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Abstract Since Parikh and Wilczek proposed a semiclassical tunneling method to inves-
tigate the Hawking radiation of static and spherically symmetric black holes, the method
has been extensively developed to study various black holes. However, in almost all of the
subsequent papers, there exists a important shortcoming that the geodesic equation of the
massive particle is defined inconsistently with that of the massless particle. In this paper,
we propose a new idea to reinvestigate the tunneling radiation from the event horizon of
the Reissner-Nordström black hole. In our treatment, by starting from the Lagrangian anal-
ysis on the action, we redefine the geodesic equation of the massive and massless particle
via tunneling from the event horizon of the Reissner-Nordström black hole, which over-
comes the shortcoming mentioned above. The highlight of our work is a new and important
development for the Parikh-Wilczek’s semiclassical tunneling method.

Keywords Hawking radiation · Lagrangian analysis · Geodesic equation

1 Introduction

About forty years ago, Hawking made an astounding discovery that, from the viewpoint of
quantum mechanics, black hole can radiate thermally like a black body [1, 2]. According
to this scenario, due to vacuum fluctuations near the event horizon, a pair of particles is
spontaneously created near the horizon. If the particle/antiparticle pair is created just inside
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the horizon, the positive energy particle then tunnels out to the infinity, and the negative
energy “partner” falls into the singularity and effectively lowers the mass of the black hole.
Moreover, if the the particle/antiparticle pair is created just outside the horizon, the nega-
tive particle tunnels into the horizon because the negative energy orbit exists only inside
the horizon, the positive energy partner is radiated to the infinity. Nevertheless, in above
two sight, there is a tunneling process, but there is no tunneling barrier. With the emission
of thermal radiation, black holes could lose energy, shrink and eventually evaporate away
completely. The result implies the loss of information of black hole after it has evaporated
away and disappeared completely.

In 2000, Parikh and Wilczek have proposed a semiclassical tunneling picture near the
event horizon of the black hole to study the Hawking radiation [3–6]. In this framework,
a particle takes across the classically forbidden trajectories, and the tunneling barrier is
just created by the outgoing particle itself. Moreover, they took into account the energy
conservation and allowed the background geometry of the black holes to be dynamical and
fluctuant. It means that the black hole lost mass while radiating, but maintained a constant
energy for the total system. By applying a WKB (s-wave) approximation, the emission
spectrum have been calculated for the Schwarzschild and Reissner-Nordström black holes.
This result reveals that the derived spectrum of black hole radiation deviates from the pure
thermal under the consideration of energy conservation and unfixed spacetime background,
which may be a correct amendment to Hawking radiation spectrum and open the way to a
possible resolution of the information loss paradox. Subsequently, this tunneling method has
been extensively developed to study the Hawking radiation of various black hole [7–115].
The results are are very successful to support the Parikh-Wilczeks picture. Nevertheless,
Parikh-Wilczek’s tunneling are limited to the spherically symmetric black holes and most of
them are confined only to discuss the tunneling process of the uncharged massless particles.

As an interesting development, Zhang and Zhao have generalized the Parikh-Wilczek’s
method to study the charged massive particle’s tunneling from the Reissner-Nordström
black hole horizon [16]. In this approach, the outgoing particle is treated as a massive
shell (de Broglie s-wave). According to de Broglie hypothesis, this massive shell is a
sort of de Broglie s-wave. The form of the approximative wave equation is given by

ψ(r, t) = Ce
i(

∫ r
ri−ε prdr−ωt)

, where ri − ε represents the initial location of the particle. If
letting

∫ r

ri−ε
prdr −ωt = φ0, dr/dt = ṙ = ω/k is obtained, where k is the de Broglie wave

number, and ṙ is the phase velocity of the de Broglie wave. The definitions of the phase
velocity vp and the group velocity vg are given by

vp = dr

dt
= ṙ = ω

k
, vg = drc

dt
= dω

dk
, vp = 1

2
vg, (1)

where rc denotes the location of the tunneling particle. According to Landau’s theory of the
coordinate clock synchronization, the group velocity is

vg = drc

dt
= −g00

g01
, (2)

and the phase velocity is therefore

ṙ = vp = 1

2
vg = −1

2

g00

g01
. (3)
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Thus, the geodesic equation of the charged massive particle has been given by investigating
the relation between the group and phase velocity of the tunneling particle. The radial null
geodesic, i.e. the geodesic equation of the massless particle, is given by ds2 = 0. Since then,
this definition for the geodesic equation of the charged massive particle has been received
a wide attention, and lots of efforts have followed this definition to study the Hawking radiation
of the charged massive particle via tunneling from various types of black holes [47–57].

