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Abstract In the logico-algebraic approach to the foundation of quantum mechanics we
sometimes identify the set of events of the quantum experiment with an orthomodular lattice
(“quantum logic”). The states are then usually associated with (normalized) finitely additive
measures (“states”). The conditions imposed on states then define classes of orthomodular
lattices that are sometimes found to be universal-algebraic varieties. In this paper we adopt
a conceptually different approach, we relax orthomodular to orthocomplemented and we
replace the states with certain subadditive mappings that range in the Łukasiewicz groupoid.
We then show that when we require a type of “fulness” of these mappings, we obtain vari-
eties of orthocomplemented lattices. Some of these varieties contain the projection lattice in
a Hilbert space so there is a link to quantum logic theories. Besides, on the purely algebraic
side, we present a characterization of orthomodular lattices among the orthocomplemented
ones. - The intention of our approach is twofold. First, we recover some of the Mayet
varieties in a principally different way (indeed, we also obtain many other new varieties).
Second, by introducing an interplay of the lattice, measure-theoretic and fuzzy-set notions
we intend to add to the concepts of quantum axiomatics.
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1 Introduction and Preliminaries

The orthomodular lattices (OMLs) have been introduced in theoretical physics in the quest
for “quantum logic” ([1, 5, 12, 19], etc.). The study of OMLs then intensely continued for
a longer time as seen from the series of monographs ([8, 9, 11, 21], etc.). From the point
of view of (universal) algebra, a particulary interesting line presented the study of the state
conditions and related classes of OMLs. Let us recall the initial work by R. Mayet ([16, 17]),
but there have been some other related attempts ([2, 6, 7, 18, 20], etc.). Applying another
approach, we arrive to the notion of (Łukasiewicz) statoid on orthocomplemented lattices
(OCLs). Then we obtain classes of OCLs (= classes of orthocomplemented lattices) that
came into existence by imposing certain term conditions on the statoids. Our main result
says that we always obtain a “nice” class of algebras - we obtain a variety (Theorem 4.4).
We also show how some of the known varieties could be obtained in the framework of our
approach.

Let us introduce basic notions as we shall use them in the paper. Suppose that L0 =
{∧,∨,⊥ , 0, 1}, where ∧,∨ are binary operational symbols, ⊥ is a unary operational symbol
and 0,1 are nullary operational symbols. Let us recall that by an orthocomplemented lattice
we mean an L0-algebra L such that L is a {0, 1}-lattice such that the following conditions
are fulfiled (x, y ∈ X): (1) inf{x, x⊥} = 0, sup{x, x⊥} = 1, (2)(x⊥)⊥ = x, (3)x ≤ y ⇒
y⊥ ≤ x⊥. If L is an OCL, we shall sometimes denote its least (resp. greatest) element
by 0L (resp. 1L). We write x ⊥ y provided x ≤ y⊥. If L satisfies the orthomodular law,
x ≤ y ⇒ y = x ∨ (y ∧ x⊥) for any x, y ∈ L, then L is said to be an orthomodular lattice
(see e.g. [11] and [21]).

Let us introduce our basic definition. For any x, y ∈ [0, 1], let us set x ⊕ y = 1 − |1 −
(x +y)|. It means that x ⊕y = x +y provided x +y ≤ 1 and x ⊕y = 2− (x +y) provided
x + y > 1. We see that ⊕ : [0, 1]2 → [0, 1]. Viewing this operation with the fuzzy-set eye,
we take the liberty to call the couple ([0, 1],⊕) the Łukasiewicz groupoid.

If L is an OCL then the symbol F(L) denotes the set of all functions L → [0, 1].

Definition 1.1 Let L be an OCL and let s ∈ F(L). Then s is called a (Łukasiewicz) statoid
on L if (s1) s(1L) = 1, and
(s2) if x, y ∈ L and x ⊥ y, then s(x ∨ y) ≤ s(x) ⊕ s(y).

A certain justification for the notion of statoid could be given by the circumstance that if
we consider a Łukasiewicz state on L ([15]), then the condition (s2) becomes an equality.

Let us denote by S(L) the set of all statoids on L. Before launching on the study of
S(L), let us observe the following simple fact. Let L be an OCL with card(L) ≥ 2. Let
us define a function s : L → [0, 1] such that s(0L) = 0, s(1L) = 1 and s(x) = 1

2
otherwise. Then s is a statoid on L. Thus, S(L) �= ∅. The following facts will be used in the
sequel.

Proposition 1.2 Let L be an OCL, let s be a statoid on L and let x, y ∈ L.

