8)

Without loss of generality, if Alice’s Bell-state measurement result is
∣
∣	+〉

a1, then the
state of other qubits 2, 3, 4, 5, 6 are collapsed into the following state

|�〉23456 =
√
2

2
(α |00000〉 + α |01111〉 + β |11011〉 + β |10100〉)23456 . (9)

Fourthly, Bob must perform a single-qubit measurement on his qubit 3, and the single-
qubit measurement bases are given by

∣
∣ξ+〉

3 = (b0 |0〉 + b1 |1〉)3 , (10)
∣
∣ξ−〉

3 = (b1 |0〉 − b0 |1〉)3 . (11)

If Bob’s single-qubit measurement result is
∣
∣ξ+〉

3, then the state of remaining qubits 2,
4, 5 and 6 are collapsed into the state

|ϕ〉2456 = (αb0 |0000〉 + αb1 |0111〉 + βb1 |1011〉 + βb0 |1100〉)2456 . (12)

Fifthly, Bob then perform a single-qubit measurement on his qubit 6, and the single-qubit
measurement bases are given by

∣
∣ζ+〉

6 =
√
2

2

(

|0〉 + e−iφ1 |1〉
)

6
, (13)

∣
∣ζ−〉

6 =
√
2

2

(

|0〉 − e−iφ1 |1〉
)

6
. (14)

If Bob’s single-qubit measurement result is
∣
∣ζ+〉

6, then the state of remaining qubits 2, 4
and 5 are collapsed into the state

|τ 〉245 =
(

αb0 |000〉 + αb1e
iφ1 |011〉 + βb1e

iφ1 |101〉 + βb0 |110〉
)

245
. (15)

Finally, Charlie has to make out a single-qubit measurement on his qubit 4 under the
basis |±〉 = (|0〉 ± |1〉)/√2. If Charlie’s single-qubit measurement result is |+〉4, then the
state of qubits 2 and 5 will be collapsed into the following state

|ω〉25 =
(

αb0 |00〉 + αb1e
iφ1 |01〉 + βb1e

iφ1 |11〉 + βb0 |10〉
)

25

= (α |0〉 + β |1〉)2 ⊗
(

b0 |0〉 + b1e
iφ1 |1〉

)

5
.

Therefore, the bidirectional controlled quantum information transmission is successfully
realized. That is to say Alice has teleported an arbitrary unknown single-qubit state to Bob
and at the same time Bob has remotely prepared an arbitrary known single-qubit state for
Alice via the control of the supervisor Charlie.

Analogously, for other measurement results by Alice, Bob and Charlie, the receivers both
Alice and Bob can perform an appropriate unitary transformation according to the appro-
priate measurement results by Alice, Bob and Charlie. At last, the bidirectional controlled
quantum information transmission task is easily fulfilled.

3 Conclusions

In summary, we have demonstrated that an entangled five-qubit cluster state can be used
to implement the deterministic bidirectional controlled quantum information transmission
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task by performing one Bell-state measurement and two single-qubit measurements. In our
work, the sender Alice can teleport an arbitrary unknown single-qubit state of qubit a to the
receiver Bob, and at the same time the sender Bob can remotely prepare an arbitrary known
single-qubit state of qubit b for the receiver Alice via the control of the supervisor Charlie.
The receivers can operate an appropriate unitary transformation to obtain the desired state
according to the measured result by Alice, Bob and Charlie. Without the help of Charlie,
the receivers both Alice and Bob cannot fully obtain the desired state.
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