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Abstract A novel quantum multi-image encryption algorithm based on iteration Arnold
transform with parameters and image correlation decomposition is proposed, and a quantum
realization of the iteration Arnold transform with parameters is designed. The correspond-
ing low frequency images are obtained by performing 2-D discrete wavelet transform on
each image respectively, and then the corresponding low frequency images are spliced ran-
domly to one image. The new image is scrambled by the iteration Arnold transform with
parameters, and the gray-level information of the scrambled image is encoded by quantum
image correlation decomposition. For the encryption algorithm, the keys are iterative times,
added parameters, classical binary and orthonormal basis states. The key space, the secu-
rity and the computational complexity are analyzed, and all of the analyses show that the
proposed encryption algorithm could encrypt multiple images simultaneously with lower
computational complexity compared with its classical counterparts.
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1 Introduction

The rapid progress of quantum computation and quantum computer attracts people to
investigate quantum data security. Combining quantum computing method with digital
image processing techniques is an effective method to solve the current image processing
problems. Quantum computation has been applied in many fields of information sciences
[1].

As an important form of quantum information, quantum images will make the appli-
cations of quantum computer more extensive and comprehensive. A series of methods
representing quantum images have been proposed [2–7]. Le et al. proposed a flexible rep-
resentation of quantum images (FRQI) [3], which captured information about colors and
their corresponding positions in one image into quantum states. Meanwhile, Le designed
a method on how to get the quantum states and analyzed the computational complexity of
quantum image preparation. On the basis of the type proceed color transform [4], simple
geometric transform [8, 9] and image watermarking [10], Zhang et al. proposed a novel
enhanced quantum representation (NEQR) model for digital images [11], which improved
the storage model of color information in FRQI and put not only position but also color in
qubits.

Consequently, some new quantum algorithms were developed as new theoretical tools
for quantum image encryption [12–25]. For instance, Liao et al. improved the efficiency of
quantum steganography with noisy depolarizing channels by modifying the twirling proce-
dure and adding quantum teleportation [13]. Hua et al. proposed a quantum image encryption
algorithm based on image correlation decomposition [19], where the correlation among
image pixels is established by utilizing the superposition and measurement principle of
quantum states and a whole quantum image is divided into a sequence of sub-images. Gong et al.
proposed a quantum image encryption algorithm based on quantum image XOR operations
[25]. Jiang et al. proposed a quantum realization of Arnold and Fibonacci image scrambling
[26]. After that, Jiang et al. analyzed and improved the quantum Arnold image scrambling
[27], and proposed a better scheme to decrease the network complexity apparently. Zhou
et al. proposed a quantum image encryption algorithm based on generalized Arnold trans-
form and double random phase encoding [28], which scrambled the pixels by the general-
ized Arnold transform and the gray-level information of images was encoded by the double
random-phase operations. In the field of classical image encryption, there were some good
multi-image encryption algorithms [29–33]. Kong et al. presented a multi-image encryption
algorithm based on optical wavelet transform and multichannel fractional Fourier transform
[30] and the scheme could make full use of multi-resolution decomposition of wavelet trans-
form and multichannel processing of multi-channel fractional Fourier transform. Liao et al.
proposed reversible data hiding in encrypted images based on absolute mean difference of
multiple neighboring pixels, which reduces the average extracted-bit error rate when the
block size is appropriate [31].

In this paper, a quantum version of the iteration Arnold transform with parameters and a
quantum multi-image encryption algorithm by combining iteration Arnold transform with
parameters with quantum image correlation decomposition are designed. Due to the multi-
resolution decomposition property of DWT, images are decomposed into sub-images of
different frequencies and the energy of image is focused on the low-frequency part by
performing DWT. Therefore, these low-frequency parts could be reassembled. Then the iter-
ation Arnold transform with parameters is performed on the new image to scramble image
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by shuffling the positions of image pixels. Finally, quantum image correlation decompos
ition is performed on the scrambled image. At the same time, Pauli-x gate, Pauli-z gate,
phase shift gate are used to encode color information of quantum image.

The rest of this paper is organized as follows. In Section 2, the flexible representa-
tion model for quantum images and the discrete wavelet transform are reviewed. The
quantum realization of image scrambling by the iteration Arnold transform with param-
eters is designed in Section 3. In Section 4, the quantum multi-image encryption and
decryption algorithm is introduced. Section 5 is devoted to the theoretical analyses on
key space, security and computational complexity. Finally, a conclusion is drawn in
Section 6.