(1) If x ⊥ y and s(x ∨ y) = 1, then s(x) + s(y) = 1.
(2) s(x) + s(x⊥) = 1.
(3) If x ≤ y then s(x ∨ (y ∧ x⊥)) = s(y).
(4) If x ⊥ y and s(x) = 0, then s(x ∨ y) = s(y).
(5) If x ⊥ y and both s(x) and s(y) belong to {0, 1}, then s(x ∨ y) = s(x) ⊕ s(y).
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Proof (1) Let us suppose that x ⊥ y and s(x ∨ y) = 1. According to the condition (s2) of
the Definition 1.1, we have 1 = s(x ∨ y) ≤ s(x) ⊕ s(y) ≤ 1. Hence s(x) ⊕ s(y) = 1. But
we also have s(x) ⊕ s(y) = 1 − |1 − (s(x) + s(y))|. It implies that |1 − (s(x) + s(y))| = 0,
and therefore s(x) + s(y) = 1.
(2) Using the equality x ∨ x⊥ = 1L, we obtain s(x ∨ x⊥) = s(1L) = 1. Since x ⊥ x⊥, the
previous consideration gives us s(x) + s(x⊥) = 1.
(3) Since x ≤ y, we also have x ∨ (y ∧ x⊥) ≤ y and therefore x ∨ (y ∧ x⊥) ⊥ y⊥.
Moreover, (x ∨ (y ∧ x⊥)) ∨ y⊥ = (x ∨ y⊥) ∨ (y ∧ x⊥) = (x⊥ ∧ y)⊥ ∨ (y ∧ x⊥) = 1L.
According to the condition (1), we have s(x ∨ (y ∧ x⊥)) + s(y⊥) = 1. This means that
s(x ∨ (y ∧ x⊥)) = 1 − s(y⊥) = s(y).
(4) Let us suppose that x ⊥ y and s(x) = 0. Since y ≤ x⊥, we see by the condition (3) that
s(y∨(x⊥∧y⊥)) = s(x⊥) = 1−s(x) = 1. Further, as y ⊥ x⊥∧y⊥, the condition (1) implies
that s(y) + s(x⊥ ∧ y⊥) = 1. Thus, s(x ∨ y) = 1 − s((x ∨ y)⊥) = 1 − s(x⊥ ∧ y⊥) = s(y).
(5) Let us suppose that x ⊥ y and s(x), s(y) ∈ {0, 1}. If either of the values s(x) and
s(y) is equal to 0, it is sufficient to apply the condition (4). Suppose therefore that s(x) =
s(y) = 1. Then s(x) ⊕ s(y) = 0. According to the condition (s2) of Definition 1.1, we have
0 ≤ s(x ∨ y) ≤ s(x) ⊕ s(y) = 0. Hence s(x ∨ y) = 0.

It is a fact of a certain separate interest that the OMLs can be characterized, among OCLs,
in terms of statoids. Suppose that L is an OCL. Let us recall that F ⊆ L is said to be a filter
in L if the following three conditions are fulfiled: (1) 1L ∈ F , (2) if x ∈ F and x ≤ y, then
y ∈ F , (3) if x, y ∈ F then x ∧ y ∈ F . Moreover, a filter F is said to be a proper filter if
0L �∈ F . The notion dual to a filter is called an ideal.

Proposition 1.3 Let L be an OML and card(L) ≥ 2. Let F be a proper filter in L. Then
there is a statoid s ∈ S(L) such that F = {u ∈ L; s(u) = 1} and s(L) ⊆ {0, 1

2 , 1}.

Proof Let us define a mapping s : L → [0, 1] such that s(z) = 1 for each z ∈ F , s(z) = 0
for each z ∈ F⊥ and s(z) = 1

2 otherwise (standardly, F⊥ = {a⊥; a ∈ F } and thus F⊥
is an ideal). Since 0 �∈ F , it follows that F ∩ F⊥ = ∅ and therefore the definition of the
mapping s is correct. Obviously, the mapping s fulfils the condition (s1) of Definition 1.2.
We are going to verify the condition (s2). Let us choose elements x, y ∈ L with x ⊥ y. We
have to prove that s(x ∨ y) ≤ s(x) ⊕ s(y). Let us first suppose that x ∈ F . Since x ≤ y⊥,
we have y⊥ ∈ F and therefore y ∈ F⊥. As a result, s(x) = 1 and s(y) = 0. Further, since
x∨y ∈ F we see that s(x∨y) = 1. In other words, in this case we actually have the equality
s(x ∨ y) = s(x) ⊕ s(y). The case of y ∈ F argues similarly. What we have to discuss are
the following four possibilities.

(1) If x, y ∈ L \ (F ∪ F⊥), then s(x) ⊕ s(y) = 1
2 ⊕ 1

2 = 1 and the required inequality is
obviously true.

(2) If x ∈ L \ (F ∪ F⊥) and y ∈ F⊥, then s(x) = 1
2 and s(y) = 0. Let us show that

x ∨ y ∈ L \ (F ∪ F⊥). Looking for a contradiction let us suppose that x ∨ y ∈ F .
Making use of the assumption y ∈ F⊥, we infer that y⊥ ∈ F . Since F is a filter, we
also have y⊥ ∧ (x ∨ y) ∈ F . Further, since y ≤ x⊥ the orthomodular law gives us
x⊥ = y ∨ (x⊥ ∧ y⊥) and therefore x = y⊥ ∧ (x ∨ y). But y⊥ ∧ (x ∨ y) ∈ F . We
have shown that x ∈ F , which is a contradiction. Thus, x ∨ y �∈ F . It remains to show
that x ∨ y �∈ F⊥. Arguing again by contradiction, suppose that x ∨ y ∈ F⊥. Since
F⊥ is an ideal, we see that x ∈ F⊥ and this gives us a contradiction. In summary, we
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have verified that x ∨ y ∈ L \ (F ∪ F⊥). This means that s(x ∨ y) = 1
2 and we finally

obtain the equality s(x ∨ y) = s(x) ⊕ s(y).
(3) If x ∈ F⊥ and y ∈ L \ (F ∪ F⊥), then we proceed in an analogy to the case (2).
(4) If x, y ∈ F⊥, then x ∨ y ∈ F⊥ and therefore s(x) = s(y) = s(x ∨ y) = 0.