However, in the work [16], the definition for the geodesic equation of the charged mas-
sive particle by investigating the relation between the group and phase velocity of the
tunneling particle, appears to be unnatural and flawed. First, it is inconsistent with the first
principle - the variation principle. In general relativity, the geodesics equation is always
defined by applying the variation principle on the Lagrangian action. Secondly, the geodesic
equations of the massless particle and the massive particle are not uniformly derived. In pre-
vious work, the geodesic equation of the massless particle is instead obtained by ds2 = 0.
The geodesic equation of the massive particle is obtained from (3). Obviously, the geodesic
equation of the massless particle is defined inconsistently with that of the massive par-
ticle. Most importantly, it is flawed because it has been derived by using inconsistent
foundations - mixing together relativistic and non-relativistic descriptions. The equation
vp = 1/2vg is obtained by combining the relativistic and non-relativistic descriptions. In
quantum mechanics, we have E = �ω and P = �k. In the non-relativistic context, we
also have E = P 2/2m. We can easily obtain ω = �k2/2m. Thus, we can easily derive
vg = dω/dk = �k/m = 2�kE/p2 = 2ω/k = 2vp. The equation E = P 2/2m is
valid only in the non-relativistic context. But for the black hole (i.e. the strong gravitational
field), the physical law should be described in the relativistic context. So, the definition
for the geodesics of the massive particle mixes together the relativistic and non-relativistic
descriptions.

In view of above-mentioned reasons, we attempt to propose a new approach to naturally
and uniformly redefine the geodesic equation of the massless particle and the charged mas-
sive particle, and then apply it to restudy the Hawking radiation of the charged massive
particle via tunneling from the event horizon of the Reissner-Nordström black hole. This
new definition for the geodesic equation of the particle comes from the Lagrangian analy-
sis on the action, which overcomes the shortcomings of its previous definition, and is more
suitable for the tunneling mechanism. On the one hand, the geodesic equation of the massive
particle and massless particle can be defined by a uniform and self-consistent way. On the
other hand, the definition for the geodesic equation of the charged massive particle is con-
sistent with the first principle. It is noted that, our work in this paper is a new and important
development of the Parikh-Wilczek’s tunneling method.

The remainders of this paper are outlined as follows. In Section 2, we redefine the
geodesic equation of the charged massive particle from the Lagrangian analysis on the
action. By applying the new definition for the geodesics, Section 3 is devoted to study
the Hawking radiation of the charged massive particle via tunneling from the event hori-
zon of the Reissner-Nordström black hole. Section 4 ends up with some conclusions and
discussions.

2 The Geodesic Equation of the Charged Massive Particle

In this section, we attempt to redefine the geodesic equation of the charged massive parti-
cle by applying the Lagrangian analysis on the action. For the Reissner-Nordström black



2488 Int J Theor Phys (2017) 56:2485–2494

hole, the motion equation of the particles can be absolutely determined with the three con-
served integral constant. There are two Killing vector ∂t and ∂ϕ , respectively corresponding
to energy E and angular momentum L. The last one is Hamiltonian H, which can be con-
strained a constant by the normalizing condition of the 4-velocity of the timelike geodesic.
We should first find the Lagrangian function governing the geodesic equation.