2 Flexible Representation for Quantum Images and Wavelet Transform

2.1 The Flexible Representation for Quantum Images

Classical image is represented by a matrix with the same size of the image, i.e., the number
of pixels, and each pixel contains the position information and the grayscale value. Inspired
by this, a quantum flexible representation for images on quantum computers capturing infor-
mation about positions and grayscale values has been proposed. The flexible representation
for quantum images can be expressed as:

|M〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉 |yx〉 (1)

|g(y, x)〉 = cos θi |0〉 + sin θi |1〉 (2)

where θi ∈ [
0, π

2

]
(i = yx = 0, 1, . . . , 22n − 1), |0〉 and |1〉 are two-dimensional com-

putational basis quantum states, θ = (
θ0, θ1, . . . , θ22n−1

)
is the vector of angles encoding

colors, |g(y, x)〉 encodes the color information of the quantum image, |i〉 = |yx〉 encodes
the position information of the quantum image, |x〉 = |xn−1xn−2 . . . x0〉 encodes the first
n-qubit along the horizontal location while |y〉 = |yn−1yn−2 . . . y0〉 encodes the second
n-qubit along the vertical location, and n is the number of quantum bits required for
encoding.

2.2 Discrete Wavelet Transform

Wavelet transform is another breakthrough in mathematics after Fourier transform with pro-
found theoretical meaning and widespread applications. Now wavelet transform plays an
important role in the field of signal analysis, image processing, computer recognition, data
compression, and etc. The discrete wavelet transform (DWT), a special case of wavelet
transform, provides a compact representation of a signal in time and frequency domains.
The energy of image is focused on the low-frequency part after DWT. In a general two-
dimensional DWT, the data are decomposed into four parts firstly, shown in Fig. 1, where
LL1 andHH1 are respectively the low-frequency and the high-frequency parts and the other
two are the diagonal parts.



Int J Theor Phys (2017) 56:2192–2205 2195

Fig. 1 Discrete wavelet
decomposition
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3 Realization of Iteration Arnold Transform with Parameters

3.1 Quantum Representation of Iteration Arnold Transform with Parameters

The Arnold transform, also called Arnold’s cat map, was discovered by V. I. Arnold Dyson
et al. [34] and it has been used in image scrambling widely. The two-dimensional Arnold
transform A in the form of matrix is defined as

[
x′
y′

]
= A

[
x

y

]
(modN) =

[
1 1
1 2

] [
x

y

]
(modN) (3)

The iteration Arnold transform Ai with parameters in the form of matrix is defined as

[
x′
y′

]
= Ai

[
x

y

]
+

[
ku

kv

]
(modN) =

[
f2i−1 f2i
f2i f2i+1

] [
x

y

]
+

[
ku

kv

]
(modN) (4)

where x, y, x ′, y′ ∈ {0, 1, . . . , N − 1}, fi is defined by Fibonacci spectrum as fi+2 =
fi+1 +fi , f1 = 1, f2 = 1. x and y are the pixel coordinates of the original image, x′ and y′
are the pixel coordinates of the scrambled image after the iteration Arnold transform with
parameters. N is the size of the original image. Generally, the original image is considered
as a square image. u, v and k are the joined parameters. Its inverse transform A−i is

[
x

y

]
= A−i

[
x′ − ku

y′ − kv

]
(modN) =

[
f2i+1 −f2i
−f2i f2i−1

] [
x′ − ku

y′ − kv

]
(modN) (5)

The iteration Arnold transform with parameters in the form of pixel coordinates can be
expressed as

{
x ′ = (f2i−1x + f2iy + ku) mod N

y′ = (f2ix + f2i−1y + kv) mod N
(6)

According to the classical iteration Arnold transform with parameters, the quantum
representation of the iteration Arnold transform with parameters can be described as

{ |x′〉 = |f2i−1x + f2iy + ku〉 mod 2n

|y′〉 = |f2ix + f2i−1y + kv〉 mod 2n (7)
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3.2 Quantum Circuit Architecture of Iteration Arnold Transform with
Parameters

Quantum network is a device operating quantum algorithm or processing quantum infor-
mation. A plain adder is used to calculate the sum of two numbers. The addition of
two quantum registers |a〉 and |b〉 can be written as |a, b〉 → |a, a + b〉. The adder
modulo 2n is a quantum network to calculate the sum of two numbers stored in the
corresponding quantum registers. It can be written as |a, b〉 → |a, (a + b) mod 2n〉,
where a, b are the inputs while (a + b) mod 2n is the output. In the iteration Arnold
transform with parameters, the networks

∣∣x′〉 and
∣∣y′〉 for the iteration Arnold trans-

form with parameters are independent, which can be realized by connecting several
quantum ADDER-MOD2n circuits [26]. Therefore, the quantum ADDER-MOD2n net-
work is basic to realize the iteration Arnold transform with parameters in quantum
computer.