The property formulated in Proposition 1.3 in fact characterizes the OMLs among the
OCLs.

Proposition 1.4 Let L be an OCL such that for any proper filter F in L there is a statoid
s ∈ S(L) with F = {u ∈ L; s(u) = 1}. Then L is an OML.

Proof Let x, y ∈ L and x ≤ y. We are to show that y = x ∨ (y ∧x⊥). If y = 0 then there is
nothing to prove. Suppose therefore that y > 0 and hence the set [y, 1] is a proper filter in L.
So there is a statoid s ∈ S(L) such that [y, 1] = {u ∈ L; s(u) = 1}. By Proposition 1.2 (3),
we have s(x ∨ (y ∧ x⊥)) = s(y) = 1. By our assumption, we obtain x ∨ (y ∧ x⊥) ∈ [y, 1].
This means that y ≤ x ∨ (y ∧ x⊥). The reverse inequality is obvious.

Definition 1.5 Let L be an OCL. Then L is said to be statoid-rich if for any a, b ∈ L

the following condition holds true: If a �≤ b, then there exists a statoid s on L such that
s(a1) = 1 for any a1 ∈ [a, 1] and s(b1) = 0 for any b1 ∈ [0, b].

Proposition 1.6 Let L be a statoid-rich OCL. Then L is an OML.

Proof Let us suppose that x, y ∈ L and x ≤ y. We are to show that y ≤ x ∨ (y ∧ x⊥).
Reasoning by contradiction, suppose that y �≤ x ∨ (y ∧ x⊥). Then there exists an s ∈ S(L)

such that s([y, 1L]) = {1} and s([0L, x ∨ (y ∧ x⊥)]) = {0}. In particular, s(y) = 1 and
s(x ∨ (y ∧ x⊥)) = 0. But this contradicts Proposition 1.2, (3).

The following Greechie diagram [7] shows that there are OMLs that are not statoid-rich.

In order to see that this OML is not statoid-rich, let us consider the elements x and y⊥.
Let us suppose that there is a statoid s such that s([x, 1]) = {1} and s([0, y⊥]) = {0}.
Choose an index i ∈ {1, 2, 3, 4}. Then a⊥

i ∈ [x, 1] and ci ∈ [0, y⊥]. The definition of
s gives us that s(a⊥

i ) = 1 (and therefore s(ai) = 0) and s(ci) = 0. Since ai ⊥ ci , we
can make use of Proposition 1.2 (5), to obtain s(ai ∨ ci) = 0. But ai ∨ ci = b⊥

i . Thus,
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s(bi) = 1 − s(b⊥
i ) = 1 for any i ∈ {1, 2, 3, 4}. By Proposition 1.2 (5), we easily see

that s(b1 ∨ b2 ∨ b3 ∨ b4) = s(b1) ⊕ s(b2) ⊕ s(b3) ⊕ s(b4) = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0. But
b1 ∨ b2 ∨ b3 ∨ b4 = 1. So we have arrived to a contradiction in view of the requirement
s(1) = 1.

In the next text we subject the definition of richness to additional conditions. We
first express the conditions by certain logical formulas required for the statoids. Then
we are concerned with the values of s([0, b]). We do not require that s([0, b]) =
{0} but we ask that s([0, b]) ⊆ H , where H ⊆ [0, 1] is a preassigned set. We
show that upon a suitable choice of these conditions we will obtain varieties of
OCLs.

2 Q-Statoids

Through the paper, let us agree to adopt the following convention (universal-algebraic
notions and results, though fairly standard, could be found in [3]).

Convention 2.1 (1) L is an arbitrary (but fixed) set of operational symbols with L0 ⊆ L,
(2) W is an arbitrary (but fixed) variety of L-algebras such that if L ∈ W and LL0 is the
restriction of the algebra L to the language L0, then LL0 is an OCL,
(3) If L ∈ W then all notions related to OCLs will be adopted for L in the way that they
will be considered in LL0 .

The following definitions prepare the stage for our basic definition to be introduced
later. They may seem less intuitive and harder to digest. However, when a reader com-
bines the reading of these definitions with Example 2.5, the matters become much
clearer.

Definition 2.2 (1) By a conjunction of atomic formulas (abbr., by a ca-formula) we
mean any formula φ(x1, . . . , xn) of the form (p1 = q1) & . . . & (pm = qm), where
p1, q1, . . . , pm, qm are L-terms with variables from the set {x1, . . . , xn}.
(2) If φ is a ca-formula of the previous form, L ∈ W and a1, . . . , an ∈ L, we will write
L |= φ[a1, . . . , an] provided p1(a1, . . . , an) = q1(a1, . . . , an), . . . , pm(a1, . . . , an) =
qm(a1, . . . , an).
(3) Let �∃ be the set of all ca-formulas φ(x1, . . . , xn) (n ≥ 1) with the following prop-
erty: If K,L ∈ W and f : K → L is a surjective homomorphism, then for any
b1, . . . , bn ∈ L with L |= φ[b1, . . . , bn], there exist elements a1, . . . , an ∈ K such that
f (a1) = b1, . . . , f (an) = bn and K |= φ[a1, . . . , an].

Definition 2.3 By a ca-condition we mean any couple (φ, M), where φ(x1, . . . , xn) (n ≥
1) is a ca-formula from the set �∃ and M is a closed subset of [0, 1]n. By a condition we
mean any set of ca-conditions.

