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Abstract A protocol for the quantum secure multi-party summation based on two-particle
Bell states is proposed. In this protocol, two-particle Bell states are used as private infor-
mation carriers. Without using the entangled character of Bell states, we also use Pauli
matrices operations to encode information and Hadamard matrix to extract information.
The proposed protocol can also resist various attacks and overcomes the problem of infor-
mation leakage with acceptable efficiency. In theory, our protocol can be used to build
complex secure protocols for other multiparty computations and also lots of other important
applications in distributed networks.

Keywords Quantum secure multi-party summation · Bell states · Security · Information
leakage

1 Introduction

Secure multi-party computation(SMC) is an important subfield of cryptography, which
was introduced by Goldreich in [1]. Secure multi-party computation has been extended to
the quantum field and many researchers have investigated secure multi-party computation
problems based on quantum states, such as quantum protocol for millionaire problem [2–6],
quantum private comparison protocol [7–16], secure multiparty quantum summation [17–
22], quantum private query [23–27] etc.

Secure multi-party summation problem is a special problem in secure multi-party com-
putation. The problem of secure multi-party summation is described as follows: there are n

parties P1, P2, .., Pn and every party Pi has a private information xi . They want to correctly
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calculate a summation function F(x1, x2, ..., xn) without revealing any party’s secret infor-
mation. It is a fundamental primitive of SMC, which can be used to build complex secure
protocols for other multiparty computations.

However, there are only a few quantum protocols for Secure Multiparty Summation. In
2006, Hillery et al. [17], proposed a multi-party summation protocol with the two-particle
N -level entangled states. In 2007, Du et al. [18] presented a secure quantum addition module
n + 1 based on non-orthogonal single states. In 2010, Chen et al. [19] presented a quantum
summation protocol with the multi-particle entangled GHZ states. In 2014, Zhang et al. [20]
employed single photons in both polarization and spatial-mode degrees of freedom to
design a quantum summation protocol. In 2015, Zhang et al. [21] proposed a quantum
summation protocol based on the genuinely maximally entangled six-qubit states. In 2016,
Shi et al. [22] present a quantum summation protocol based on quantum Fourier transform
and CNOT gate operators.

In this paper, we firstly proposed a quantum secure two-party summation protocol based
on two-particle Bell states. This protocols includes a semi-honest third party(TP). TP can
prepares the initial states and gets the calculation results. TP also executes the protocol
loyally, keeps a record of all its intermediate computations and might try to steal the players’
private inputs from the record, but he cannot be corrupted by the adversary. Then, we extent
the two-party protocol to multi-party quantum summation without TP. Secure multiparty
summation can be applied in secret sharing, electronic voting, secure sorting, data mining
and so on. In our protocol, participants only use common EPR states and single particle
operations without using entanglement swapping. So our protocol is simpler and easier to
implement.

The structure of this paper is as follows: we propose a quantum secure two-party sum-
mation protocol based on two-particle Bell states in Section 2; and we analyze the security
of this protocol in Section 3; we propose a quantum secure multi-party summation proto-
col based on two-particle Bell states in Section 4. A brief discussion and the concluding
summary are given in Section 5.

2 The Quantum Secure Two-Party Summation Protocol Based
on Two-Particle Bell States

Before presenting the protocol, we firstly give a description of two-level EPR states used in
our protocol as follows:

|B00〉 = |00〉 + |11〉√
2

|B11〉 = |01〉 − |10〉√
2

(1)

The four Pauli matrices are described as follows:

σ00 =
(
1 0
0 1

)
σ01 =

(
0 1
1 0

)

σ10 =
(
1 0
0 −1

)
σ11 =

(
0 −1
1 0

)
.