Assume that x, y, u and v are all n-qubit binary numbers, x = xn−1xn−2 . . . x0,
y = yn−1yn−2 . . . y0, u = un−1un−2 . . . u0, v = vn−1vn−2 . . . v0, xi, yi, ui, vi ∈ {0, 1},
i = n − 1, n − 2, . . . , 0. The realization of

∣∣x′〉 is divided into f2i−1 + f2i + k steps,
as shown in Fig. 2. The ADDER-MOD2n network is used to obtain f2i−1x mod 2n from
the first step to the (f2i−1 − 1)-th step. In the f2i−1-th step, x is replaced by y, and from
the (f2i−1 + 1)-th step to the (f2i−1 + f2i − 1)-th step, the ADDER-MOD2n network is
employed to obtain (f2i−1x + f2iy) mod 2n. In the (f2i−1 + f2i )-th step, y is replaced by
u, and from the (f2i−1 + f2i + 1)-th step to the last step, the ADDER-MOD2n network is
exploited to obtain (f2i−1x + f2iy + ku) mod 2n.

|x, x〉 → ∣∣x, 2x mod 2n
〉 → · · · → ∣∣x, f2i−1x mod 2n

〉 → ∣∣y, f21−1x mod 2n
〉

→ ∣∣y, (f2i−1x + y) mod 2n
〉 → · · · → ∣∣y, (f2i−1x + f2iy) mod 2n

〉

→ ∣∣u, (f2i−1x + f2iy) mod 2n
〉 → · · · → ∣∣u, (f2i−1x + f2iy + ku) mod 2n

〉
(8)
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Fig. 2
∣∣x′〉 network for the iteration Arnold transform with parameters
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The realization of
∣∣y′〉 is divided into f2i + f2i−1 + k steps, as shown in Fig. 3.

|x, x〉 → ∣∣x, 2x mod 2n
〉 → · · · → ∣∣x, f2ix mod 2n

〉 → ∣∣y, f2ix mod 2n
〉

→ ∣∣y, (f2ix + y) mod 2n
〉 → · · · → ∣∣y, (f2ix + f2i−1y mod 2n

〉

→ ∣∣v, (f2ix + f2i−1y) mod 2n
〉 → · · · → ∣∣v, (f2ix + f2i−1y + kv mod 2n

〉

(9)

4 Quantum Multi-Image Encryption and Decryption Algorithm

4.1 Quantum Multi-Image Encryption Algorithm

Assume that the four images to be encrypted are I1, I2, I3 and I4. The proposed multi-image
encryption algorithm consists of the following steps, and the encryption procedure is shown
in Fig. 4.

Step 1. By performing discrete wavelet transform on the four images of size 2n × 2n,
respectively, the corresponding low frequency image LLi (i = 1, 2, 3, 4) of size
2n−1 × 2n−1 can be obtained.

LLi = DWT (Ii) (10)

Randomly build up an image from the corresponding low frequency images. Then
the new image can be expressed as:

|Q〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|f (y, x)〉 |yx〉 (11)

|f (y, x)〉 = cosψi |0〉 + sinψi |1〉 , ψi ∈
[
0,

π

2

]
, i = yx = 0, 1, . . . , 22n − 1

(12)
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∣∣y′〉 network for the iteration Arnold transform with parameters
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Fig. 4 The quantum multi-image encryption algorithm procedure

where the new image is a classical image of size 2n × 2n.
Step 2. To obtain |Qi〉, one performs the iteration Arnold transform with parameters on

|Q〉 for i times, where
∣∣x′〉 represents the horizontal location information and

∣∣y′〉

represents the vertical location information of the scrambled image |Qi〉. The
quantum version of the iteration Arnold transform with parameters is defined as

|Qi〉 = Ai |M〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=1

|g(y, x)〉 Ai |yx〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉Ai |y〉Ai |x〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉 ∣∣y′〉 ∣∣x′〉 (13)

where { ∣∣x′〉 = |f2i−1x + f2iy + ku〉 mod 2n
∣∣y′〉 = |f2ix + f2i−1y + kv〉 mod 2n (14)
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Step 3. |Qi〉 is divided into a range of sub-images |Q1〉 , |Q2〉 , · · · |Ql−i〉 by performing
the quantum image correlation decomposition technology [20]. Then we divide
|Qi〉 into three segments |Qi1〉 , |Qi2〉 and |Qi3〉.