Definition 2.4 Suppose that L ∈ W and s ∈ F(L).

(1) Let (φ(x1, . . . , xn),M) be a ca-condition. Let us say that the mapping s fulfils (φ,M)

if (s(a1), . . . , s(an)) ∈ M for any a1, . . . , an ∈ L such that L |= φ[a1, . . . , an].
(2) Let Q be a condition. Let us say that the mapping s fulfils (the condition) Q, if s fulfils

any ca-condition of Q.
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Let us denote by FQ(L) the set of all s ∈ F(L) that fulfil the condition Q. In the
following example we will exhibit some very natural ca-conditions and their fulfilling by
statoids.

Example 2.5 (1) Let us denote by φ(1)(x) the ca-formula x = 1. If L ∈ W and a ∈ L then
we have L |= φ(1)[a] provided a = 1L. Obviously, φ(1) ∈ �∃.
Let us set M(1) = {1}. Then M(1) is a closed subset of [0, 1]. If L ∈ W , s ∈ F(L), then s

fulfils the ca-condition (φ(1),M(1)) exactly when s(1L) = 1.
(2) Let us denote by φ1=(x) the ca-formula x = x. If L ∈ W and a ∈ L then we
automatically have L |= φ1=[a]. Obviously, φ1= ∈ �∃.
Let us set M0,1 = {0, 1}. Then M0,1 is a closed subset of [0, 1]. If L ∈ W , s ∈ F(L), then
s fulfils the ca-condition (φ1=,M0,1) exactly when s(a) ∈ {0, 1} for any a ∈ L.
(3) Let us denote by φ≤(x, y) the ca-formula x = x ∧ y. If L ∈ W and a, b ∈ L then we
have L |= φ≤[a, b] provided a ≤ b. We will show that φ≤ ∈ �∃. Suppose that K,L ∈ W ,
f : K → L is a surjective homomorphism and b1, b2 be elements of L with b1 ≤ b2. Since
f is surjective there are elements c1, c2 ∈ K such that f (c1) = b1, f (c2) = b2. Let us set
a1 = c1, a2 = c1 ∨ c2. Then f (a1) = f (c1) = b1, f (a2) = f (c1 ∨ c2) = f (c1) ∨ f (c2) =
b1 ∨ b2 = b2. Moreover, a1 = c1 ≤ c1 ∨ c2 = a2 and the verification is complete.
Let us set M≤ = {(r1, r2) ∈ [0, 1]2; r1 ≤ r2}. Then M≤ is a closed subset of [0, 1]2. If
L ∈ W , s ∈ F(L), then s fulfils the ca-condition (φ≤,M≤) exactly when s(a) ≤ s(b) for
any elements a, b ∈ L with a ≤ b.
(4) Let us denote by φ⊥(x, y, z) the ca-formula x = x ∧ y⊥ & z = x ∨ y. If L ∈ W and
a, b, c ∈ L then we have L |= φ⊥[a, b, c] provided a ⊥ b and c = a ∨ b. In the analogy to
the previous case (3) we have φ⊥ ∈ �∃.
(4a) Let us set M+ = {(r1, r2, r3) ∈ [0, 1]3; r3 = r1 + r2}. Then M+ is a closed subset
of [0, 1]3. If L ∈ W , s ∈ F(L), then s fulfils the ca-condition (φ⊥,M+) exactly when
s(a ∨ b) = s(a) + s(b) for any elements a, b ∈ L with a ⊥ b.
(4b) Let us set M⊕ = {(r1, r2, r3) ∈ [0, 1]3; r3 = r1 ⊕ r2}. Then M⊕ is a closed subset
of [0, 1]3. If L ∈ W , s ∈ F(L), then s fulfils the ca-condition (φ⊥,M⊕) exactly when
s(a ∨ b) = s(a) ⊕ s(b) for any elements a, b ∈ L with a ⊥ b.
(4c) Let us set M

≤
⊕ = {(r1, r2, r3) ∈ [0, 1]3; r3 ≤ r1 ⊕ r2}. Then M

≤
⊕ is a closed subset

of [0, 1]3. If L ∈ W , s ∈ F(L), then s fulfils the ca-condition (φ⊥,M
≤
⊕) exactly when

s(a ∨ b) ≤ s(a) ⊕ s(b) for any elements a, b ∈ L with a ⊥ b.
(5) Let us denote by φ∨(x, y, z) the ca-formula z = x ∨ y. If L ∈ W and a, b, c ∈ L then
we have L |= φ∨[a, b, c] provided c = a ∨ b. Obviously, φ∨ ∈ �∃.
Let us set M

≤
+ = {(r1, r2, r3) ∈ [0, 1]3; r3 ≤ r1 + r2}. Then M

≤
+ is a closed subset of

[0, 1]3. If L ∈ W and s ∈ F(L), then s fulfils the ca-condition (φ∨,M
≤
+ ) exactly when

s(a ∨ b) ≤ s(a) + s(b) for any elements a, b ∈ L.

The following two observations shed light on the interplay of our notions.

Proposition 2.6 There exists a condition Q0 such that S(L) = FQ0(L) for any L ∈ W .

Proof It is sufficient to set Q0 = {(φ(1), M(1)), (φ⊥,M
≤
⊕)}.