(2)

Using these Pauli matrices operations on |0〉 , |1〉, we can get that:
σ00 |0〉 = |0〉 , σ00 |1〉 = |1〉 , σ01 |0〉 = |1〉 , σ01 |1〉 = |0〉 ,

σ10 |0〉 = |0〉 , σ10 |1〉 = − |1〉 , σ11 |0〉 = |1〉 , σ11 |1〉 = − |0〉 .
(3)
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Supposed that there are two binary numbers x1, x2 ∈ {0, 1}, we apply σx1x2 on
|B00〉, |B11〉:

σx1x2 |B00〉 = |B00〉
σx1x2 |B11〉 = (−1)x1⊕x2 |B11〉 (4)

The Hadamard matrix is described as follows:

H = 1√
2

(
1 1
1 −1

)
. (5)

Using these Hadamard matrix on |0〉, |1〉, we can get that:
H |0〉 = 1√

2
(|0〉 + |1〉),H |1〉 = 1√

2
(|0〉 − |1〉)

H 1√
2
(|0〉 + (−1)0 |1〉) = |0〉, H 1√

2
(|0〉 + (−1)1 |1〉) = |1〉 (6)

Supposed that there two parties, Alice and Bob, where Alice has a secret X and Bob
has a secret Y . The binary strings of X, Y are (x1, x2, ...xL), (y1, y2, ...yL). TP can get the
summation result (x1 ⊕ y1, x2 ⊕ y2, ...xL ⊕ yL), where ⊕ denotes the addition module 2.
The detail of our secure two-party summation protocol is described as follows:

(1) TP prepares a L-length sequence of three-particle states:
1√
2
(|0〉 |B00〉 + |1〉 |B11〉)T1A1B1 , ...,

1√
2
(|0〉 |B00〉 + |1〉 |B11〉)TLALBL

.

TP takes the first particle from each state in this sequence to form an ordered
particles sequence

[(PT1), (PT2), ...., (PTL
)] (7)

which is called ST .
TP takes the second particle from each state in this sequence to form an ordered

particles sequence
[(PA1), (PA2), ...., (PAL

)] (8)

which is called SA.
TP takes the third particle from each state in this sequence to form an ordered

particles sequence
[(PB1), (PB2), ...., (PBL

)] (9)

which is called SB .
TP also prepares two sequences of L′ particles, which are randomly chosen from

four photon states |0〉, |1〉, |+〉, |−〉 and randomly inserts these two sequences of L′
particles into SA, SB to form two new sequence S′

A, S′
B . TP records the insert positions

sequences PoA, PoB and sends S′
A, S′

B to Alice,Bob respectively.
(2) After receiving S′

A(S′
B), Alice(Bob) and TP perform the eavesdropping check. TP

announces the insert positions PoA(PoB) and the measuring bases of S′
A(S′

B). If the
insert particle is |0〉 or |1〉, the measuring basis is Z basis; if the insert particle is
|+〉 or |−〉, the measuring basis is X basis. Then Alice(Bob) chooses the L′ particles
from S′

A(S′
B) according to the insert positions PoA(PoB) and measures these parti-

cles according to the measuring bases. Alice(Bob) and TP can find the existence of
an eavesdropper by a predetermined threshold of error rate according to their measur-
ing results. If the error rate exceeds the threshold they preset, they abort the scheme.
Otherwise, they discards the measured photons in S′

A(S′
B) and continue to the next

step.
For i = 1, 2, ..., L, Alice calculates P ′

Ai
= σxi ,ri PAi

. The sequence of P ′
A1

,

P ′
A2

, ..., P ′
AL

is denoted by SqA.
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For i = 1, 2, ..., L, Bob calculates P ′
Bi

= σyi ,ri PBi
. The sequence of P ′

B1
,

P ′
B2

, ..., P ′
BL

is denoted by SqB .
where ri(i = 1, 2, ..., L) is randomly chosen from 0, 1.
Alice(Bob) also prepares a L′-particle sequence, which are randomly chosen from

four photon states |0〉, |1〉, |+〉, |−〉 and randomly inserts these L′ particles into
SqA(SqB) to form a new sequence Sq ′

A(Sq ′
B). Alice(Bob) records the insert positions

Po′
A(Po′

B) and sends Sq ′
A(Sq ′

B) to TP.
(3) After receiving Sq ′

A(Sq ′
B), Alice(Bob) and TP perform the eavesdropping check.