Apart from the energy conservation and the particle’s self-gravitation are considered, a
key point in the Parikh-Wilczeks approach is to introduce a coordinate system that is well-
behaved at the event horizon in order to conveniently calculate the emission probability.
The coordinate is not only time independent and regular at the horizon, but for which time
reversal is manifestly asymmetric. It means that the coordinate is stationary but not static,
and called “Painlevé-Gullstrand coordinate” [116]. For the Reissner-Nordström black hole,
the Painlevé line element is obtained from the standard Reissner-Nordström line element by
the coordinate transformation [3–6], and can be expressed as

ds2 = −�dt2 ± 2
√
1 − �dtdr + dr2 + r2d	2, (4)

where � = 1 − 2M/r + Q2/r2, and the sign +(−) corresponds to the line element of
the outgoing (ingoing) particle at the event horizon of the black hole. Moreover, from the
coordinate transformation, the 4-dimensional electromagnetic potential is given by

Aμ = (At , 0, 0, 0), (5)

where At = −Q/r . This Painlevé line element (4) has many interesting properties: i)

The metric is regular at the event horizon; ii) The time direction remains to be a Killing
vector; iii) The new form of the line element is stationary, but not static; iv) It satisfies
the Landau’s condition of the coordinate clock synchronization. All these features provide
some comfortable surroundings for the tunneling particle across the event horizon of the
black hole.

From (4), the equation of motion of the tunneling particle can be completely deter-
mined by three conservative integral constants. The three constants are obtained by using
Lagrangian analysis on the action. In the Painlevé-Reissner-Nordström spacetime (4), when
a charged massive particle with mass m and charge q tunnels across the event horizon,
the effect of the electromagnetic field should be taken into account. Obviously, the matter-
gravity system consists of the black hole and the electromagnetic field outside the hole. The
Lagrangian function of the matter-gravity system is given by

L = Lm + Le, (6)

where Le = −1/4FμνF
μν is the Lagrangian function of the electromagnetic field cor-

responding to the generalized coordinates Aμ = (At , 0, 0, 0). It is note that Aμ =
(At , 0, 0, 0) is an ignorable coordinate from the expression of Le. According to (4) and (6),
the Lagrangian quantity is given by [117]

L = 1

2
mgμν

dxμ

dτ

dxν

dτ
− qAμ

dxμ

dτ
,

= m

2
[−�ṫ2 + 2

√
1 − �ṫṙ + ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2] + qQ

r
ṫ. (7)
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Thus, the corresponding canonical momenta are given by

Pt = ∂L
∂ṫ

= m[−�ṫ + √
1 − �ṙ]+qQ

r
,

Pr = ∂L
∂ṙ

= m[√1 − �ṫ + ṙ],

Pθ = ∂L
∂θ̇

= mr2θ̇ ,

Pϕ = ∂L
∂ϕ̇

= mr2 sin2 θϕ̇. (8)

According to the Legendre transformation, the Hamiltonian of the charged massive particle
can be obtained by

H = Pt ṫ + Pr ṙ + Pθ θ̇ + Pϕϕ̇ − L,

= m

2
[−�ṫ2+2

√
1 − �ṫṙ + ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2]. (9)

Here, we can easily obtainH = 1
2mgμν

dxμ

dτ
dxν

dτ
from (7) and (9). Moreover, the normalizing

condition of the 4-velocity is given by

gμν

dxμ

dτ

dxν

dτ
= −k, (10)

where k is defined as a constant, when k = 0 denotes a photon, when k = 1 denotes a
massive particle. Thus, by rescaling the affine parameter τ , we can always set

H = −mk

2
, k =

{ 0, (for the massless particle).
1, (for the charged massive particle).

(11)

Obviously, the Hamiltonian quantity of the massless particle can be written in a unified
way with that of the charged massive particle. In view of this, it is encouraging to obtain a
unified form for the geodesic equation of the massless particle and charged massive particle
by analyzing the Hamiltonian quantity. In the Lagrangian quantity (7), t and ϕ are the cyclic
coordinates, so we have

dPt

dτ
= ∂L

∂t
= 0,

dPϕ

dτ
= ∂L

∂ϕ
= 0, (12)

which means

Pt = m[−�ṫ+√
1 − �ṙ]+qQ

r
= const = E,

Pϕ = mr2 sin2 θϕ̇ = const = L, (13)

whereE andL are integral constants. Combining (11) and (13), if the geodesics is described
in an invariant plane θ = π/2 without loss of generality, we have

ṙ ≡ dr

dτ
= ±

√(
E − qQ/r

m

)2

− �

(

k + L2

m2r2

)