Step 4. To encode the color information of the quantum image, quantum bit gates are
performed on these sub-images. Pauli-x gate, Pauli-z gate and phase shift gate
are successively performed on the three segments. Pauli-x gate Cj is performed
on |Qi1〉. Pauli-x gate Cj is controlled by a classical binary number aw , where
aw ∈ {0, 1}, w = 0, 1, . . . , 22n − 1. Binary sequence A = a0a1 . . . a22n−1 is the
key. Pauli-x gate Cj is used to construct a 2n + 1 qubit-based unitary transform
Hj .

Hj = (
Cj

)aw =
{

Cj , aw = 1;
I, aw = 0.

(15)

Cj =
[
0 1
1 0

]
(16)

A 2n + 1 qubit-based unitary transform Bj could be constructed with unitary
transform Hj .

Bj = I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=j

|yx〉 〈yx| + Hj ⊗ |j〉 〈j | (17)

The Pauli-x matrix Bj is a unitary matrix since BjB
†
j = I⊗2n+1. If we apply a

2n + 1 qubits unitary transform B on the quantum image |Qi1〉, then |fi1〉 will be
obtained.

B |Qi1〉 =
2n−1∏

y=0

2n−1∏

x=0

Bj |Qi1〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

(
cos θyx |1〉 + sin θyx |0〉) |yx〉

= |fi1〉 (18)

Pauli-z gate Dm is performed on |Qi2〉. Dm is controlled by a classical binary
number eo, where em ∈ {0, 1}, m = 0, 1, . . . , 22n − 1. Binary sequence E =
e0e1 . . . e22n−1 is the key. Pauli-z gate Dm is used to construct a 2n+1 qubit-based
unitary transform Sm.

Sm = (Dm)em =
{

Dm, em = 1;
I, em = 0.

(19)

Dm =
[
0 −i

i 0

]
(20)

Unitary transform Sm is used to construct a 2n + 1 qubit-based unitary transform
Rm.

Rm = I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=0

|yx〉 〈yx| + Sm ⊗ |m〉 〈m| (21)
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The Pauli-z matrix Dm is a unitary matrix since RmR
†
m = I⊗2n+1. If we apply

2n + 1 qubits unitary transform R on the quantum image |Qi2〉, then |fi2〉 will be
achieved.

R |Qi2〉 =
2n−1∏

y=0

2n−1∏

x=0

Rm |Qi2〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

(
cos θyx |1〉 − sin θyx |0〉) |yx〉

= |fi2〉 (22)

Phase shift gate Kt is performed on |Qi3〉 and is controlled by a classical
binary number lt , where lt ∈ {0, 1}, t = 0, 1, . . . , 22n − 1. Binary sequence
L = l1l2 . . . l22n−1 is the key. Phase shift gate Kt is used to construct a 2n + 1
qubit-based unitary transform Ot .

Ot = (Kt )
lt =

{
Kt, lt = 1;
I, lt = 0.

(23)

Kt =
[
1 0
0 eiψ

]
(24)

where t = 0, 1, . . . , 22n − 1 and θ is a real number and distributed uniformly
between 0 and 1. Unitary transform Ot is used to construct a 2n + 1 qubit-based
unitary transform Pt .

Pt = I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=t

|yx〉 〈yx| + Ot ⊗ |t〉 〈t | (25)

The controlled phase matrix Pt is a unitary matrix since PtP
†
t = I⊗2n+1. By

applying a 2n + 1 qubits unitary transform P on the quantum image |Qi3〉, |fi3〉
could be obtained.