Remark 2.7 If we take for Q the set {(φ(1), M(1)), (φ⊥,M⊕)} we arrive to the Łukasiewicz
states as investigated in [15]. If we take for Q the set {(φ(1),M(1)), (φ⊥, M+)}, we arrive to
the (standard) states.
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In conclusion of this section, let us show how the fulfilling of the conditions of
Definition 2.4 transfers on the mappings that are induced by natural algebraic constructions.

Proposition 2.8 Let K,L ∈ W and let Q be a condition.

(1) Suppose that K is a sub-algebra of L and s ∈ FQ(L) Then s1 ∈ FQ(K), where s1
denotes the restriction of s to the algebra K .

(2) Suppose that f : K → L is a surjective homomorphism. Suppose further that s1 ∈
F(K) and s2 ∈ F(L). If s1 = f ◦ s2, then s1 fulfils Q if and only if s2 fulfils Q.

Proof We may suppose that Q contains only one ca-condition, say (φ(x1, . . . , xn),M).

(1) Let us take a1, . . . , an ∈ K with K |= φ[a1, . . . , an]. Since K is a sub-algebra of L,
we have a1, . . . , an ∈ L and L |= φ[a1, . . . , an]. Since s fulfils (φ,M), we infer that
(s(a1), . . . , s(an)) ∈ M . Further, the mapping s1 is the restriction of s to K , we obtain
that s1(a1) = s(a1), . . . , s1(an) = s(a1). Hence (s1(a1), . . . , s1(an)) ∈ M .

(2) Firstly, suppose that s2 fulfils (φ,M). Suppose that a1, . . . , an ∈ K with K |=
φ[a1, . . . , an]. As f is a homomorphism, we see that L |= φ[f (a1), . . . , f (an)].
Since s2 fulfils (φ, M), we obtain (s2(f (a1)), . . . , s2(f (an))) ∈ M . But
(s2(f (a1)), . . . , s2(f (an))) = (s1(a1), . . . , s1(an)) and thus we have verified the
first implication. Secondly, let s1 fulfils (φ,M). Suppose that b1, . . . , bn ∈ L

with L |= φ[b1, . . . , bn]. The definition of a ca-condition implies that there are
elements a1, . . . , an ∈ K such that f (a1) = b1, . . . , f (an) = bn and K |=
φ[a1, . . . , an]. Since s1 fulfils (φ,M), we have (s1(a1), . . . , s1(an)) ∈ M . As a result,
(s2(f (a1)), . . . , s2(f (an))) ∈ M and this means that (s2(b1), . . . , s2(bn)) ∈ M .

In case we restrict ourselves to statoids, we can even formulate a statement on the
existence of statoids on the homomorphic images that fulfil the condition Q.

Definition 2.9 Let L ∈ W , s ∈ S(L) and let Q be a condition. Then s is said to be a
Q-statoid if the mapping s fulfils the condition Q.

Let us denote by SQ(L) the set of all Q-statoids on L (thus, SQ(L) = S(L) ∩ FQ(L)).

Proposition 2.10 Let K,L ∈ W and let f : K → L be a surjective homomorphism. Let
s ∈ SQ(K). Then there exists s̃ ∈ SQ(L) such that s = f ◦ s̃ if and only if s(x) = 1 for any
x ∈ f −1(1L).

Proof Let us suppose that s = f ◦ s̃ for some Q-statoid s̃ ∈ SQ(L). Let us choose x ∈
f −1(1L). Then s(x) = (f ◦ s̃)(x) = s̃(f (x)) = s̃(1L) = 1.

Conversely, let s(x) = 1 for any x ∈ f −1(1L). If y ∈ L with y = f (x), then we can set
s̃(y) = s(x). Let us show that this definition of s̃ is correct. To this end, suppose that y =
f (x1) = f (x2). We have f (x⊥

1 ∨(x1∧x2)) = f (x⊥
1 )∨(f (x1)∧f (x2)) = y⊥∨(y∧y) = 1L.

Hence x⊥
1 ∨(x1∧x2) ∈ f −1(1L). By our assumption, this implies that s(x⊥

1 ∨(x1∧x2)) = 1.
Since, x⊥

1 ⊥ (x1 ∧ x2), Proposition 1.3 implies that s(x⊥
1 ) + s(x1 ∧ x2) = 1. This gives us

s(x1 ∧ x2) = 1 − s(x⊥
1 ) = 1 − (1 − s(x1)) = s(x1). Analogously, s(x2) = s(x1 ∧ x2). This

means that s(x1) = s(x2). We have verified the correctness of s̃. The definition of s̃ gives us
that s = f ◦ s̃. Finally, Proposition 2.8 implies that the mapping s̃ is a Q-statoid on L.
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3 Topological Considerations and Stone’s Lemma

In this section we will prove a generalized Stone’s lemma to be applied in our main result.
Let L ∈ W . Let us consider the standard topology on the set [0, 1] and let us consider
the topological product [0, 1]L. According to the Tychonoff theorem, [0, 1]L is a compact
topological space. For any a1, . . . , ak ∈ L (k ≥ 1), let us denote by πa1,...,ak

the pro-
jection mapping F(L) → [0, 1]k defined as follows: For any s ∈ F(L), πa1,...,ak

(s) =
(s(a1), . . . , s(ak)). Obviously, the mappings πa1,...,ak

are continuous.