, (14)

and

ṫ ≡ dt

dτ
= 1

�

⎡

⎣−E − qQ/r

m
± √

1 − �

√(
E − qQ/r

m

)2

− �

(

k + L2

m2r2

)
⎤

⎦ . (15)
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Hence, the geodesic equation of the tunneling particle across the event horizon of the
Reissner-Nordström black hole is given by

r̄ ≡ ṙ

ṫ
= �

[√
1 − � ± E − qQ/r

√
(E − qQ/r)2 − �(m2k + L2/r2)

]−1

, (16)

where the +(−) sign can be identified with the outgoing(ingoing) radial motion under the
implicit assumption that time t increase towards the future. Obviously, in (16), the geodesic
equation of the charged massive particle (i.e. k = 1) has been defined consistently with that
of the massless particle (i.e. k = 0). Next, we will remark on it.

i) When k = 0 for the geodesics moving by the massless particle, considering the s-wave
approximation (Pϕ = L = 0) yields

r̄ = ±1 − √
1 − �, (17)

where the +(−) sign is identified with the outgoing(ingoing) radial geodesics. It is
noted that, our definition for the geodesic equation of the massless particle is precisely
consistent with that defined in Ref. [3–6] by using the relation ds2 = 0.

ii) When k = 1 for the geodesics moving by the charged massive particle, considering
the s-wave approximation (Pθ = L = 0), we have

r̄ = �
[√

1 − � ± E − qQ/r
√

(E − qQ/r)2 − �m2

]−1
, (18)

where the +(−) sign denotes the outgoing(ingoing) radial geodesics. Near the event hori-
zon, it is interestingly found that our new definition for the geodesic equation of the charged
massive particle is precisely consistent with that defined in Ref. [16] by investigating the
relation between the group and phase velocity of the tunneling particle.

In a word, we obtain the three conserved integral constants by applying the Lagrangian
analysis on the action, and then use the above integral constants to redefine the geodesic
equation of the charged massive particle. Comparing with previous definition in Ref. [16]
by investigating the relation between the group and phase velocity of the tunneling particle,
our new definition for the geodesic equation of the charged massive particle appears to be
more suitable for the tunneling mechanism. On the one hand, the geodesic equation of the
massless and charged massive particle can be uniformly defined by letting k = 0 and k = 1
respectively corresponding to the massless particle and the massive particle. On the other
hand, the geodesic equation of the charged massive particle is defined consistently with the
first principle. In the next section, we use this new definition for the geodesic equation to
restudy the Hawking radiation of the charged massive particle via tunneling from the event
horizon of the Reissner-Nordström black hole.

3 The Hawking Radiation at the Event Horizon

In the section, we turn to discuss Hawking radiation of charged particle as a semiclassical
tunneling process. We adopt the picture of a pair of virtual particles spontaneously created
just inside the horizon. The positive energy virtual particle can tunnel out and materialize
as a real particle escaping classically to infinity, its negative energy partner is absorbed by
the black hole, resulting in a decrease in the mass of the black hole and the surface of the
event horizon. We should take into account the self-gravitation of the tunneling particle.
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According to the energy and charge conservation, we assume that the total ADM mass
and charge of the hole-particle system are held fixed, whereas the mass and charge of the
hole are allowed to vary, the black hole mass and charge will become M → M − ω and
Q → Q − q when a particle with energy ω and charge q has evaporated from the event
horizon. Now, the geodesic equation of the charged massive particle is modified as

r̄ = �̃

⎡

⎢
⎢
⎣

√
1 − �̃ + Ẽ − qQ̃/r

√(
Ẽ − qQ̃/r

)2 − �̃m2

⎤

⎥
⎥
⎦

−1

(19)

where �̃ = 1 − 2(M − ω)/r + (Q − q)2/r2, and Ẽ and qQ̃/r correspond to the integral
constant of the canonical momentum Pt and the electromagnetic energy after taking into
account the tunneling particle’s self-gravitation effect. When the charged massive particle
tunnels out from the event horizon of the Reissner-Nordström black hole, the effect of the
electromagnetic field should be taken into account. When a charged particle tunnels out,
the system transit from one state to another. But from the expression of Le we find that the
generalized coordinate Aμ = (At , 0, 0, 0) is an ignorable coordinate. In order to eliminate
the freedom corresponding to Aμ, the imaginary part of the action for the charged massive
particle should be written as