Alice(Bob) announces the insert positions Po′
A(Po′

B) and the measuring bases of
Sq ′

A(Sq ′
B). If the insert particle is |0〉 or |1〉, the measuring basis isZ basis; if the insert

particle is |+〉 or |−〉, the measuring basis is X basis. Then TP chooses the L′ particles
from Sq ′

A(Sq ′
B) according to the insert positions Po′

A(Po′
B) and measures these par-

ticles according to the measuring bases. Alice(Bob) and TP can find the existence of
an eavesdropper by a predetermined threshold of error rate according to their measur-
ing results. If the error rate exceeds the threshold they preset, they abort the scheme.
Otherwise, they discards the measured photons in Sq ′

A(Sq ′
B) and continue to the next

step.
For i = 1, 2, ..., L:
Except the first particle, TP sets others particles to 0 and applies the Hadamard

operation to the first particle PTi
:

H(|0〉 + (−1)xi⊕ri (−1)yi⊕ri |1〉) = |xi ⊕ yi〉 . (10)

P1 uses Z basis to measure the state and gets xi ⊕ yi .

3 Security Analysis

Firstly, we show that the outside attack is invalid to our protocol. Secondly, we show that
the Alice, Bob, TP can not get any information about the private information of each other.

3.1 Outside Attack

We analyze the possibility of the outside eavesdropper to get information about X and Y in
every step of protocol. In our protocol, the chance of attack from the outside eavesdropper
is to attack the quantum channel in Step (2). In Step (2), the outside eavesdropper can
attack the quantum channel when Alice,Bob sent SqA, SqB to TP. Because of the use of
nonorthogonal decoy photons, we performed eavesdropper checking process in Step (3)
and several kinds of outside attacks, such as the intercept-resend attack, the measure-resend
attack, the entangle-measure attack, were detected with nonzero probability. Anyone who
do not know the insert positions and bases of decoy particles cannot distinguish the decoy
particles and the signal particles. For some special attacks, such as the photon-number-
splitting (PNS) attack, the decoy-photon Trojan horse attack and the invisible photon Trojan
horse attack, participants can defeat these attacks by using some beam splitters to split
the sampling signals chosen for eavesdropping check before their operations and inserting
filters in front of their devices to filter out the photon signal with an illegitimate wavelength.
So, our quantum protocol is robust against outside attack.
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3.2 Participant Attack

The term “participant attack”, which emphasizes that the attacks from dishonest users are
generally more powerful and should be paid more attention to, is first proposed by Gao
et al. in Ref. [28] and has attracted much attention in the cryptanalysis of quantum cryptog-
raphy [29–34]. We analyze the possibility of the three parties to get information about X

and Y in our protocol. We firstly analyze the case that Alice wants to learn Bob’s private
information Y . Secondly, we analyze the case that TP wants to learn the private information
X, Y of Alice and Bob.

Case 1: Alice and Bob want to learn the private information of each other.
In our protocol, Alice can only gets PA1 , PA2 , ...., PAL

from TP and Bob can only gets
PB1 , PB2 , ...., PBL

. These particles aren’t related to Alice’s or Bob’s private information
B. So Alice and Bob cannot infer any information about the private information of each
other.

Case 2: TP wants to learn the private information X, Y of Alice and Bob.
In our protocol, TP knows PA1 , PA2 , ...., PAL

, PB1 , PB2 , ...., PBL
and also gets P ′

A1
,

P ′
A2

, ...., P ′
AL

, P ′
B1

, P ′
B2

, ...., P ′
BL

.
For i = 1, 2, ..., L: P ′

Ai
= σxi ,ri PAi

; P ′
Bi

= σyi ,ri PBi
.

Because ri(i = 1, 2, ..., L) is randomly chosen from {0, 1} by Alice and Bob, TP
cannot exactly know ri(i = 1, 2, ..., L). So TP cannot infer any information about the
private information of Alice and Bob.

4 The Quantum Secure Multi-Party Summation Protocol Based
on Two-Particle Bell States

Supposed that there n parties, P1, P2, ..., Pn, where each Pi has a secret Xi . The
binary strings of Xi is

(
x1
i , x2

i , ...xL
i

)
. P1, P2, ..., Pn can get the summation result(

n⊕
i=1

x1
i ,

n⊕
i=1

x2
i , ...,

n⊕
i=1

xL
i

)
, where⊕ denotes the addition module 2. In this case, we suppose

that the player P1 can act as TP.
The detail of our secure multi-party summation protocol is described as follows:

(1) If n − 1 mod 2 = 0, P1 prepares a L-length sequence of n-particle states:
((|0〉 |B00〉 ... |B00〉 + |1〉 |B11〉 ... |B11〉)P 1

1 P 2
1 ...P n

1
, ..., (|0〉 |B00〉 ... |B00〉 + |1〉 |B11〉 ...

|B11〉)P 1
LP 2

L...P n
L
).