Proposition 3.1 Let Q be a condition. Then FQ(L) is a closed subset in [0, 1]L.

Proof If Q = ∅, then FQ(L) = [0, 1]L and the statement is obvious. Let us suppose that
Q �= ∅. Then FQ(L) = ⋂

(φ,M)∈Q

F{(φ,M)}(L). It is sufficient to show the closedness of the

set F{(φ,M)}(L) for a ca-condition (φ, M). Let φ = φ(x1, . . . , xn) and let M ⊆ [0, 1]n
be closed. Write Lφ = {(a1, . . . , an) ∈ Ln; L |= φ[a1, . . . , an]}. Then F{(φ,M)}(L) =
{s ∈ F(L); s fulfils (φ, M)} = ⋂

(a1,...,an)∈Lφ

{s ∈ F(L); (s(a1), . . . , s(an)) ∈ M} =
⋂

(a1,...,an)∈Lφ

π−1
a1,...,an

(M).

The continuity of πa1,...,an and the closedness of M imply that the sets π−1
a1,...,an

(M) are
closed. Hence, F{(φ,M)}(L) is also closed in [0, 1]L as an intersection of closed sets.

Proposition 3.2 Let Q be a condition. Then SQ(L) is a closed subset in [0, 1]L.

Proof We have SQ(L) = FQ′(L), where Q′ = Q ∪ Q0 and Q0 is the condition of
Proposition 2.6. The set FQ′(L) is closed in view of Proposition 3.1.

In connection with the further considerations, let us introduce the following notation.

Notation 3.3 Let a, b ∈ L, H ⊆ [0, 1] and Q be a condition. Let us write
SQ(L; H, a, b) = {s ∈ SQ(L); s(a1) = 1 for any a1 ∈ [a, 1] and s(b1) ∈ H for any
b1 ∈ [0, b]}.

Proposition 3.4 Suppose that a1, a2, b1, b2 ∈ L with a1 ≤ a2, b2 ≤ b1. Then
SQ(L; H, a1, b1) ⊆ SQ(L; H, a2, b2).

Proof Obvious.

Proposition 3.5 Suppose that a, b ∈ L. Suppose further that H ⊆ [0, 1] is a closed set and
Q is a condition. Then SQ(L; H, a, b) is a closed subset of the space [0, 1]L.

Proof It is immediately seen that SQ(L; H, a, b) = SQ(L) ∩ ⋂

x∈[a,1]
π−1

x ({1}) ∩
⋂

x∈[0,b]
π−1

x (H). Since πx is continuous and {1} and H are closed, we infer that π−1
x ({1})
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and π−1
x (H) are closed in [0, 1]L. By Proposition 3.2, the set SQ(L) is also closed in [0, 1]L

and therefore so is the set SQ(L; H, a, b).

Prior to formulating a main result of this section, let us recall that the next theorem can be
viewed as a generalization of the classical Stone lemma from the theory of Boolean algebras
on the distinguishing disjoint filters and ideals by means of two-valued states.

Theorem 3.6 (a generalized Stone’s lemma) Suppose that L ∈ W , Q is a condition and
H ⊆ [0, 1] is a closed set. Suppose that F is a filter and I is an ideal in L. Suppose that the
following condition holds true: If a ∈ F and b ∈ I then SQ(L;H, a, b) �= ∅. Then there
exists an s ∈ SQ(L) such that s(a) = 1 for any a ∈ F and s(b) ∈ H for any b ∈ I .

Proof Let us first show that the system {SQ(L; H, a, b)}a∈F,b∈I is a centered system of
sets (meaning that its each finite subsystem has a non-empty intersection). Indeed, consider
the sets SQ(L; H, a1, b1), . . . ,SQ(L; H, am, bm), where m ≥ 1, a1, . . . , am ∈ F and
b1, . . . , bm ∈ I . Write a = a1 ∧ . . . ∧ am, b = b1 ∨ . . . ∨ bm. Since F is a filter, we have
a ∈ F . Analogously, b ∈ I . Thus, SQ(L;H, a, b) �= ∅. Let us choose s ∈ SQ(L; H, a, b).
Because a ≤ ak and bk ≤ b for each k ∈ {1, . . . , m}, Proposition 3.4 implies that

s ∈
m
⋂

k=1
SQ(L; H, ak, bk). Further, Proposition 3.5 establishes that {SQ(L;H, a, b)}a∈F,b∈I

is a centered system of closed subsets of [0, 1]L. The compactness of [0, 1]L yields that
⋂

a∈F,b∈I

SQ(L;H, a, b) �= ∅. Finally, each statoid s, s ∈ ⋂

a∈F,b∈I

SQ(L; H, a, b), is a statoid

we looked for.

4 Full Algebras

The following definition is a kind of ‘fullness’ dealt with in the quantum logic theory ([8]).

Definition 4.1 Let Q be a condition and let H ⊆ [0, 1]. Let us set X = (Q,H). Then an
algebra L ∈ W is called X -full if for any a, b ∈ L the following condition holds true: If
a �≤ b, then SQ(L; H, a, b) �= ∅.

Let us denote by WX the class of all X -full algebras from the variety W .