ImS = Im
∫ rf

ri

Pr − PAt Āt

r̄
dr

= Im
∫ rf

ri

(∫ (Pr ,PAt )

(0,0)
dP ′

r − Āt

r̄
dP ′

At

)

dr, (20)

where ri and rf represent the locations of the event horizon before and after the charged
massive particle with energy ω and charge q tunnels out, and PAt is the electromagnetic
field’s canonical momentum conjugated to At . To proceed with an explicit calculation, we
apply the Hamilton’s equation

r̄ = dH

dPr

∣
∣
(r;At ,PAt )

= d(M − ω)

dPr

, (21)

Āt = dH

dPAt

∣
∣
(At ;r,Pr ) = (Q − q)

r

d(Q − q)

dPAt

. (22)

Substituting (21) and (22) into (20) yields

ImS = Im
∫ rf

ri

∫ (ω,q)

(0,0)

[

d(M − ω′) − Q − q ′

r
d(Q − q ′)

]
dr

r̄
,

= Im
∫ rf

ri

∫ (ω,q)

(0,0)

1

�̃

⎡

⎢
⎣

√
1 − �̃′ + Ẽ′ − qQ̃′/r

√
(Ẽ′ − qQ̃′/r)2 − �̃′m2

⎤

⎥
⎦

×
[

d(M − ω′) − Q − q ′

r
d(Q − q ′)

]

dr, (23)
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where

�̃′ = 1 − 2(M − ω′)/r + (Q − q ′)2/r2 = (r − r ′+)(r − r ′−)/r2,

r ′± = (M − ω′) ±
√

(M − ω′)2 − (Q − q ′)2,

ri = M +
√

M2 − Q2,

rf = (M − ω′) +
√

(M − ω′)2 − (Q − q ′)2. (24)

Obviously, at the event horizon (i.e. r = r ′+), there is a single pole in (23). Let us switch the
order of integration and do the r integral first. Then, deforming the contour around the pole
yields

ImS = −π

∫ rf

ri

r ′+dr ′+ = −π

2
(r2f − r2i ) = −1

2
�SEH , (25)

where �SEH = SEH (M − ω, Q − q) − SEH (M,Q) is the change of the Bekenstein-
Hawking entropy before and after the charged massive particle tunnels out. Therefore, the
tunneling rate of the charged massive particle via tunneling from the event horizon of the
Reissner-Nordström black hole is given by

� ∝ e−2ImS = e�SEH . (26)

This tunneling rate is accurately consistent with that in Ref. [16]. In Ref. [16], the geodesic
equation of the charged massive particle is unnaturally and even defectively given by inves-
tigating the relation between the group and phase velocity of the tunneling particle. In our
treatment, the geodesic equation of the charged massive particle is well defined by applying
the Lagrangian analysis on the action. At the event horizon, both of them are asymptoti-
cally taking the same form. That’s why we get the same tunneling rate in spite of different
definitions for the geodesic equation of the charged massive particle.

4 Conclusion and Discussion

In this paper, we first redefine the geodesic equation of the charged massive particle by
applying the Lagrangian analysis on the action of the variation principle. Then, basing on
the new definition for the geodesics, we revisit the Hawking radiation of the charged mas-
sive particle via tunneling from the event horizon of the Reissner-Nordström black hole. It
is worth noting that, our new definition for the geodesic equation of the charged massive
particle overcomes some shortcomings of its previous definition in Ref. [16], and is more
suitable for the tunneling mechanism. On the one hand, the geodesic equation of the mass-
less and charged massive particle can be uniformly defined by letting the parameter k in
the normalizing condition of the 4-velocity. On the other hand, the geodesic equation of the
charged massive particle is defined consistently with the first principle - the variation princi-
ple. In addition to, the method of redefining the geodesic equation can be extended to other
types of black holes since our derivation of the geodesic equation basic on the Lagrangian
analysis is universal. Our work in this paper is a new and important development of the
Parikh-Wilczek’s tunneling method.
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