P1 takes the ith particle from each state in this sequence to form an ordered particles
sequence [

(P i
1), (P

i
2), ...., (P

i
L)

]
(11)

which is called Si(i = 1, ..., n) sequence.
P1 keeps S1 and prepares n−1 L′-particle sequences. He inserts these particles into

S2, ..., Sn respectively and gets new sequences S′
2, ..., S

′
n. He also also records insert

positions Poi and sends Si to Pi , where i = 2, ..., n.
If n − 1 mod 2 = 1, P1 prepares a L-length sequence of n + 1-particle states:

((|0〉 |B00〉 ... |B00〉 + |1〉 |B11〉 ... |B11〉)P 1
1 ...P n+1

1
, ..., (|0〉 |B00〉 ... |B00〉 + |1〉 |B11〉 ...

|B11〉)P 1
L...P n+1

L
).
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P1 takes the ith particle from each state in this sequence to form an ordered particles
sequence

[(P i
1), (P

i
2), ...., (P

i
L)] (12)

which is called Si(i = 1, 2, ..., n + 1) sequence.
P1 keeps S1, Sn+1 and prepares n − 1 L′-particle sequences. He inserts these par-

ticles into S2, ..., Sn respectively and gets new sequences S′
2, ..., S

′
n. He also records

insert positions Poi sends S′
i to Pi , where i = 2, ..., n.

(2) If n − 1 mod 2 = 0:
For i = 2, ..., n: After receiving S ′

i , P1 and Pi perform the eavesdropping check. Pi

announces the insert positions Poi and the measuring bases of S′
i . If the insert particle

is |0〉 or |1〉, the measuring basis is Z basis; if the insert particle is |+〉 or |−〉, the
measuring basis is X basis. Then Pi chooses the L′ particles from S′

i according to the
insert positions Poi and measures these particles according to the measuring bases.
P1 and Pi can find the existence of an eavesdropper by a predetermined threshold of
error rate according to their measuring results. If the error rate exceeds the threshold
they preset, they abort the scheme. Otherwise, they discards the measured photons in
S′

i and continue to the next step.
For i = 2, ..., n:
For k = 1, 2, ..., L:
Pi calculates P i′

k = σxk
i ,r⌈ i

2

⌉P i
k . The sequence of P

i′
1 , P i′

2 , ..., P i′
L is denoted by Sqi ,

where r⌈ i
2

⌉ is randomly chosen from 0, 1.

For i = 2, ..., n:
Pi also prepares a L′-particle sequence, which are randomly chosen from four pho-

ton states |0〉, |1〉, |+〉, |−〉 and randomly inserts these L′ particles into Sqi to form a
new sequence Sq ′

i . Pi records the insert positions Po′
i and sends Sq ′

i to P1.
For i = 2, ..., n: After receiving Sq ′

i , P1 and Pi perform the eavesdropping check.
Pi announces the insert positions Poi and the measuring bases of Sq ′

i . If the insert
particle is |0〉 or |1〉, the measuring basis is Z basis; if the insert particle is |+〉 or |−〉,
the measuring basis is X basis. Then Pi chooses the L′ particles from Sq ′

i according to
the insert positions Po′

i and measures these particles according to the measuring bases.
P1 and Pi can find the existence of an eavesdropper by a predetermined threshold of
error rate according to their measuring results. If the error rate exceeds the threshold
they preset, they abort the scheme. Otherwise, they discards the measured photons in
Sq ′

i and continue to the next step.
If n − 1 mod 2 = 1:
For i = 2, ..., n: After receiving S′

i , P1 and Pi perform the eavesdropping check.
Pi announces the insert positions Poi and the measuring bases of S′