Remark 4.2 (a) Let us suppose that we set H = [0, 1] in Definition 4.1. Then an algebra
L ∈ W is X -full exactly when for any a ∈ L, a �= 0 there exists a Q-statoid s on L such
that s(a1) = 1 for any a1 ∈ [a, 1]. An algebra L with this property will be called Q-unital.
(b) Let us suppose that we set H = {0} in Definition 4.1. Then an algebra L ∈ W is X -
full exactly when for any a, b ∈ L the following condition holds true: If a �≤ b, then there
exists a Q-statoid s on L such that s(a1) = 1 for any a1 ∈ [a, 1] and s(b1) = 0 for any
b1 ∈ [0, b]. An algebra L with this property will be called Q-rich.

In this section we shall prove - under assumptions on closedness of H - that the class
WX is a subvariety of W . We shall need the following auxiliary result.

Proposition 4.3 Suppose that K,L ∈ W and f : K → L is a surjective homomorphism.
Suppose that a, b ∈ K . Suppose further that H ⊆ [0, 1] and Q is a condition. Finally,
suppose that s1 ∈ F(K), s2 ∈ F(L) and s1 = f ◦ s2. Then s1 ∈ SQ(K;H, a, b) exactly
when s2 ∈ SQ(L; H, f (a), f (b)).
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Proof Assume first s1 ∈ SQ(K; H, a, b). Choose elements c, d ∈ L with c ∈ [f (a), 1]L
and d ∈ [0, f (b)]L. Since f is surjective, there are elements c1, d1 ∈ K such that f (c1) =
c and f (d1) = d. Let us set a1 = a ∨ c1, b1 = b ∧ d1. Since c ≥ f (a), we obtain
f (a1) = f (a ∨ c1) = f (a) ∨ f (c1) = f (a) ∨ c = c. Analogously, f (b1) = f (b ∧ d1) =
f (b) ∧ f (d1) = f (b) ∧ d = d. So we have s2(c) = s2(f (a1)) = s1(a1) = 1 and
s2(d) = s2(f (b1)) = s1(b1) ∈ H , in view of s1 ∈ SQ(K;H, a, b) and a ≤ a1, b1 ≤ b.
Conversely, suppose that s2 ∈ SQ(L; H, f (a), f (b)). Choose elements a1 ∈ [a, 1]K and
b1 ∈ [0, b]K . Since s2 ∈ SQ(L; H, f (a), f (b)) and f (a) ≤ f (a1), f (b1) ≤ f (b), we see
that s1(a1) = s2(f (a1)) = 1 and s1(b1) = s2(f (b1)) ∈ H .

Theorem 4.4 Suppose that X = (Q,H), where Q is a condition and H ⊆ [0, 1] is a
closed set. Then the class WX forms a variety.

Proof We shall show that the class WX is closed under subalgebras, products and
homomorphic images (Birkhoff’s theorem, [3]).

(a) Suppose that L ∈ WX and K is a subalgebra of L. Then K ∈ W . Suppose a, b ∈ K

and a �≤K b. Since K is a subalgebra of L, we have the inequality a �≤L b. Since L

is X -full, there exists an s ∈ SQ(L) such that s(a1) = 1 and s(b1) ∈ H for any a1 ∈
[a, 1]L, b1 ∈ [0, b]L. It suffices to observe that [a, 1]K ⊆ [a, 1]L, [0, b]K ⊆ [0, b]L
and the restriction of s to K is a Q-statoid on K .

(b) Suppose that Li ∈ WX , i ∈ J . Let us denote by L the product
∏

i∈J

Li . For any i ∈ J ,

let us denote by σi the i-th projection L → Li (i.e., σi(x) = x(i) for any x ∈ L).
Suppose that a, b ∈ L and a �≤L b. Then there exists an index j ∈ J such that
a(j) �≤Lj

b(j) Write a = a(j), b = b(j). Then a, b ∈ Lj and a �≤Lj
b. Since Lj

is X -full, there exists s ∈ SQ(Lj ; H, a, b). Consider the Q-statoid σj ◦ s on L. By
Proposition 4.3, we see that σj ◦ s ∈ SQ(L; H, a, b).

(c) Finally, suppose that K ∈ WX and f : K → L is a surjective homomorphism.
Suppose that a, b ∈ L and a �≤L b. Choose arbitrary elements a1, b1 ∈ K such that
f (a1) = a, f (b1) = b. Write F = f −1([a, 1L]) = {x ∈ K; a ≤ f (x)} and I =
[0K, b1]. It is easily seen that F is a filter and I is an ideal in K . We are going to show
the assumption of Theorem 3.6. Choose elements c ∈ F, d ∈ I . We have a ≤L f (c)

and f (d) ≤L f (b1) = b. Since a �≤L b, we see that f (c) �≤L f (d) and therefore
c �≤K d. Further, since K is X -full, we have SQ(K; H, c, d) �= ∅. This means that
the assumption of Theorem 3.6 is fulfiled. As a result, there exists an s ∈ SQ(L) such
that s(x) = 1 and s(y) ∈ H for any x ∈ F, y ∈ I . Going on with the proof, if
x ∈ f −1(1L) then x ∈ F and therefore s(x) = 1. Making use of Proposition 2.10,
there exists s̃ ∈ SQ(L) such that s = f ◦ s̃. Finally, since s ∈ SQ(K; H, a1, b1), we
can apply Proposition 4.3 to obtain s̃ ∈ SQ(L; H, f (a1), f (b1)) = SQ(L; H, a, b).
We conclude that SQ(L;H, a, b) �= ∅. This completes the proof.

Our result of Theorem 4.4 can be further generalized. For an algebraically oriented
reader, let us include here this generalized formulation.