P |Qi3〉 =
2n−1∏

y=0

2n−1∏

x=0

Pt |Qi3〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

(
cos θyx |0〉 + ejψ sin θyx |1〉

)
|yx〉

= |fi3〉 (26)

Step 5. To obtain the quantum cipher-text image |f 〉, one encrypts all of the images |fi1〉,
|fi2〉 and |fi3〉 into the superposition form.

|f 〉 = a0 |f0〉 + a1 |f1〉 + · · · + aN−1 |fN−1〉 (27)

where a = (a1, a2, . . . , aN−1) and a20 + a21 + · · · + a2N−1 = 1. To obtain the
orthonormal basis states |Mi〉, one applies Schmidt decomposition to cipher-text
image |f 〉.

|f 〉 = r0 |M0〉 + r1 |M1〉 + · · · + rN−1 |MN−1〉 (28)

where r = (r0, r1, . . . , rN−1) and r20 + r21 + · · · + r2N−1 = 1.
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4.2 Quantum multi-image Decryption Algorithm

In the multi-image encryption algorithm, the key involves iterative times i and the classi-
cal binary sequences A = a1a2 . . . a22n−1, E = e1e2 . . . e22n−1 , L = l1l2 . . . l22n−1. The
decryption process is as follows.

Step 1. The cipher-text image |f 〉 is obtained by making measurements on the received
quantum image |fi〉. With the projection operators |Mi〉 , i = 0, 1, . . . , N − 1, the
projection measurement can be executed.

J =
N−1∑

i=0

Ji |Mi〉 〈Mi | (29)

Ji = ti

t − ti
(30)

where t represents the total number of the measurements and ti is the number of
the measurement result |fi〉.

Step 2. According to the quantum image correlation decomposition, different inverse
transforms are performed to obtain the sub-images |Q0〉 , |Q1〉 , . . . , |QN−1〉. For
|fi1〉, the decryption operation B−1 is performed with the key A.

B−1 |fi1〉 =
2n−1∏

y=0

2n−1∏

x=0

B
†
j |fi1〉

=
2n−1∏

y=0

2n−1∏

x=0

B
†
j

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

(cos θyx |1〉 + sin θyx |0〉) |yx〉
⎞

⎠

= |Qi1〉 (31)

where B
†
j is the Hermitian conjugate of Bj . The decryption operation is performed

on |fi2〉 with the key E.

R−1 |fi2〉 =
2n−1∏

y=0

2n−1∏

x=0

R†
m |fi2〉

=
2n−1∏

y=0

2n−1∏

x=0

R†
m

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

(cos θyx |1〉 − sin θyx |0〉) |yx〉
⎞

⎠

= |Qi2〉 (32)
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where R
†
m is the Hermitian conjugate of Rm. For |hi3〉, the decryption operation

P −1 should be executed to obtain image |Qi3〉 with the key L.

P −1 |fi3〉 =
2n−1∏

y=0

2n−1∏

x=0

P
†
t |fi3〉

=
2n−1∏

y=0

2n−1∏

x=0

P
†
t

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

(cos θyx |0〉 + ejψ sin θyx |1〉) |yx〉
⎞

⎠

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉 |yx〉

= |Qi3〉 (33)

where P −1 is the inverse operator of P . Then the quantum image |Qi〉 is rebuilt
by these sub-images.

Step 3. One performs the inverse iteration Arnold transform with parameters A−i on the
quantum image |Qi〉, where the quantum version of the inverse iteration Arnold
transform A−i with parameters is defined as:

|Q〉 = A−i |Qi〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉A−i
∣∣y′x′〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉A−i
∣∣y′〉 A−i |x〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x)〉 |yx〉 (34)

where { |x〉 = A−i
∣∣x′〉 = f2i+1

(
x′ − ku

) − f2i
(
y′ − kv

)

|y〉 = A−i
∣∣y′〉 = −f2i

(
x′ − ku

) + f2i−1
(
y′ − kv

) (35)

Step 4. LLi (i = 1, 2, 3, 4) could be obtained from the desirable image. Then the inverse
discrete wavelet transform should be performed on these images.

Ii = DWT−1 (LLi) (36)

where DWT−1 is the inverse transform of DWT. Finally, the corresponding
plaintext images I1, I2, I3 and I4 are obtained.

5 Algorithm Analyses

Practical quantum computer is still not available due to the lack of the quantum hardware,
thus the quantum multi-image encryption algorithm can not be simulated. The proposed
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quantum multi-image encryption algorithm is limited to the theoretical analyses on key
space, security and computational complexity.