i+1. If the insert
particle is |0〉 or |1〉, the measuring basis is Z basis; if the insert particle is |+〉 or |−〉,
the measuring basis is X basis. Then Pi chooses the L′ particles from S′

i according to
the insert positions Poi and measures these particles according to the measuring bases.
P1 and Pi can find the existence of an eavesdropper by a predetermined threshold of
error rate according to their measuring results. If the error rate exceeds the threshold
they preset, they abort the scheme. Otherwise, they discards the measured photons in
S′

i and continue to the next step.
For i = 2, ..., n:
For k = 1, 2, ..., L:
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Pi calculates P i′
k = σxk

i ,r⌈ i
2

⌉Pi . The sequence of P i′
1 , P i′

2 , ..., P i′
L is denoted by Sqi ,

where r⌈ i
2

⌉ is randomly chosen from 0, 1.

For k = 1, 2, ..., L:
P1 calculates P n+1′

k = σrk
1 ,r� n

2 �P n+1
k . The sequence of P n+1′

1 , P n+1′
2 , ..., P n+1′

L

denoted by Sqn+1, where rk
1 = 0.

For i = 2, ..., n:
Pi also prepares a L′-particle sequence, which are randomly chosen from four pho-

ton states |0〉, |1〉, |+〉, |−〉 and randomly inserts these L′ particles into Sqi to form a
new sequence Sq ′

i . Pi records the insert positions Po′
i and sends Sq ′

i to P1.
For i = 2, ..., n:
After receiving Sq ′

i , P1 and Pi perform the eavesdropping check. Pi announces the
insert positions Poi and the measuring bases of Sq ′

i . If the insert particle is |0〉 or |1〉,
the measuring basis is Z basis; if the insert particle is |+〉 or |−〉, the measuring basis
is X basis. Then Pi chooses the L′ particles from Sq ′

i according to the insert positions
Po′

i and measures these particles according to the measuring bases. P1 and Pi can find
the existence of an eavesdropper by a predetermined threshold of error rate according
to their measuring results. If the error rate exceeds the threshold they preset, they abort
the scheme. Otherwise, they discards the measured photons in Sq ′

i and continue to the
next step.

(3) If n − 1 mod 2 = 0: For k = 1, 2, ..., L:
Except the first particle, P1 sets others particles to 0 and applies the Hadamard

operation to the first particle:

H

⎛
⎝|0〉 + (−1)

n⊕
i=2

(
xk
i ⊕r⌈ i

2

⌉
)

|1〉
⎞
⎠ =

∣∣∣∣ n⊕
i=2

(
xk
i

)〉
. (13)

P1 uses Z basis to measure the state and gets
n⊕

i=2

(
xk
i

)
. Then, he adds his secret xk

1

to the summation and obtains the final result
n⊕

i=1

(
xk
i

)
.

If n − 1 mod 2 = 1:
For k = 1, 2, ..., L:
Except the first particle, P1 sets others particles to 0 and applies the Hadamard

operation to the first particle:

H

⎛
⎝|0〉 + (−1)

n⊕
i=2

(
xk
i ⊕r⌈ i

2

⌉
)

|1〉
⎞
⎠ =

∣∣∣∣ n⊕
i=2

(
xk
i

)〉
. (14)

P1 uses Z basis to measure the state and gets
n⊕

i=2
(xk

i ). Then, he adds his secret xk
1

to the summation and obtains the final result
n⊕

i=1
(xk

i ).

The security of the present multi-party quantum summation protocol is the same
as the two-party quantum summation protocol. The collusive attack performed by at
most n − 2 players is invalid for this protocol.
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5 Discussion and Conclusions

In summary, we have put forward a novel and efficient quantum protocol to compute secure
multiparty summation. In our protocol, we use two-particle Bell states to carry private infor-
mation. We also use Pauli matrices operations to encode information and Hadamard matrix
to extract information. The proposed protocol can also resist various attacks, such as distur-
bance attack, Trojan horse attack, intercept-resend attack, entanglement-and-measure attack
and man-in-the-middle attack. Without using the entanglement swapping of Bell states, our
proposed quantum protocol overcomes the problem of information leakage with acceptable
efficiency. In theory, our protocol can be generalized to compute lots of secure multiparty
numerical computations.
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