Theorem 4.5 Let Q be a condition, let p(x1, . . . , xm), q(x1, . . . , xm) be L-terms (m ≥ 2)
and let H ⊆ [0, 1]m−1 be a closed set. Let us set X = (Q, p, q,H). Let us denote by WX
the class of all algebras L ∈ W such that for any a1, . . . , am ∈ L the following condition
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holds true: If p(a1, . . . , am) �= q(a1, . . . , am), then there exists an s ∈ SQ(L) such that
(s(b1), . . . , s(bm)) ∈ {1} × H for any b1 ∈ [a1, 1], . . . , bm ∈ [am, 1]. Then the class WX
forms a variety.

5 Applications

In this section we show (mostly without proofs) how some known varieties can be alter-
natively obtained from Theorem 4.4. Several new varieties appear in this way as well,
some natural and some slightly artifactual. However, these varieties may seem less relevant
to quantum theories. We intend to pursue them elsewhere. Our first application concerns
Boolean algebras (BAs), the second and third application some Mayet’s varieties. We shall
make use of the notation of Example 2.5.

1. BAs: In this case one takes for W the class of all OMLs, Q =
{(φ(1),M(1)), (φ⊥, M+), (φ∨,M

≤
+ )} and H = [0, 1] (the result of [22] is crucial

therein).
2. Unital OMLs: In this case one takes for W the class of all OMLs, Q =

{(φ(1),M(1)), (φ⊥, M+)} (see Remark 2.7) and H = [0, 1] (see Remark 4.2, (a)).
3. Set-representable OMLs: In this case one takes for W the class of all OMLs, Q =

{(φ(1),M(1)), (φ⊥, M+), (φ=,M0,1)} and H = {0}.
4. Set-representable ODLs (ODLs - orthocomplemented lattices with a symmetric differ-

ence): The class ODLs has been investigated in [4, 10, 13] and [14]. We would like to
show, as an application of Theorem 4.4 again, that the set-representable ODLs form a
variety. Since here we find ourselves in a less exploited terrain (and here the language
properly extends L0), let us indicate the proof. Let us start off with the definition.

Definition 5.1 Let L = (X,∧, ∨,⊥ , 0, 1, �), where (X, ∧,∨,⊥ , 0, 1) is an orthomodular
lattice and � : X2 → X is a binary operation. Then L is said to be an orthocomplemented
difference lattice (abbr., an ODL) if the following formulas hold in L:
(D1)x � (y � z) = (x � y) � z,
(D2)x � 1 = x⊥, 1 � x = x⊥,
(D3)x � y ≤ x ∨ y.

We shall employ the following lemma.

Lemma 5.2 Let L be an ODL. Let x, y ∈ L and x ⊥ y. Then x � y = x ∨ y.

Proof The inequality x⊥ � y ≤ x⊥ ∨ y gives us that x ∧ y⊥ ≤ (x⊥ � y)⊥. Since x ⊥ y,
we have x ≤ y⊥ and therefore x ∧ y⊥ = x. Conversaly, (x⊥ � y)⊥ = ((1 � x) � y)⊥ =
(1 � (x � y))⊥ = (x � y)⊥⊥ = x � y. So, x ≤ x � y. Analogously, y ≤ x � y. It implies
that x ∨ y ≤ x � y. According to (D3) we obtain x ∨ y = x � y.

In a certain analogy with BAs we introduce the notion of an evaluation in an ODL.

Definition 5.3 Let L be an ODL and let e : L → {0, 1}. Then e is said to be an ODL-
evaluation on L if the following three properties are fulfilled (x, y ∈ L):

(E1)e(1L) = 1, (E2) if x ≤ y, then e(x) ≤ e(y), (E3)e(x � y) = e(x) ⊕ e(y).
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Let E(L) be the set of all ODL-evaluations on L. In contrast to Boolean algebras, an
ODL generaly fails to be set-representable ([13]). However, the following result is in force.

Lemma 5.4 There exists a condition Q such that E(L) = SQ(L) for any ODL L.

Proof Let L be an ODL. Then E(L) ⊆ S(L). Indeed, suppose that e ∈ E(L). We have to
show that e enjoys the property (s2) of Definition 1.1. Suppose that a, b ∈ L and a ⊥ b.
By Lemma 5.2 we have a � b = a ∨ b. Hence, e(a ∨ b) = s(a � b) = e(x) ⊕ e(y). Thus,
e ∈ S(L).

Let us denote by φ�(x, y, z) the ca-formula z = x � y. Let us consider the condition
Q = {(φ=,M0,1), (φ(1),M(1)), (φ≤,M≤), (φ�, M⊕)}. Let us show that E(L) = FQ(L).
We have checked that E(L) ⊆ S(L). Therefore E(L) = S(L) ∩ E(L) = S(L) ∩FQ(L) =
SQ(L).

The following ‘Boolean-like’ result has been proved in [13].

Proposition 5.5 Let L be an ODL. Then L is set-representable if and only if for any couple
a, b ∈ L with a �≤ b there exists an e ∈ E(L) such that e(a) = 1 and e(b) = 0.

Theorem 5.6 The class of all set-representable ODLs forms a variety.

Proof Let W be the class of all ODLs. It is easily seen that the class of all set-representable
ODLs equals to WX , where X = (Q, {0}), with Q taken from Lemma 5.4.
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