5.1 Key Space

A good image encryption scheme should be as sensitive as possible to its keys, and the key
space should be large enough to make brute-force attack infeasible or impossible. Assume
that the key space for the iteration Arnold transform with parameters is K1 and the key
space for quantum image correlation decomposition is K2, then the total key space of the
proposed multi-image encryption algorithm is K1K2. Pauli-x gate, Pauli-z gate and phase
shift gate build up the quantum image correlation decomposition. The keys of the iteration
Arnold transform with parameters are composed of the parameters k, u, v and the iteration
times i. The key space K1 is very large. The key space of binary sequence A is 22n, so are
E and L. The key space of K2 is 26n. With so large total key space, it is very difficult to
obtain the plaintext image if the attacker doesn’t know the correct key.

5.2 Security

The performance of the proposed quantum multi-image encryption algorithm is better than
that of the classical image encryption algorithm. The key space is larger and the computa-
tional complexity is lower than its classical counterparts. Hua TX et al.’s quantum image
encryption scheme [19] used the corresponding parameters of the transform as the keys. If
the attacker cracks the parameters, this part of the encryption scheme will fail and the infor-
mation may be stolen by the attacker. The proposed multi-image encryption algorithm uses
three binary sequences as the keys instead of the corresponding parameters. It increases the
key space, and the key space of the proposed image encryption algorithm is larger than that
of Hua TX et al.’s encryption algorithm. The image encryption algorithms based on clas-
sical Arnold transform have potential security threats due to its periodicity. If the attacker
cracks the periodicity, the image will fail to be scrambled. The iteration Arnold transform
with parameters in the multi-image encryption algorithm overcomes the shortcoming by the
joined parameters k, u, v. The attacker cannot obtain the correct original image even if she
decrypts the image with the right periodicity. Because the attacker doesn’t know the joined
parameters, it can greatly improve the security. The weakness of the algorithm is that it can
not be simulated and that quantum image correlation on decomposition transform is limited
to theoretical analyses.

5.3 Computational Complexity

Assume I1, I2, I3 and I4 are the original images of size 2n × 2n, then there are 22n pixels in
each image. The computational complexity of the proposed multi-image encryption algo-
rithm depends on the discrete wavelet transform, iteration Arnold transform with parameters
and quantum image correlation decomposition. In the quantum image correlation decompo-
sition, the computational complexity depends on Pauli-x gate, Pauli-z gate and phase shift
gate, whose computational complexities are O (n). The quantum image correlation decom-
position needs to perform encryption operation onN sub-images at the same time. Therefore
the computational complexity of quantum image correlation decomposition is O (Nn). For
the corresponding classical encryption algorithms, Pauli-x gate, Pauli-z gate and phase shift
gate are performed on the image by using 22n multiplication operations, their computation
complexities are O

(
N22n

)
. The elementary gates of ADDER-MOD2n are 28n − 12. The
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iteration Arnold transform with parameters involves 2 (f2i−1 + f2i + k) (28n − 12) basic
gates. Then the total computational complexity of the proposed multi-image encryption
algorithm is O

([
N + 56 (f2i−1 + f2i + k)

]
n
)
[35]. The computational complexity of the

classical iteration Arnold transform with parameters is O
(
22n

)
and the total computational

complexity is O
(
(N + 1) 22n

)
. Therefore, the proposed multi-image encryption algorithm

has lower computational complexity than its classical counterparts.

6 Conclusion

A quantum version of iteration Arnold transform with parameters is designed and its quan-
tum circuit is suggested. By combining iteration Arnold transform with parameters with
quantum image correlation decomposition technology, a quantum multi-image encryption
algorithm is proposed. The encryption process can be realized by performing the discrete
wavelet transform, the iteration Arnold transform with parameters and quantum image
correlation decomposition technology on the different frequencies of images, position infor-
mation and encoding color information of these sub-images, respectively. The independent
parameters and three binary sequences are used as the keys, and the key space of the pro-
posed multi-image encryption algorithm is very large. Detailed theoretical security and
computational complexity analyses on the proposed multi-image encryption algorithm are
given. Since the quantum image correlation decomposition technology cannot be simu-
lated currently, the proposed multi-image encryption algorithm is in principle The quantum
version of iteration Arnold transform with parameters can enlarge the key space and the
scrambled image can be hardly decrypted by joined parameters. Even if the attacker knows
the periodicity of the iteration Arnold transform with parameters, she also cannot obtain the
correct image due to the joined parameters. The proposed multi-image encryption algorithm
can encrypt multiple images at the same time, which has a higher efficiency. Moreover, the
proposed multi-image encryption algorithm has lower computational complexity and larger
key space than its classical counterparts.
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